
How to Get More Value From Your File System Directory Cache

Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang, and Donald E. Porter
Stony Brook University

{chitsai, yazhan, jdivakared, yjiao, zhtao, porter}@cs.stonybrook.edu

Abstract
Applications frequently request file system operations that
traverse the file system directory tree, such as opening a file
or reading a file’s metadata. As a result, caching file system
directory structure and metadata in memory is an important
performance optimization for an OS kernel.

This paper identifies several design principles that can
substantially improve hit rate and reduce hit cost transpar-
ently to applications and file systems. Specifically, our di-
rectory cache design can look up a directory in a constant
number of hash table operations, separates finding paths from
permission checking, memoizes the results of access con-
trol checks, uses signatures to accelerate lookup, and re-
duces miss rates through caching directory completeness.
This design can meet a range of idiosyncratic requirements
imposed by POSIX, Linux Security Modules, namespaces,
and mount aliases. These optimizations are a significant net
improvement for real-world applications, such as improving
the throughput of the Dovecot IMAP server by up to 12% and
the updatedb utility by up to 29%.

1. Introduction
Operating System kernels commonly cache file system data
and metadata in a virtual file system (VFS) layer, which ab-
stracts low-level file systems into a common API, such as
POSIX. This caching layer has become a ubiquitous opti-
mization to hide access latency for persistent storage tech-
nologies, such as a local disk. The directory cache is not ex-
clusively a performance optimization; it also simplifies the
implementation of mount-ing multiple file systems, consis-
tent file handle behavior, and advanced security models, such
as SELinux [24].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815405

0%

20%

40%

60%

80%

%
 T

ot
al

 E
xe

cu
tio

n
Ti

m
e

access/stat
open
chmod/chown
unlink

Figure 1: Fraction of execution time in several common util-
ities spent executing path-based system calls with a warm
cache, as measured with ftrace.

Directory caches are essential for good application per-
formance. Many common system calls must operate on file
paths, which require a directory cache lookup. For instance,
between 10–20% of all system calls in the iBench system
call traces do a path lookup [17]. Figure 1 lists the fraction
of total execution time several common command-line appli-
cations spend executing path-based system calls (more de-
tails on these applications and the test machine in §6). We
note that these system calls include work other than path
lookup, and that these numbers include some instrumenta-
tion overhead; nonetheless, in all cases except rm, the system
call times and counts are dominated by stat and open, for
which path lookup is a significant component of execution
time. For these applications, path-based system calls account
for 6–54% of total execution time. This implies that lowering
path lookup latency is one of the biggest opportunities for a
kernel to improve these applications’ execution time.

Unfortunately, even directory cache hits are costly—0.3–
1.1 µs for a stat on our test Linux system, compared to
only .04 µs for a getppid and 0.3 µs for a 4 KB pread.
This issue is taken particularly seriously in the Linux ker-
nel community, which has made substantial revisions and in-
creasingly elaborate optimizations to reduce the hit cost of
its directory cache, such as removing locks from the read
path or replacing lock ordering with deadlock avoidance in a
retry loop [11, 12]. Figure 2 plots directory cache hit latency
against lines of directory cache code changed over several
versions of Linux, using a path-to-inode lookup microbench-
mark on the test system described in Section 6. These efforts

0.6005

0.4438

0

500

1000

1500

2000

2500

3000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2010 2011 2012 2013 2014 2015 2016

L
oC

 C
ha

ng
ed

 fr
om

Pr
ev

io
us

 K
er

ne
l

st
at

 S
ys

te
m

 C
al

l L
at

en
cy

(µ

s)

Release Year of Linux Kernel Versions

stat Syscall Latency (µs)
Changed LoC

v3.14

v3.14
opt

v2.6.36

v3.0 v4.0

Figure 2: Latency of stat system call with a long
path XXX/YYY/ZZZ/AAA/BBB/CCC/DDD/FFF on Linux
over four years (lower is better), as well as the churn
within the directory cache code (all insertions in dcache.c,
dcache.h, namei.c, namei.h and namespace.c).
Our optimized 3.14 kernel further reduces stat system call
latency by 26%.

have improved hit latency by 47% from 2011 to 2013, but
have plateaued for the last three years.

The root of the problem is that the POSIX path permis-
sion semantics seemingly require work that is linear in the
number of path components, and severely limit the kernel de-
veloper’s implementation options. For instance, in order to
open file /X/Y/Z one must have search permission to parent
directories /, /X, and /X/Y, as well as permission to access
file Z. The Linux implementation simply walks the directory
tree top-down to check permissions. Unfortunately, when the
critical path is dominated by walking a pointer-based data
structure, including memory barriers on some architectures
for multi-core consistency, modern CPUs end up stalling on
hard-to-prefetch loads. Moreover, because so many Linux
features are built around this behavior, such as Linux Security
Modules (LSMs) [47], namespaces, and mount aliases, it is
not clear that any data-structural enhancements are possible
without breaking backward-compatibility with other Linux
kernel features. A priori, it is not obvious that a faster lookup
algorithm, such as a single hash table lookup, can meet these
API specifications and kernel-internal requirements; to our
knowledge, no one has tried previously.

This paper proposes a decomposition of the directory
cache, which allows most lookup operations to execute with
a single hash table lookup (§3), as well as optimizations to
reduce the miss rate based on information that is already in
the cache, but not used effectively (§5). Our design maintains
compatibility (§4) through several essential insights, includ-
ing how to separate the indexing of paths from checking par-
ent permissions, and how to effectively and safely memoize
the results of access control checks.

Our optimizations improve the performance of frequent
lookup operations, but introduce several costs, described in
§3 and measured in §6, which we believe are acceptable and
a net improvement for applications. First, these optimizations

slow down infrequent modifications to the directory hierar-
chy, such as rename, chmod, and chown of a directory.
However, these slower operations account for less than .01%
of the system calls in the iBench traces [17]. Second, the
memory overheads of the dcache are increased. Third, lookup
has a probability of error from signature collisions that can
be adjusted to be negligible and within acceptable thresholds
widely used by data deduplication systems [13, 34, 40, 50].
In the micro-benchmark of Figure 2, our directory cache op-
timizations improve lookup latency by 26% over unmodified
Linux.

This paper demonstrates that these techniques improve
performance for applications that use the directory cache
heavily, and the harm is minimal to applications that do
not benefit. These changes are encapsulated in the VFS—
individual file systems do not have to change their code. This
paper describes a prototype of these improvements imple-
mented in Linux 3.14. Section 2 explains that the directory
cache structure of Mac OS X, FreeBSD, and Solaris are suf-
ficiently similar that these principles should generalize.

The contributions of this paper are as follows:
• A performance analysis of the costs of path lookup and

the opportunities to improve cache hit latency.
• A directory cache design that improves path lookup la-

tency with a combination of techniques, including:
Indexing the directory cache by full path, reducing
average-case lookup from linear to constant in the
number of path components.
A Prefix Check Cache (PCC) that separates permission
checking from path caching. The PCC memoizes per-
mission checks, and is compatible with LSMs [47].
Reducing the cost of checking for hash bucket colli-
sions with path signatures.

• Identifying opportunities to leverage metadata the kernel
already has to reduce miss rates, such as tracking whether
a directory is completely in cache.

• Carefully addressing numerous, subtle edge cases that
would frustrate rote application of these techniques, such
as integration with symbolic links and Linux namespaces.

• A thorough evaluation of these optimizations. For in-
stance, our optimizations improve throughput of the
Dovecot IMAP server by up to 12% and latency of up-
datedb by up to 29%.

2. Background
This section first reviews the Unix directory semantics which
a directory cache must support; and then explains how di-
rectory caches are implemented in modern OSes, including
Linux, FreeBSD, Solaris, Mac OS X, and Windows.

2.1 Unix Directory Hierarchy Semantics
The most common operation a directory cache performs is a
lookup, which maps a path string onto an in-memory inode
structure. Lookup is called by all path-based system calls,

including open, stat, and unlink. Lookup includes a
check that the user has appropriate search permission from
the process’s root or current working directory to the file,
which we call a prefix check.

For instance, in order for Alice to read /home/alice/X,
she must have search permission on directories /, /home,
and /home/alice, as well as read permission on file X. In
the interest of frugality, the execute permission bit on direc-
tories encodes search permission. Search is distinct from read
permission in that search only allows a user to query whether
a file exists, but not enumerate the contents (except by brute
force) [35]. SELinux [24] and other security-hardened Linux
variants [1, 47], may determine search permission based on a
number of factors beyond the execute bit, such as a process’s
role, or the extended attributes of a directory.

2.2 Linux Directory Cache
The Linux directory cache, or dcache, caches dentry (direc-
tory entry) structures, which map a path to an in-memory in-
ode1 for the file (or directory, device, etc). The inode stores
metadata associated with the file, such as size, permissions,
and ownership, as well as a pointer to a radix tree that indexes
in-memory file contents [4]. Each dentry is tracked by at least
four different structures:
• The hierarchical tree structure, where each parent has an

unsorted, doubly-linked list of its children.
• A hash table, keyed by parent dentry virtual address and

the file name.
• An alias list, tracking the hard links associated with a

given inode.
• An LRU list, used to compress the cache as needed.

Linux integrates the prefix check with the lookup itself,
searching paths and checking permissions one component at
a time. Rather than using the tree structure directly, lookup
searches for each component using the hash table. For larger
directories, the hash table lookup will be faster than search-
ing an unsorted list of children. The primary use for the hier-
archical tree structure is to evict entries bottom-up, in order
to uphold the implicit invariant that all parents of any dentry
must also be in the cache. Although all dentries are stored in
a hash table keyed by path, the permission check implemen-
tation looks up each path component in the hash table.

Linux stores negative dentries, which cache the fact that
a file is known not to exist on disk. A common motivat-
ing example for negative dentries is searching for a file on
multiple paths specified by an environment variable, such as
LD LIBRARY PATH.

Current dcache optimizations. Much of the dcache opti-
mization effort illustrated in Figure 2 has improved cache hit
latency, primarily by reducing the cost of synchronization in
the lookup function with read-copy update (RCU) [26, 27].
RCU eliminates the atomic instructions needed for a read

1 Other Unix systems call the VFS-level representation of an inode a vnode.

lock and for reference counting individual dentries, pushing
some additional work onto infrequent code that modifies the
directory structure, such as rename and unlink.

The most recent Linux kernels also use optimistic syn-
chronization when checking path permissions, using se-
quence locks (essentially version counters), to detect when
the subtree might have changed concurrently with the traver-
sal. If the optimistic fast path fails because of a concurrent
modification, the kernel falls back on a slow path that uses
hand-over-hand locking of parent and child dentries.

Because the Linux developer community has already in-
vested considerable effort in optimizing its dcache, we use
Linux as a case study in this paper. The optimizations in this
paper are not Linux-specific, but in some cases build on opti-
mizations that other kernels could adopt.

2.3 Other Operating Systems
FreeBSD, OS X, and Solaris. These Unix variants all have
a directory cache that is structurally similar to Linux’s [25,
28, 39]. Each system organizes its directory cache with a hash
table, checks paths one component at a time, and stores neg-
ative dentries. Here we use FreeBSD as a representative ex-
ample of the BSD family, and the most popular according to
recent surveys [6]. The OS X kernel adopted its file system
from FreeBSD, and has not substantially changed their be-
havior with respect to directory metadata caching [31].

Linux is distinctive in that the hit path avoids calling the
low-level file system, whereas other Unix variants always call
the low-level file system. A low-level file system may opt out
of the default structures if it has a more specialized structure,
say for large directories, or it may directly implement its own
lookup function. Directly managing a file system’s portion of
the cache is problematic because mount points are not visible
to the low-level file system. Several previous works have
found this restriction onerous, especially for network file
systems [14]. These Unix variants also do not use optimistic
synchronization in their dcaches, but this is not fundamental.

The Solaris dcache, called the Direct Name Lookup Cache
(DNLC), features sophisticated cache management heuris-
tics, such as weighing relevance as well as temporal locality
in replacement decisions [25] Solaris also has a simpler ref-
erence management system for cached paths than FreeBSD
(and more similar to Linux) [16].

Windows. Essentially all OS API abstractions in Windows
are represented with objects, managed by the Object Man-
ager [36]. The Object Manager is the closest analog to the
Unix directory cache, which tracks hierarchical paths and
permissions. Unfortunately, public documentation on Win-
dows internals is limited, especially so for internal data struc-
tures and caching policies for metadata not in active use, so
a detailed comparison is difficult. Nonetheless, we can com-
pare the impact of some high-level design choices.

First, Windows only supports one root file system format,
and a very limited number of other file systems. Thus, there is

0

100

200

300

400

500

600

Path1 Path2 Path3 Path4

Pr
in

ci
pa

l L
oo

ku
p

C
om

po
ne

nt
s (

ns
)

Initialization
Permision Check
Path Scanning & Hashing
Hash Table Lookup
Finalization

unmod opt unmod opt unmod opt unmod opt

Path1: FFF Path2: XXX/FFF Path3: XXX/YYY/ZZZ/FFF
Path4: XXX/YYY/ZZZ/AAA/BBB/CCC/DDD/FFF

Figure 3: Principal sources of path lookup latency in the
Linux 3.14 kernel. Lower is better.

less value in a general-purpose, in-memory organization for
file system metadata, and Windows does not have vnodes,
dentries, or other VFS-level generalizations. Instead, caching
is primarily the responsibility of the file system, and on-disk
and in-memory structure layouts may be the same.

Unlike Unix variants, when a Windows file system path
is not cached in the Object Manager, the low-level file sys-
tem is responsible for resolving the full path, rather than
one component at a time. For this to work, Windows NT
also propagates parent directory permissions to each child’s
on-disk metadata at creation or modification time [41]. This
approach allows for direct lookup, but also creates a subtle
manageability problem. Suppose Alice makes her home di-
rectory world readable: should this change be propagated to
all sub-directories? To answer this question, Windows adopts
an error-prone heuristic of not changing manually-modified
child permissions. This paper shows how to keep the per-
formance benefits of direct lookup in memory without the
manageability issues of storing propagated hierarchical per-
missions on disk.

2.4 Opportunities for Improvement
Figure 3 shows the time spent in the principal components of
a path lookup in Linux, for four paths of increasing lengths.
The first-order impact on lookup time is the length of the
path itself, which dictates how many times each component
will be hashed, looked-up in the hash table, and execute a
permission check on each directory’s inode. These costs are
linear in the number of path components.

The hit latency optimizations described in this paper make
most of these operations constant time, except for hashing,
which is still a function of the length of the path.

3. Minimizing Hit Latency
This section describes algorithmic improvements to the
dcache hit path. In the case of a cache hit, one of the most
expensive operations is checking whether a process’s cre-
dentials permit the process to search the path to a dentry

.

.

.

d_lookup(root,'foo')

Directory
Cache

walk('/foo/bar')

0x0001

0x0002

0x0003

0xFFFF

hash(root,'foo') hash buckets dentries

walk_fast('/foo/bar')
hash('/foo/bar')

0x001

0x002

0x003

0xFFF

Direct
Lookup
Hash
Table
(DLHT)

fast
dentries

Prefix
Check
Cache
(PCC)

current->cred

fastpath

slowpath

Figure 4: Optimized Linux Directory Cache Structure. den-
tries are chained in hash buckets. To index the hash bucket for
a target dentry, the original lookup routine d lookup uses a
hashing function with key as a combination of the pointer
to parent directory and file name (slowpath). Our fastpath
hashes the full canonical path of target file to look up the
dentry in the Direct Lookup Hash Table, and checks the per-
credential Prefix Check Cache.

top-down (called a prefix check). This section shows how
the hit latency can be significantly reduced by caching prefix
check results. This section explains the optimization, how it
is integrated into the existing Linux directory cache frame-
work, how these cached results are kept coherent with other
file system operations, and how we use path signatures to
further accelerate lookup.

3.1 Caching Prefix Checks
Like many Unix variants, Linux stores cached path-to-inode
mappings (dentries) in a hash table (§2.2). This hash table is
keyed by a combination of the virtual address of the parent
dentry and the next path component string, illustrated in
Figure 4. Virtual addresses of kernel objects do not change
over time and are identical across processes.

In practice, prefix checks have a high degree of spatial and
temporal locality, and are highly suitable for caching, even
if this means pushing some additional work onto infrequent
modifications of the directory structure (e.g., rename of a
directory). RCU already makes this trade-off (§2.2).

In order to cache prefix check results, we must first de-
couple finding a dentry from the prefix check. We added a
second, system-wide hash table exclusively for finding a den-
try, called the direct lookup hash table (DLHT). The DLHT
stores recently-accessed dentries hashed by the full, canoni-
calized path. A dentry always exists in the primary hash table
as usual, and may exist in the DLHT. The DLHT is lazily
populated, and entries can be removed for coherence with di-
rectory tree modifications (§3.2).

Each process caches the result of previous prefix checks
in a prefix check cache (PCC), associated with the process’s
credentials (discussed further in §4.1), which can be shared

struct dentry
struct fast_dentry

INT flags INT seq

PTR hash_chain.prev
PTR hash_chain.next

signature[0-47]index
QWORD signature[48-111]
QWORD signature[112-175]
QWORD signature[176-239]

0

8

16

24

32

40

48

56

64

struct cred_pcc
sPTR dnt INT seqLRU sPTR dnt INT seqLRU

sPTR dnt INT seqLRU sPTR dnt INT seqLRU

INT seq sPTR dnt INT seqLRU

0

16

32

16R-16

16R
sPTR dnt

struct cred
PTR cred_pcccompare

reference

sPTR dir INT dir_seq

LRU

reference
others (up to 64bytes)

Figure 5: Data structures added for fast directory cache
lookup. To support fastpath lookup, we add a 88-byte fast
dentry structure to the original dentry and a variable-sized
PCC structure into cred.

among processes with identical permissions. The PCC is a
hash table that caches dentry virtual addresses and a version
number (sequence lock), used to detect stale entries (§3.2).
When a prefix check passes, indicating that the credentials
are allowed to access the dentry, an entry is added to the PCC;
entries are replaced according to an LRU policy. A miss in the
PCC can indicate a permission denied or that the permission
check has not executed recently.

Thus, given any path, the kernel has a fastpath that directly
looks up the path in the DLHT. If the fastpath hits in the
DLHT, the dentry is then looked up in the process’s PCC.
If a PCC entry is found and the version counter matches
the cached counter, the cached prefix check result is used.
If the fastpath lookup misses in the DLHT or PCC, or the
version counter in the PCC entry is older than the dentry,
the code falls back on the original Linux lookup algorithm
(the slowpath), using the primary hashtable exclusively and
traversing one component at a time.

In the case of a relative path, such as foo/bar under di-
rectory /home/alice, we effectively concatenate the rel-
ative path and the path of the current working directory. To
implement relative paths, Linux already stores a pointer to the
dentry of the current working directory in each process de-
scriptor (task struct). Rather than memcpy the strings,
we store the intermediate state of the hash function in each
dentry so that hashing can resume from any prefix.

The current design includes two very infrequent edge
cases. First, a dentry could be freed and reallocated with
stale PCC entries. We detect this case by initializing newly
allocated dentries with a monotonically increasing version
number, allowing PCC entries to detect staleness across re-
allocation. Freeing a dentry removes it from the DLHT. Sec-
ond, a version number can wrap around after every 232 ini-
tializations of new dentries or renames, chmods, or chowns
of non-empty directories; our design currently handles wrap-
around by invalidating all active PCCs.

Figure 5 illustrates the modifications to the Linux dentry
structure. The fast dentry stores the signature, flags, a

sequence count, a mount point, lists for managing deep direc-
tory entries (§5.2), and a list (hash chain) for adding the
fast dentry to a DLHT bucket. The PCC is added to the kernel
credential structure (struct cred), and stores a tunable
number of tuples of dentry pointers and sequence numbers;
the system is evaluated with a PCC of 64 KB. Because the
highest and lowest bits in each dentry pointer are identical,
the PCC only stores the unique pointer bits (8–39 in x86 64
Linux) to save space.

3.2 Coherence with Permission and Path Changes
When permissions on a directory or the directory structure
are changed, such as with chmod or rename, any cached
prefix checks that include this directory must be invalidated.
Our design ensures the safety of concurrent lookups and
changes by invalidating relevant PCC and DLHT entries be-
fore a change to the hierarchy, preventing stale slowpath
lookups from being re-cached, and leveraging VFS-level syn-
chronization to ensure correct slowpath behavior.

First, we ensure that a fastpath lookup cannot complete
with stale data after a change to the directory structure.
Before a mutation, such as a rename or chmod, the op-
eration must recursively walk all children in the dcache
and increment the fast dentry version counter (seq).
The fast dentry version counter is used by each pro-
cess’s PCC to detect changes to cached prefix checks on
a lookup; incrementing this version counter invalidates all
PCC entries for that dentry without directly modifying each
PCC. Changes to the directory structure (e.g., mount and
rename) also remove dentries under the old and new path
from the direct lookup hash table (DLHT). PCC and DLHT
entries are lazily repopulated on the slowpath.

Second, we ensure that the results of a stale slowpath
lookup cannot be re-added to the DLHT or PCC by using an
atomic, global sequence counter (invalidation). The se-
quence counter is read before and after a slowpath traversal;
results are added to the DLHT and PCC only if the counter
has not changed, implying no concurrent shootdowns.

Third, we use VFS-level synchronization to ensure that
slowpaths synchronize correctly with the mutation. As an
example, rename acquires both a global rename lock
sequence lock, along with per-dentry locks on the old and
new parent directory. When the rename lock is held for
writing, all lookups on the slowpath (i.e., the current Linux
code) must lock each dentry in a hand-over-hand fashion
from the root (or current working directory, for relative paths)
to the target child. The locks on target dentries obstruct the
hand-over-hand traversal until the rename completes. The
invalidation counter prevents caching the results of
slowpath lookups that already passed this point before the
dentry locks were acquired. Our implementation follows the
VFS’s existing locking discipline to avoid deadlocks; it adds
version counters that detect inconsistencies and falls back
on the slowpath. Thus, relevant PCC and DLHT entries are

invalidated before the rename begins, blocking the fastpath;
slowpath traversals will block until the rename is complete
and the per-dentry locks are released; and a sequence counter
ensures that only slowpath traversals that observe the new
paths can repopulate the DLHT and PCC.

These recursive traversals shift directory permission and
structure changes from constant time to linear in the size of
the sub-tree. As one example, to rename or chmod a direc-
tory that has 10,000 descendants with at most depth of 4 takes
roughly 330 microseconds to complete. In the original Linux
kernel, rename and chmod are nearly constant-time opera-
tions, and only take 4.5 and 1.1 microseconds. A few appli-
cations, such as aptitude or rsync, rely on rename to
atomically replace a directory, but this is a small fraction of
their total work and orders of magnitude less frequent than
lookups, making this a good trade-off overall.

Directory References. Unix semantics allow one to cd into
a directory, and continue working in that directory after a sub-
sequent permission change would otherwise prohibit further
accesses. For instance, suppose a process is in working direc-
tory /foo/bar and foo’s permissions change such that the
process would not be able to enter bar in the future. The pro-
cess should be able continue to open files under bar as long
as the process does not leave the directory or exit. Similar se-
mantics apply to open directory handles. In our design, such a
permission change would ultimately result in a blocked PCC
entry, and a fastpath lookup would violate the expected be-
havior. Our design maintains compatibility by checking if the
open reference is still permitted in the PCC. If the PCC has a
more recent entry that would prevent re-opening this handle,
the lookup is forced to take the the slowpath, and this stale
result is not added to the PCC.

3.3 Accelerating Lookups with Signatures
Our optimized lookup uses 240-bit signatures to minimize
the cost of key comparison. Linux looks up dentries in a hash
table with chaining. When the hash table key is a relatively
short path component, the cost of simply comparing the keys
is acceptable. However, a full path on Linux can be up to
4,096 characters, and comparing even modest-length strings
can erode the algorithmic benefits of direct lookup. We avoid
this cost by creating a signature of the path, which minimizes
the cost of key comparisons.

Using signatures introduces a risk of collisions, which
could cause the system to map a path onto the wrong dentry.
We first explain how signature collisions could cause prob-
lems in our design, followed by the required collision resis-
tance properties, and, finally, how we selected the signature
size to make this risk vanishingly small.

Signature collisions. When a user looks up a path, our
design first calculates a signature of the canonicalized path,
looks up the hash in the global DLHT, and, if there is a hit in
the DLHT, looks up the dentry and sequence number in the
per-credential PCC.

A user can open the wrong file if the dentry for another
file with the same signature is already in the DLHT, and that
dentry is in the PCC. For example, if Alice has opened file
/home/alice/foo with signature X, and then opens file
/home/alice/bar that also has signature X, her second
open will actually create a handle to file foo. This creates
the concern that a user might corrupt her own files through no
fault of her own. This risk can be configured to be vanishingly
small based on the signature size (discussed below).

Any incorrect lookup result must be a file that the process
(or another process with the same credentials) has permission
to access. For a fastpath lookup to return anything, a match-
ing dentry pointer must be in the task’s PCC, which is private
to tasks with the same credentials. Thus, a collision will not
cause Alice to accidentally open completely irrelevant files
that belong to Bob, which she could not otherwise access.

Our design correctly handles the case where two users
access different files with the same signature, because misses
in the PCC will cause both users to fall back on the slowpath.
Suppose Bob has opened foo, which collides with Alice’s
bar. When Alice opens bar, its signature will match in the
DLHT, but will miss in the PCC. This causes Alice’s lookup
to take the slowpath to re-execute the prefix check, ultimately
opening the correct file and adding this dentry to her PCC.
Thus, if Bob were adversarial, he cannot cause Alice to open
the wrong file by changing dcache-internal state.

We choose a random key at boot time for our signature
hash function, mitigating the risk of deterministic errors or
offline collision generation, as one might use to attack an
application that opens a file based on user input, such as
web server. Thus, the same path will not generate the same
signature across reboots or instances of the same kernel.

Despite all of these measures, this risk may still be unac-
ceptable for applications running as root, which can open any
file, especially those that accept input from an untrusted user.
For example, suppose a malicious user has identified a path
with the same signature as the password database. This user
might pass this path to a setuid-root utility and trick the se-
tuid utility into overwriting the password database. This risk
could be eliminated by disallowing signature-based lookup
acceleration for privileged binaries or security-sensitive path
names, although this is not implemented in our prototype.

Collision Resistance Requirements. The security of our
design hinges on an adversary only being able to find col-
lisions through brute force. Our design can use either a 2-
universal hash function or a pseudorandom function family
(PRF) to generate path signatures. In terms of collision resis-
tance, the difference between a 2-universal hash and a PRF
is that the adversary can potentially learn the secret key by
observing the outputs of the 2-universal function, but cannot
learn the key from the outputs of a PRF. Because our dcache
design does not reveal the signatures to the user, only whether
two paths have a signature collision, a hash function from ei-
ther family is sufficient.

One caveat is that, with a 2-universal hash function, one
must be careful that timing and other side channels do not
leak the signature. For example, one cannot use bits from the
signature to also index the hash table, as one might learn bits
of the signature from measuring time to walk the chain on a
given hash bucket. In the case of our selected function, one
can safely use the lower bits from the 256-bit hash output,
as lower bits are not influenced by the values in higher bits in
our particular algorithm; we thus use a 16 bit hash table index
and a 240-bit signature. In contrast, when the signature is
generated with a PRF, concerns about learning the signature
from side channels are obviated.

Our design uses the 2-universal multilinear hash func-
tion [21]. We did several experiments using PRFs based on
the AES-NI hardware, and could not find a function that was
fast enough to improve over baseline Linux. Using current
128-bit AES hardware, we could improve performance at 4 or
more path components, but creating a 256-bit PRF required
a more elaborate construction that is too expensive. A more
cautious implementation might favor a PRF to avoid any risk
of overlooked side channels, especially if a fast, 256-bit PRF
becomes available in future generations of hardware.

Probability of a signature collision. We selected a 240-
bit signature, which is comparable to signature sizes used
in data deduplication systems, ranging from 128–256 bits.
Deduplication designs commonly select a signature size that
introduces a risk of collisions substantially less than the risk
of undetected ECC RAM errors [13, 34, 40, 50].

We assume an adversary that is searching for collisions by
brute force. This adversary must lookup paths on the system,
such as by opening local files or querying paths on a web
server. Because our hash function is keyed with a random
value and the output is hidden from the user, the adversary
cannot search for collisions except on the target system. Thus,
the adversary is limited by the rate of lookups on the system,
as well as the capacity of the target system to hold multiple
signatures in cache for comparison.

We calculate the expected time at which the risk of a
collision becomes non-negligible (i.e., higher than 2−128)
and model the risk of collision as follows. First, |H(X)| =
2240 is the number of possible signatures. We limit the cache
to n = 235 entries (i.e., assuming 10TB of dcache space in
RAM and 320 bytes per entry), with an LRU replacement
policy. We calculate the number of queries (q) after which
the risk of a collision is higher than P = 2−128 as follows:

q ' ln(1− p) ∗ |H(x)|
−n

' ln(1− 2−128) ∗ 2240

−235
' 277

At a very generous lookup rate of 100 billion per second (cur-
rent cores can do roughly 3 million per second), the expected
time at which the probability of a brute-force collision goes
above 2−128 is 48 thousand years.

4. Generalizing the Fast Path
Thus far, we have explained our fast path optimization using
the relatively straightforward case of canonical path names.
This section explains how these optimizations integrate with
Linux’s advanced security modules, as well as how we ad-
dress a number of edge cases in Unix path semantics, such as
mount options, mount aliases, and symbolic links.

4.1 Generalizing Credentials
Linux includes an extensible security module framework
(LSMs [47]), upon which SELinux [24], AppArmor [1], and
others are built. An LSM can override the implementation
of search permission checks, checking customized attributes
of the directory hierarchy or process. Thus, our dcache opti-
mizations must still work correctly even when an LSM over-
rides the default access control rules.

Our approach leverages the cred structure in Linux,
which is designed to store the credentials of a process
(task struct), and has several useful properties. First,
a cred struct is comprehensive, including all variables
that influence default permissions, and including an opaque
security pointer for an LSM to store metadata. Second, a
cred is copy-on-write (COW), so when a process changes
its credentials, such as by executing a setuid binary or
changing roles in SELinux, the cred is copied. We manu-
ally checked that AppArmor and SELinux respect the COW
conventions for changes to private metadata. Moreover, a
cred can be shared by processes in common cases, such
as a shell script forking children with the same credentials.
Thus, the cred structure meets most of our needs, with a
few changes, which we explain below.

We store cached prefix checks (§3.1) in each cred struc-
ture, coupling prefix check results with immutable creden-
tials. New cred structures are initialized with an empty
PCC. When more processes share the PCC, they can further
reduce the number of slowpath lookups.

One challenge is that Linux often allocates new cred
structures even when credentials do not change. The under-
lying issue is that COW behavior is not implemented in the
page tables, but rather by convention in code that might mod-
ify the cred. In many cases, such as in exec, it is simpler to
just allocate another cred in advance, rather than determine
whether the credentials will be changed. This liberal alloca-
tion of new creds creates a problem for reusing prefix cache
entries across child processes with the same credentials. To
mitigate this problem, we wait until a new cred is applied to
a process (commit creds()). If the contents of the cred
did not change, the old cred and PCC is reused and shared.

Our cred approach memoizes complex and potentially
arbitrary permission evaluation functions of different LSMs.

4.2 Non-Canonical Paths and Symbolic Links
Our optimized hash table is keyed by full path. However, a
user may specify variations of a path, such as /X/Y/./Z for

/X/Y/Z. Simple variations are easily canonicalized in the
course of hashing.

A more complex case is where, if /X/L is a symbolic link,
the path /X/L/../Y could map to a path other than /X/Y.
Similarly, if the user doesn’t have permission to search /X/Z,
a lookup of /X/Z/../Y should fail even if user has permis-
sion to search /X/Y. In order to maintain bug-for-bug com-
patibility with Linux, our prototype issues an additional fast-
path lookup at each dot-dot to check permissions. Maintain-
ing Unix semantics introduces overhead for non-canonical
paths.

We see significantly higher performance by using Plan
9’s lexical path semantics [33]. Plan 9 minimized network file
system lookups by pre-processing paths such as /X/L/../Y
to /X/Y. We note that Plan 9 does component-at-a-time
lookup, but does not have a directory cache.

Symbolic Links. We resolve symbolic links on our lookup
fastpath by creating dentry aliases for symbolic links. For
instance, if the path /X/L is an alias to /X/Y, our kernel will
create dentries that redirect /X/L/Z to /X/Y/Z. In other
words, symbolic links are treated as a special directory type,
and can create children, caching the translation.

Symbolic link dentries store the 240-bit signatures that
represent the target path. The PCC is separately checked
for the target dentry. If a symbolic link changes, we must
invalidate all descendant aliases, similar the invalidation for
a directory rename. This redirection seamlessly handles the
cases where permission changes happen on the translated
path, or the referenced dentries are removed to reclaim space.

4.3 Mount Points
Our fastpath handles several subtle edge cases introduced by
mount points.

Mount options. Mount options, such as read-only or no-
suid, can influence file access permission checks. The Linux
dcache generally notices mount points as part of the hierar-
chical file system walk, and checks for permission-relevant
mount flags inline. Once this top-down walk is eliminated,
we need to be able to identify the current mount point for
any given dentry. We currently add a pointer to each dentry,
although more space efficient options are possible.

Mount Aliases. Some pseudo file systems, such as proc,
dev, and sysfs, can have the same instance mounted at
multiple places. This feature is used by chroot environ-
ments and to move these file systems during boot. A bind
mount can also create a mount alias.

In our system, a dentry only stores one signature and
can only be in the direct lookup hash table by one path at
a time. Our current design simply picks the most recent to
optimize—favoring locality. If a slowpath walk notices that
the matching dentry (by path) has a different signature, is un-
der an aliased mount, and is already in the DLHT, the slow-
path will replace the signature, increment the dentry version

count, and update the pointer to the dentry’s mount point.
The version count increment is needed in case the aliased
paths have different prefix check results. This approach en-
sures correctness in all cases, and good performance on the
most recently used path for any mount-aliased dentry.

Mount Namespaces. Mount namespaces in Linux allow
processes to create private mount points, including chroot
environments, that are only visible to the process and its de-
scendants. When a process creates a new mount namespace,
it also allocates a new, namespace-private direct lookup hash
table. The slowpath always incorporates any mount redirec-
tion, and any new signature-to-dentry mappings will be cor-
rect within the namespace. Thus, the same path (and signa-
ture) inside a namespace will map to a different dentry than
outside of the namespace. Similarly, the prefix check cache
(PCC) will always be private within the namespace.

As with mount aliases, we only allow a dentry to exist on
one direct lookup hash table at a time. This favors locality,
and makes the invalidation task tractable when a renamed
directory is shared across many namespaces. The invalidation
code used for directory tree modifications simply evicts each
child dentry from whatever DLHT it is currently stored in.

Network File Systems. Our prototype does not support di-
rect lookup on network file systems, such as NFS versions 2
and 3 [37]. In order to implement close-to-open consistency
on a stateless protocol, the client must revalidate all path
components at the server—effectively forcing a cache miss
and nullifying any benefit to the hit path. We expect these op-
timizations could benefit a stateful protocol with callbacks on
directory modification, such as AFS [19] or NFS 4.1 [38].

4.4 Summary
This section demonstrates how our directory cache optimiza-
tions can support the wide range of features Linux has built
upon the directory cache, including namespaces, enhanced
security modules, and symbolic links. Our prototype focuses
on Linux, which has arguably the most features intertwined
with its directory cache, but we believe these optimizations
would work in other systems, with modest porting effort.

Our design has the following requirements, which we ex-
pect would be met by any POSIX-compliant directory cache.
First, POSIX permission semantics require directory access
checks on the path from the current root or working directory
to the file (i.e., prefix checking); our implementation inherits
Linux’s invariant that any cached directory’s parents are in
the cache, but any design that can implement prefix check-
ing should suffice. Second, we require that, if a directory’s
permissions change, there is a programmatic way to find all
descendants in the cache (§3.2). Our implementation inte-
grates with optimistic synchronization in the Linux dcache
for good performance and consistency, but this design could
integrate with any reasonable synchronization scheme, such
as FreeBSD’s reader/writer locks. Finally, we leverage the
fact that Linux has an immutable credentials structure (§4.1);

adapting to mutable or less consolidated credentials would
require extra effort.

5. Improving the Hit Rate
The previous sections explain how changes to the structure
of the dcache can lower the average hit latency, through al-
gorithmic improvements. This section identifies several sim-
ple changes that can improve the hit rate. In the case of a
dcache miss, the low-level file system is called to service the
system call. At best, the on-disk metadata format is still in
the page cache, but must be translated to a generic format; at
worst, the request blocks on disk I/O. Although not every ap-
plication heavily exercises these cases with unusually low hit
rates, the evaluation shows several widely-used applications
that substantially benefit from these optimizations.

5.1 Caching Directory Completeness
Although the Linux dcache tracks the hierarchical structure
of directories, it has no notion of whether a directory’s con-
tents are completely or partially in the cache. Suppose Alice
creates a new directory X on a local file system; if her next
system call attempts to create file X/Y, the dcache will miss
on this lookup and ask the low-level file system if X/Y ex-
ists. This overhead can be avoided if the VFS tracks that all
directory contents are in the cache.

A second example is readdir, which lists the files in
a directory, along with their inode number and their types,
such as a regular file, character device, directory, or symbolic
link. In the current VFS readdir operation, the low-level
file system is always called, even if the entire directory is in
cache. For directories too large to list in the user-supplied
buffer, readdir may be called multiple times, storing an
offset into the directory. To construct this listing, the low-
level file system must reparse and translate the on-disk for-
mat, and may need to read the metadata block from disk into
the buffer cache. As a result, readdir is generally an ex-
pensive file system operation, especially for large directories.

We observe that repeatedly listing a directory is a common
behavior in file systems. For example, a user or a shell script
may repeatedly run the ls command in a directory. Some
applications coordinate state through directory contents, re-
quiring frequent and repeated directory listings. For example,
maildir is a popular email back-end storage format [2],
yielding better performance scalability than the older mbox
format. Maildir stores each inbox or subfolder as a directory,
and each individual message is a file within the directory. File
names encode attributes including flags and read/unread sta-
tus. If a message changes state, such as through deletion or
being marked as read, the IMAP server server will rename
or unlink the file, and reread the directory to sync up the mail
list. Similarly, a mail delivery agent (MDA), running as a sep-
arate process, may concurrently write new messages into the
directory, requiring the IMAP server to monitor the directory
for changes and periodically re-read the directory’s contents.

Our Linux variant caches readdir results returned by
the low-level file system in the directory cache. If all of a di-
rectory’s children are in the cache, the dentry is marked with
a new DIR COMPLETE flag. This flag is set upon creation
of a new directory (mkdir), or when a series of readdir
system calls completes without an lseek() on the direc-
tory handle or a concurrent eviction of any children to re-
claim space. We note that concurrent file creations or dele-
tions interleaved with a series of readdirs will still be in
the cache and yield correct listing results. After setting the
DIR COMPLETE flag, subsequent readdir requests will
be serviced directly from the dentry’s child list. Once a di-
rectory enters the complete state, it leaves this state only if a
child dentry is removed from the cache to reclaim space.

One caveat to this approach is that readdir returns part of
the information that would normally appear in an inode, but
not enough to create a complete inode. For these files or sub-
directories, we add dentries without an inode as children of
the directory. These dentries must be separated from nega-
tive dentries when they are looked up, and be linked with a
proper inode. This approach allows readdir results to be
used for subsequent lookups, cleanly integrates with exist-
ing dcache mechanisms, and gets the most possible use from
every disk I/O without inducing I/O that was not required.

We note that Solaris includes a similar complete directory
caching mode [25], but it is not integrated with readdir or
calls other than lookup, is a separate cache (so the same
dentries can be stored twice, and both hash tables must be
checked before missing), and the comments indicate that it
only has performance value for large directories. Our results
demonstrate that, when properly integrated into the directory
cache, tracking complete directories has more value than
previously thought.

File Creation. Directory completeness caching can also
avoid compulsory misses on new file creation. Although neg-
ative dentry caching works well for repeated queries for spe-
cific files that do not exist, negative dentries are less effective
when an application requests different files that do not exist.
A common example of unpredictable lookups comes from
secure temporary file creation utilities [8]. In our prototype,
a miss under a directory with the DIR COMPLETED flag is
treated as if a negative dentry were found, eliding this com-
pulsory miss. In our current implementation, this flag will
only be set in a directory that has been read or newly created,
but other heuristics to detect frequent misses for negative
dentries and to load the directory may also be useful.

5.2 Aggressive Negative Caching
Negative dentries cache the fact that a path does not exist on
disk. This subsection identifies several opportunities for more
aggressive use of negative dentries, some of which work in
tandem with direct lookup.

Renaming and Deletion. When a file is renamed or un-
linked, the old path can be converted to a negative dentry.

Although Linux does convert a cached, but unused dentry to
a negative dentry on unlink, this is not the case for rename
and unlink of a file that is still in use. We extend these rou-
tines to keep negative dentries after a file is removed, in the
case that the path is reused later, as happens with creation of
lock files or Emacs’s backup (“tilde”) files.

Pseudo File Systems. Pseudo file systems, like proc, sys,
and dev, do not create negative dentries for searched, nonex-
istent paths. This is a simplification based on the observation
that disk I/O will never be involved in a miss. Because our
fastpath is still considerably faster than a miss, negative den-
tries can be beneficial even for in-memory file systems, accel-
erating lookup of frequently-searched files that do not exist.

Deep Negative Dentries. Finally, we extended the direct
lookup fastpath (§3) with the ability to create “deep” nega-
tive dentries. Consider the case where a user tries to open
/X/Y/Z/A, and /X/Y/Z does not exist. In the slowpath, the
lookup will fail when it hits the first missing component, and
it is sufficient to only cache a negative dentry for Z. Repeated
lookups for this path will never hit on the fastpath, however,
because there is no entry for the full path.

In order for this case to use the fastpath, we allow negative
dentries to create negative children, as well as deep children.
In other words, we allow negative dentry /X/Y/Z to create
children A and A/B, which can service repeated requests
for a non-existent path. If a file is created for a path that is
cached as negative, and the file is not a directory, any negative
children are evicted from the cache.

We also create deep negative dentries under regular files
to capture lookup failures that return ENOTDIR instead of
ENOENT. This type of lookup failure happens when a file-
name is use as if it were a directory, and a path underneath
is searched. For example, if /X/Y/Z is a regular file, and a
user searches for /X/Y/Z/A, the Linux kernel will return
ENOTDIR and never create a negative dentry. We optimize
this case with a deep, ENOTDIR dentry.

6. Evaluation
This section evaluates our directory cache optimizations, and
seeks to answer the following questions:
1. How much does each optimization—the lookup fastpath,

whole directory caching, and more aggressive negative
dentries—improve application performance?

2. How difficult are the changes to adopt, especially for
individual file systems?
The evaluation includes both micro-benchmarks to mea-

sure the latency of file system related system calls in best-
case and worst-case scenarios, and a selection of real-world
applications to show potential performance boost by our so-
lution in practice.

All experiment results are collected on a Supermicro Su-
per Server with a 12-core 2.40 GHz Intel Core Xeon CPU,
64GB RAM, and a 2 TB, 7200 RPM ATA disk, formatted

0.0

0.5

1.0

1.5

st
at

La
te

nc
y

(µ
s)

Unmodified fastpath hit fastpath miss + slowpath

0.0

0.5

1.0

1.5

2.0

2.5

3.0

op
en

La
te

nc
y

(µ
s)

(* represents Plan 9’s lexical parent semantics)
default: /usr/include/gcc-x86 64-linux-gnu/sys/types.h
1-comp: FFF 2-comp: XXX/FFF 4-comp: XXX/YYY/ZZZ/FFF
8-comp: XXX/YYY/ZZZ/AAA/BBB/CCC/DDD/FFF
link-f: XXX/YYY/ZZZ/LLL -> FFF
link-d: LLL/YYY/ZZZ/FFF -> XXX/YYY/ZZZ/FFF
neg-f: XXX/YYY/ZZZ/NNN (NNN not found)
neg-d: NNN/XXX/YYY/FFF (NNN not found)
1-dotdot: XXX/../FFF 4-dotdot: XXX/YYY/../../AAA/BBB/../../FFF

Figure 6: System call stat and open latency for micro-
benchmark (lat syscall in LMBench), based on differ-
ent path patterns. We include a synthetic evaluation of always
missing on the fastpath and falling back to the slowpath, and
a comparison with Plan 9’s lexical parent semantics, where
appropriate. Lower is better.

as a journaled ext4 file system, configured with a 4096-
byte block size. The OS is Ubuntu 14.04 server, Linux kernel
3.14. All measurements are a mean of at least 6 runs (for the
longer-running experiments); most measurements are hun-
dreds or thousands of runs, as needed to ensure a consistent
average. Tables and graphs indicate 95% confidence intervals
with “+/-” columns or error bars.

6.1 File Lookup Optimizations
Micro-benchmarks. We use an extended LMBench 2.5
UNIX microbenchmark suite [29] to evaluate latency of path
lookup at the system call level. Figure 6 shows the latency to
stat and open sample paths with various characteristics,
including varying lengths, symbolic links, parent (dot dot)
directories, and files that are not found.

The primary trend we observe is that, as paths have more
components, the relative gain for our optimization increases.
For a single component file, stat gains 3% and open is
equivalent to baseline Linux. For longer paths, the gain in-
creases up to 26% and 12%, respectively.

To evaluate the worst case, we include a set of bars, la-
beled “fastpath miss + slowpath”, which exercise the fast
path code, but the kernel is configured to always miss in

the PCC. This simulates the full cost of executing the op-
timized fastpath unsuccessfully, and then walking the O(n)
slowpath in the cache. This case does not miss all the way
to the low-level file system. The overhead typically ranges
from 12–93%, except for path neg-d. In the case of neg-d, the
first component is missing, and a component-at-a-time walk
would stop sooner than a direct lookup. In general, the neg-d
case would be mitigated by deep negative dentries. In prac-
tice, these overheads would only be observed for compulsory
misses in the dcache, or by an application that exhibits an
extreme lack of locality.

We next compare the costs of default Linux parent (“dot
dot”) semantics to Plan 9’s lexical semantics. Enforcing
Linux semantics for a path with parent references causes our
optimizations to perform roughly 31% worse than unmodi-
fied Linux, as this requires an extra lookup per parent. Lexical
path semantics, on the other hand, allow our optimization to
continue using a single lookup, improving performance by
43–52%. Lexical path semantics have an independent ben-
efit, and could reduce the number of components to walk
in a lookup in unmodifed Linux. Although this difference is
large, our test applications do not heavily use parent directory
pointers, and are not sensitive to this difference.

Caching the resolution of a symbolic link improves per-
formance for paths link-f and link-d by 44% and 48%, re-
spectively. This improvement is insensitive to where in the
path the link occurs, as both link-f and link-d walk the same
number of components (link-d maps “LLL” onto “XXX”).

For files that do not exist (negative dentries), we see com-
parable improvements to paths that are present. The one ex-
ception is long paths that don’t exist under a directory early
in the path. We believe this case is rare, as applications gen-
erally walk a directory tree top-down, rather than jumping
several levels into a non-existent directory. In this situation
(path neg-d), baseline Linux would stop processing the path
faster than our optimization can hash the entire path, even
with caching deep negative dentries. Nonetheless, deep nega-
tive dentries are an important optimization: without them, stat
of path neg-d would be 113% worse and open would be 43%
worse than unmodified Linux, versus 38% and 16% slower
with deep negative dentries.

Linux also includes *at() system call variants, which
operate under a working directory—typically using only a
single component. Commensurate with the results above,
fstatat() benefits from our optimizations by 12% for a
single path component, and openat() is 4% faster than un-
modified Linux. Some applications use multiple-component
names in conjunction with an *at call; in these cases, the
benefit of our optimization is proportional to the path length.

To evaluate the overhead of updating directory permis-
sions and changing the directory structure, we measure
chmod and rename latency. In our solution, the main fac-
tor influencing these overheads are the number of children
in the cache (directory children out-of-cache do not affect

14%
48%

307%

3271%

29915%

6%

70%

810%

7394%

1%

10%

100%

1000%

10000%

100000%

single file depth=1,
10 files

depth=2,
100 files

depth=3,
1000 files

depth=4,
10000 files

ch
m

od
/r

en
am

e
La

te
nc

y
Sl

ow
do

w
n

chmod
rename

-2%

µs +/- µs +/- µs +/- µs +/- µs +/-
chmod 1.86 .00 1.60 .00 4.37 .00 36.38 .01 323 .02
rename 3.73 .00 4.68 .00 7.51 .00 40.14 .01 330 .05

Figure 7: chmod / rename latency in directories of various
depths and sizes. Lower is better.

0.0
0.5
1.0
1.5
2.0
2.5

0 4 8 12st
at

/o
pe

n
Sy

sc
al

l
La

te
nc

y
(µ

s)
Threads

stat open stat open
(Unmodified) (Optimized)

Figure 8: Latency of stat/open (of the same path), as more
threads execute in parallel. Lower is better.

performance). Figure 7 presents performance of chmod and
rename on directories with different depths and directory
sizes. In general, the cost of a rename or chmod increases
dramatically with the number of children, whereas baseline
Linux and ext4 make these constant-time operations. Even
with 10,000 children all in cache, the worst-case latency
is around 330 µs. As a point of reference, the Linux 3.19
source tree includes 51,562 files and directories. Initial feed-
back from several Linux file system maintainers indicate that
this trade would be acceptable to improve lookup perfor-
mance [15].

Space Overhead. Our prototype increases the size of a den-
try from 192 bytes to 280 bytes. Our design also introduces
a per-credential PCC of size 64 KB, and a second, global
hash table (the DLHT), which includes 216 buckets. Because
Linux does not place any hard limits on dcache size, except
extreme under memory pressure, it is hard to normalize exe-
cution time to account for the space cost. On a typical system,
the dcache is tens to hundreds of MB; increasing this by 50%
is likely within an acceptable fraction of total system mem-
ory. Alternatively, if one were to bound the total dcache size,
this induces a trade-off between faster hits and fewer hits. We
leave exploration of these trade-offs for future work.

Scalability. Figure 8 shows the latency of a stat/open
on the same path as more threads execute on the system. The

Applications Path Stats Unmodified kernel Optimized kernel
l # s +/- hit% neg% s +/- Gain

find -name 39 1 .055 .000 100.0 .18 .044 .000 19.2 %
tar xzf linux.tar.gz 22 3 4.039 .024 84.2 .06 4.038 .010 .05 %
rm -r linux src 24 3 .607 .008 100.0 .01 .621 .020 -2.32 %
make linux src 29 4 868.079 .647 91.2 17.84 868.726 .892 -.07 %
make -j12 linux src 29 4 102.958 .597 92.9 20.03 103.308 .288 -.34 %
du -s linux src 10 1 .070 .000 100.0 .01 .061 .012 12.65 %
updatedb -U usr 3 1 .011 .000 99.9 .00 .008 .000 29.12 %
git status linux src 16 4 .176 .000 100.0 .05 .168 .000 4.26 %
git diff linux src 16 4 .066 .000 100.0 1.49 .060 .000 9.89 %

Table 1: Execution time and path statistics of real-world applications bounded by directory cache lookup latency. Warm cache
case. Hit rate and negative dentry rate are also included. The average path length in bytes (l) and components (#) are presented
in the first two columns. Lower is better.

4.2

24.4

284.0

2,885.5

2.4
7.9

73.3

796.9

1

10

100

1,000

10 100 1000 10000re
ad

di
r

La
te

nc
y

(µ
s)

Directory Size (# of Files)

Unmodified Optimized

11.7 13.4
17.4 18.0

11.6
13.1

15.9 16.6

0

5

10

15

20

10 100 1000 10000m
ks

te
m

p
La

te
nc

y
(µ

s)

Directory Size (# of Files)

Figure 9: Latency in logscale for readdir function calls,
and latency in microsecond for mkstemp function calls, on
directories with different sizes. Lower is better.

read side of a lookup is already linearly scalable on Linux,
and our optimizations do not disrupt this trend—only im-
prove the latency. The rename system call introduces sig-
nificant contention, and is less scalable in baseline Linux. For
instance, a single-file, single-core rename takes 13µs on our
test system running unmodified Linux; at 12 cores and dif-
ferent paths, the average latency jumps to 131µs for our opti-
mized kernel, these numbers are 18 and 118µs, respectively,
indicating that our optimizations do not make this situation
worse for renaming a file. As measured in Figure 7, our op-
timizations do add overhead to renaming a large directory,
which would likely exacerbate this situation.

6.2 Caching Directory Completeness
Figure 9 shows the latency of a readdir microbenchmark
with varying directory sizes. The ability to cache readdir
results improves performance by 46–74%. Caching helps
more as directories get larger. OpenSolaris comments indi-
cate that this idea was only beneficial in UFS for directories
with at least 1,024 entries 2. Our result indicates that there is
benefit even for directories with as few as 10 children.

Figure 9 also shows the latency of creating a secure,
randomly-named file in directories of varying size. We mea-
sure from 1–8% improvement for the mkstemp library. Al-
though most applications’ execution times are not dominated

2 see line 119 of fs/ufs/ufs dir.c in OpenSolaris, latest version of
frozen branch onnv-gate.

by secure file creation, it is a common task for many applica-
tions, and of low marginal cost.

6.3 Applications
Command-Line Applications. The improvement applica-
tions see from faster lookup is, of course, proportional to the
fraction of runtime spent issuing path-based system calls as
well as the amount of time listing directories. We measure
the performance of a range of commonly-used applications.
In most cases, these applications benefit substantially from
these optimizations; in the worst case, the performance harm
is minimal. The applications we use for benchmarking in-
clude:
• find: search for a file name in the Linux source directory.
• tar xzf: decompress and unpack the Linux source.
• rm -r: remove the Linux source tree.
• make and make -j12: compile the Linux kernel.
• du -s: Recursively list directory size in Linux source.
• updatedb: rebuild database of canonical paths for

commonly searched file names in /usr from a clean
debootstrap.

• git status and git diff: display status and un-
staged changes in a cloned Linux kernel git repository.

For each application we test, we evaluate the performance
in both cases of a warm cache (Table 1) and a a cold cache
(Table 2). To warm the cache, we run the experiment once and
drop the first run. For the warm cache tests, we also provide
statistics on the path characteristics of each application.

Perhaps unsurprisingly, metadata-intensive workloads ben-
efit the most from our optimizations, such as find and
updatedb, as high as 29% faster. Note that find, update-
db, and du use the *at() APIs exclusively, and all paths
are single-component; these gains are attributable to both im-
provements to lookup and directory completeness caching.

We note that the performance of directory-search work-
loads is sensitive to the size of PCC; when we run updatedb
on a directory tree that is twice as large as the PCC, the gain
drops from 29% to 16.5%. This is because an increased frac-
tion of the first lookup in a newly-visited directory will have
to take the slowpath. Our prototype has a statically-set PCC
size and we evaluate with a PCC sufficiently large to cache
most of the relevant directories in the warm cache experi-

App Unmodified kernel Optimized kernel
s +/- hit% neg% s +/- Gain

find 1.39 .01 38 1 1.35 .02 3.1 %
tar 4.00 .10 85 0 3.98 .04 .5 %
rm -r 1.81 .05 83 1 1.84 .06 -1.4 %
make 885.33 .31 100 45 883.88 2.03 .2 %
make -j12 114.51 .60 100 47 114.54 .89 .2 %
du -s 1.49 .01 6 0 1.46 .02 2.3 %
updatedb .73 .01 34 0 .74 .01 -2.1 %
git status 4.13 .03 62 2 4.11 .03 .7 %
git diff .84 .01 61 0 .86 .01 -14.0 %

Table 2: Execution time, hit rate, and negative dentry rate for
real-world applications bounded by directory cache lookup
latency with a cold cache. Lower is better.

ments. We expect that a production system would dynami-
cally resize the PCC up to a maximum working set; we leave
investigating an appropriate policy to decide when to grow
the PCC versus evict entries for future work.

The application that is improved primarily by our hit op-
timization is git, which shows a gain of 4–9.9%. Cases that
are dominated by other computations, such as a Linux com-
pile, show minimal (≤ 2.3% slowdown). In the cold cache
cases, all gains or losses are roughly within experimental
noise, indicating that these optimizations are unlikely to do
harm to applications running on a cold system. In general,
these results affirm that common Linux applications will not
be harmed by the trade-offs underlying our optimizations,
and can benefit substantially.

Table 1 also indicates statistics about these workloads on
unmodified Linux. In general, each path component tends to
be roughly 8 characters, and *at-based application generally
lookup single-component paths, whereas other applications
typically walk 3–4 components. Our statistics also indicate
that, with a warm cache, these applications should see 84–
100% hit rate in the cache, so optimizing the hit path is es-
sential to performance. Finally, make is the only application
with a significant fraction of negative dentries (roughly 20%),
which is to be expected, since it is creating new binary files.

Server Applications. An example of software that fre-
quently uses readdir is an IMAP mail server using the
MailDir storage format. We exercise the Dovecot IMAP
server by creating 10 mailboxes for a client. We use a client
script to randomly select messages in different mailboxes and
mark them as read, flagged, or unflagged. Internally, marking
a mail causes a file to be renamed, and the directory to be
re-read. To eliminate network latency, we run network tests
on the localhost; in a practical deployment, network latency
may mask these improvements to the client, but the load of
the server will still be reduced.

Figure 10 shows the throughput for the Dovecot mail
server on both kernels; improvements range from 7.8–12.2%.
Commensurate with the readdir microbenchmark, larger
directories generally see larger improvement, plateauing at
a 10% gain. We similarly exercise the Apache web server’s
ability to generate a file listing using the Apache bench-

0
50
100
150
200
250
300
350

500 100 500 2000 2500 3000

D
ov

ec
ot

 T
hr

ou
gh

pu
t

(O
pe

ra
tio

ns
 /

Se
c)

Mail Box Size (# of Mails)

Unmodified optimized+7.8%

+9.1%
+9.1%

+9.5%
+12.2%+10.3%

Figure 10: Throughput for marking and unmarking mail on
the Dovecot IMAP server. Higher is better.

of files Unmodified kernel Optimized kernel
Req/s +/- Req/s +/- Gain

10 27,638.23 43.31 31,491.98 55.24 12.24 %
102 7,423.86 11.81 7,934.07 12.76 6.43 %
103 1,017.02 0.58 1,081.02 0.38 5.92 %
104 99.03 0.11 110.14 0.10 10.09 %

Table 3: Throughput of downloading generated directory list-
ing pages from an Apache server. Higher is better.

Source files Original (LoC) Patched/Added (LoC)
New source files & headers 2,358
fs/namei.c 3,048 425 13.9 %
fs/dcache.c 1,997 142 7.1 %
Other VFS sources 3,859 98 2.5 %
Other VFS headers 2,431 218 9.0 %
Security Modules (SELinux, etc) 20,479 76 0.0 %

Table 4: Lines-of-code (LoC) in Linux changed, as measured
by sloccount [46].

mark (Table 3). These pages are not cached by Apache,
but generated dynamically for each request. This workload
also demonstrates improvements in throughput from 6–12%.
Overall, these results show that the readdir caching strat-
egy can reduce server load or improve server throughput for
directory-bound workloads.

6.4 Code Changes
In order estimate the difficulty of adoption, Table 4 lists the
lines of code changed in our Linux prototype. The vast ma-
jority of the changes required (about 1,000 LoC) are hooks
localized to the dcache itself (dcache.c and namei.c);
most of these optimizations are in a separate set of files to-
taling about 2,400 LoC. Also, the low-level file systems we
tested did not require any changes to use our modified direc-
tory caches. The main impact on other subsystems was actu-
ally to the LSMs, which required some changes to manage
PCCs correctly. Thus, the burden of adoption for other kernel
subsystems is very minor.

6.5 Discussion and Future Work
If one were willing to sacrifice complete backward compat-
ibility to maximize lookup performance, the primary oppor-
tunity for improvement may actually be in designing a sim-
pler interface for path-based calls. As the evaluation above

shows, there are several Linux/POSIX features that are un-
duly expensive to support in this design. For instance, im-
plementing Plan 9-style lexical path semantics can signifi-
cantly improve look up for paths with a “dot dot”. Similarly,
working directory semantics require a slowpath traversal. Ar-
guably, these are points where a particular implementation
choice has “leaked” into the interface specification, and these
idiosyncracies constrain the choice of supporting data struc-
ture. We recommend an interface that is as simple and state-
less as possible; this recommendation is in line with other
recommendations for scalability [10].

Linux statically selects the number of buckets in the hash
table (262,144 by default). If this number is not selected well,
or the demand changes over time, space will be wasted or
bucket chains will get longer, harming lookup performance.
On our test systems, 58% of buckets were empty, 34% had
one item, 7% had 2 items, and 1% had 3–10 dentries, indi-
cating an opportunity to improve lookup time and space us-
age. A number of high-performance hash tables have been
developed in recent years that impose a constant bound on
the search time as well as on wasted space [18, 23, 32, 43].

7. Related Work
Most related work on improving directory cache effective-
ness targets two orthogonal problems: reducing the miss la-
tency and prefetching entries. Most similar to our optimiza-
tion to memoize prefix check results, SQL Server caches the
result of recent access control checks for objects [30].

Reducing Miss Latency. One related strategy to reduce
miss latency is to pass all components to be looked up at once
to the low-level file system, essentially creating a prefetch-
ing hint. Several network file systems have observed that
component-at-a-time lookup generates one round-trip mes-
sage per component, and that a more efficient strategy would
pass all components under a mount point in one message to
the server for lookup [14, 45]. A similar argument applies to
local file systems, where a metadata index may be more ef-
ficiently fetched from disk by knowing the complete lookup
target [22, 36]. As a result, this division of labor is adopted by
Windows NT and Solaris [25, 36]. One caveat is that, when
not taken as a prefetching “hint”, this can push substantial
VFS functionality into each low-level file system, such as
handling redirection at mount points, symbolic links, and per-
mission checking. Chen et al. note that pushing permission
checks from the VFS layer down to individual file systems
is a substantial source of difficult-to-prevent kernel bugs in
Linux [9]. In contrast, this project caches the result of previ-
ous prefix checks over paths already in memory to reduce hit
latency, rather than using the full path as a prefetching hint.

Another ubiquitous latency-reduction strategy is persis-
tently storing metadata in a hash table. In order to reduce
network traffic, several distributed file systems [5, 49, 51],
clustered environments [20, 48], and cloud-based applica-
tions [44] have used metadata hashing to deterministically

map metadata to a node, eliminating the need for a directory
service. The Direct Lookup File System (DLFS) [22] essen-
tially organizes the entire disk into a hash table, keyed by
path within the file system, in order to look up a file with
only one I/O. Organizing a disk as a hash table introduces
some challenges, such as converting a directory rename into
a deep recursive copy of data and metadata. DLFS solves the
prefix check problem by representing parent permissions as a
closed form expression; this approach essentially hard-codes
traditional Unix discretionary access control, and cannot eas-
ily extend to Linux Security Modules [47]. An important in-
sight of our work is that full path hashing in memory, but not
on disk, can realize similar performance gains, but without
these usability problems, such as deep directory copies [22]
on a rename or error-prone heuristics to update child direc-
tory permissions [41].

VFS Cache Prefetching. Several file systems optimize the
case where a readdir is followed by stat to access meta-
data of subdirectories, such as with the ls -l command [3,
22, 42]. When a directory read is requested, these low-level
file systems speculatively read the file inodes, which are of-
ten in relatively close disk sectors, into a private memory
cache, from which subsequent lookups or stat requests are
serviced. Similarly, the NFS version 2 protocol includes a
READDIRPLUS operation, which requests both the directory
contents and attributes of all children in one message round
trip [7]. These file systems must implement their own heuris-
tics to manage this cache. Prefetching is orthogonal to our
work, which more effectively caches what has already been
requested from the low-level file system.

8. Conclusion
This paper presents a directory cache design that efficiently
maps file paths to in-memory data structures in an OS ker-
nel. Our design decomposes the directory cache into sepa-
rate caches for permission checks and path indices, enabling
single-step path lookup, as well as facilitating new optimiza-
tions based on signatures and caching symbolic link reso-
lution. For applications that frequently interact with the file
system directory tree, these optimizations can improve per-
formance by up to 29%. Our optimizations maintain com-
patibility with a range of applications and kernel extensions,
making them suitable for practical deployment.

Acknowledgments
We thank the anonymous reviewers, Michael Bender, Rob
Johnson, David Wagner, and our shepherd Michael Kamin-
sky for insightful comments on this work. Imran Brown
and William Jannen contributed to the prototype and evalua-
tion. This research is supported in part by NSF grants CNS-
1149229, CNS-1161541, CNS-1228839, CNS-1405641, and
CNS-1408695.

References
[1] AppArmor. http://wiki.apparmor.net/.

[2] Daniel J. Bernstein. Using maildir format. http://cr.yp.
to/proto/maildir.html, 1995.

[3] Tim Bisson, Yuvraj Patel, and Shankar Pasupathy. Designing
a fast file system crawler with incremental differencing. ACM
SIGOPS Operating Systems Review, Dec 2012.

[4] D. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly Media, Inc., 3rd edition, 2005.

[5] Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Lan Xue. Efficient metadata management in large distributed
storage systems. In IEEE Conference on Mass Storage Systems
and Technologies (MSST), Washington, DC, USA, 2003.

[6] The *bsdstats project. www.bsdstats.org.

[7] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3
protocol specification. RFC 1813, June 1995.

[8] CERT Secure Coding. FIO21-C. Do not create temporary files
in shared directories.

[9] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai
Zeldovich, and M. Frans Kaashoek. Linux kernel vulnerabil-
ities: State-of-the-art defenses and open problems. In Asia-
Pacific Workshop on Systems, pages 5:1–5:5, 2011.

[10] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich,
Robert T. Morris, and Eddie Kohler. The scalable commutativ-
ity rule: Designing scalable software for multicore processors.
In Proceedings of the ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), pages 1–17, 2013.

[11] Jonathan Corbet. JLS: Increasing VFS scalability. LWN,
November 2009. http://lwn.net/Articles/
360199/.

[12] Jonathan Corbet. Dcache scalability and RCU-walk. Linux
Weekly News, 2010.

[13] Biplob Debnath, Sudipta Sengupta, and Jin Li. Chunkstash:
Speeding up inline storage deduplication using flash memory.
In Proceedings of the USENIX Annual Technical Conference,
pages 16–16, 2010.

[14] Dan Duchamp. Optimistic lookup of whole NFS paths in
a single operation. In Proceedings of the USENIX Summer
Technical Conference, 1994.

[15] Rik Farrow. Linux FAST’15 summary. ;login: Magazine,
40(3):90–95, June 2015.

[16] Andriy Gapon. Complexity of FreeBSD VFS using ZFS as
an example. Part 1. https://clusterhq.com/blog/
complexity-freebsd-vfs-using-zfs-example-
part-1-2/, 2014.

[17] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A file is not
a file: Understanding the I/O behavior of Apple desktop appli-
cations. In Proceedings of the ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), pages 71–83, 2011.

[18] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch
hashing. In Proceedings of the International Conference on
Distributed Computing (DISC), pages 350–364, 2008.

[19] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham,
and Michael J. West. Scale and performance in a distributed
file system. ACM Transactions on Computer Systems, 6(1):51–
81, 1988.

[20] Jharrod LaFon, Satyajayant Misra, and Jon Bringhurst. On dis-
tributed file tree walk of parallel file systems. In Proceedings
of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC ’12, 2012.

[21] Daniel Lemire and Owen Kaser. Strongly universal string
hashing is fast. The Computer Journal, page bxt070, 2013.

[22] Paul Hermann Lensing, Toni Cortes, and André Brinkmann.
Direct lookup and hash-based metadata placement for local file
systems. In ACM International Systems and Storage Confer-
ence (SYSTOR), 2013.

[23] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and
Michael J. Freedman. Algorithmic improvements for fast con-
current cuckoo hashing. In Proceedings of the ACM Euro-
pean Conference on Computer Systems (EuroSys), pages 27:1–
27:14, 2014.

[24] P. Loscocco and S. Smalley. Integrating flexible support for se-
curity policies into the Linux operating system. In Proceedings
of the USENIX Annual Technical Conference, 2001.

[25] Richard McDougall and Jim Mauro. Solaris Internals: Solaris
10 and OpenSolaris Kernel Architecture, Second Edition. Sun
Microsystems Press, 2008.

[26] Paul E. McKenney. Exploiting Deferred Destruction: An Anal-
ysis of Read-Copy Update Techniques in Operating System
Kernels. PhD thesis, 2004.

[27] Paul E. McKenney, Dipankar Sarma, and Maneesh Soni. Scal-
ing dcache with RCU. Linux Journal.

[28] Marshall Kirk McKusick and George V. Neville-Neil. The
Design and Implementation of the FreeBSD Operating System.
Addison-Wesley, 2005.

[29] Larry McVoy and Carl Staelin. lmbench: Portable tools for
performance analysis. In Proceedings of the USENIX Annual
Technical Conference, pages 23–23, 1996.

[30] Microsoft. Description of the ”access check cache bucket
count” and ”access check cache quota” options that are
available in the sp configure stored procedure. https://
support.microsoft.com/en-us/kb/955644.

[31] Danilov Nikita. Design and implementation of xnu port of
lustre client file system. Technical report, 2005.

[32] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
Journal of Algorithms, pages 122–144.

[33] Rob Pike. Lexical File Names in Plan 9, or, Getting Dot-
dot Right. In Proceedings of the USENIX Annual Technical
Conference, pages 7–7, 2000.

[34] Sean Quinlan and Sean Dorward. Venti: A new approach to
archival storage. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages 89–101, 2002.

[35] Dennis M. Ritchie and Ken Thompson. The unix time-sharing
system. Communication ACM, July 1974.

[36] M. Russinovich and D. Solomon. Windows Internals. Mi-
crosoft Press, 2009.

http://wiki.apparmor.net/
http://cr.yp.to/proto/maildir.html
http://cr.yp.to/proto/maildir.html
www.bsdstats.org
http://lwn.net/Articles/360199/
http://lwn.net/Articles/360199/
https://clusterhq.com/blog/complexity-freebsd-vfs-using-zfs-example-part-1-2/
https://clusterhq.com/blog/complexity-freebsd-vfs-using-zfs-example-part-1-2/
https://clusterhq.com/blog/complexity-freebsd-vfs-using-zfs-example-part-1-2/
https://support.microsoft.com/en-us/kb/955644
https://support.microsoft.com/en-us/kb/955644

[37] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh,
and Bob Lyon. Design and implementation or the sun network
filesystem. In Proceedings of the USENIX Annual Technical
Conference, 1985.

[38] S. Shepler, Storspeed Inc., M. Eisler, D. Noveck, and NetApp.
Network file system (NFS) version 4 minor version 1 protocol.
RFC 5661, Jan 2010.

[39] Amit Singh. Mac OS X Internals—A Systems Approach.
Addison-Wesley, 2006.

[40] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar
Voruganti. idedup: Latency-aware, inline data deduplication
for primary storage. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST), pages 24–24, 2012.

[41] Michael M. Swift, Peter Brundrett, Cliff Van Dyke, Praerit
Garg, Anne Hopkins, Shannon Chan, Mario Goertzel, and Gre-
gory Jensenworth. Improving the granularity of access control
in Windows NT. In ACM Symposium on Access Control Mod-
els and Technologies (SACMAT), 2001.

[42] Douglas Thain and Christopher Moretti. Efficient access to
many samall files in a filesystem for grid computing. In Pro-
ceedings of the 8th IEEE/ACM International Conference on
Grid Computing, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[43] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resiz-
able, scalable, concurrent hash tables via relativistic program-
ming. In Proceedings of the USENIX Annual Technical Con-

ference, pages 11–11, 2011.

[44] Yixue Wang and Haitao Lv. Efficient metadata management in
cloud computing. In ICCSN, pages 514–519, 2011.

[45] Brent Welch. A comparison of three distributed file system
architectures: Vnode, sprite, and plan 9. Computer System,
March 1994.

[46] David Wheeler. Sloccount, 2009.

[47] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. K. Hart-
man. Linux security modules: General security support for the
Linux kernel. In USENIX Security Symposium, 2002.

[48] Jing Xing, Jin Xiong, Ninghui Sun, and Jie Ma. Adaptive and
scalable metadata management to support a trillion files. In
Proceedings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis, SC ’09, 2009.

[49] Quan Zhang, Dan Feng, and Fang Wang. Metadata perfor-
mance optimization in distributed file system. In ICIS, Wash-
ington, DC, USA, 2012.

[50] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system. In
Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), pages 18:1–18:14, 2008.

[51] Yifeng Zhu, Hong Jiang, Jun Wang, and Feng Xian. HBA: Dis-
tributed metadata management for large cluster-based storage
systems. IEEE Trans. Parallel Distrib. Syst., pages 750–763,
2008.

	Introduction
	Background
	Unix Directory Hierarchy Semantics
	Linux Directory Cache
	Other Operating Systems
	Opportunities for Improvement

	Minimizing Hit Latency
	Caching Prefix Checks
	Coherence with Permission and Path Changes
	Accelerating Lookups with Signatures

	Generalizing the Fast Path
	Generalizing Credentials
	Non-Canonical Paths and Symbolic Links
	Mount Points
	Summary

	Improving the Hit Rate
	Caching Directory Completeness
	Aggressive Negative Caching

	Evaluation
	File Lookup Optimizations
	Caching Directory Completeness
	Applications
	Code Changes
	Discussion and Future Work

	Related Work
	Conclusion

