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Applications must be able to synchronize accesses to operating system (OS) re-

sources in order to ensure correctness in the face of concurrency and system failures.

This thesis proposes system transactions, with which the programmer specifies

atomic updates to heterogeneous system resources and the OS guarantees atomicity,

consistency, isolation, and durability (ACID).

This thesis provides a model for system transactions as a concurrency con-

trol mechanism. System transactions efficiently and cleanly solve long-standing

concurrency problems that are difficult to address with other techniques. For ex-

ample, malicious users can exploit race conditions between distinct system calls in

privileged applications, gaining administrative access to a system. Programmers

can eliminate these vulnerabilities by eliminating these race conditions with system
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transactions. Similarly, failed software installations can leave a system unusable.

System transactions can roll back an unsuccessful software installation without dis-

turbing concurrent, independent updates to the file system.

This thesis describes the design and implementation of TxOS, a variant

of Linux 2.6.22 that implements system transactions. The thesis contributes new

implementation techniques that yield fast, serializable transactions with strong isola-

tion and fairness between system transactions and non-transactional activity. Using

system transactions, programmers can build applications with better performance

or stronger correctness guarantees from simpler code. For instance, wrapping an

installation of OpenSSH in a system transaction guarantees that a failed installa-

tion will be rolled back completely. These atomicity properties are provided by the

OS, requiring no modification to the installer itself and adding only 10% perfor-

mance overhead. The prototype implementation of system transactions also mini-

mizes non-transactional overheads. For instance, a non-transactional compilation of

Linux incurs negligible (less than 2%) overhead on TxOS.

Finally, this thesis describes a new lock-free linked list algorithm, called olf,

for optimistic, lock-free lists. olf addresses key limitations of prior algorithms,

which sacrifice functionality for performance. Prior lock-free list algorithms can

safely insert or delete a single item, but cannot atomically compose multiple opera-

tions (e.g., atomically move an item between two lists). olf provides both arbitrary

composition of list operations as well as performance scalability close to previous

lock-free list designs. olf also removes previous requirements for dynamic mem-

ory allocation and garbage collection of list nodes, making it suitable for low-level

system software, such as the Linux kernel. We replace lists in the Linux kernel’s di-

rectory cache with olf lists, which currently requires a coarse-grained lock to ensure

invariants across multiple lists. olf lists in the Linux kernel improve performance

of a filesystem metadata microbenchmark by 3× over unmodified Linux at 8 CPUs.
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The TxOS prototype demonstrates that a mature OS running on commodity

hardware can provide system transactions at a reasonable performance cost. As a

practical OS abstraction for application developers, system transactions facilitate

writing correct application code in the presence of concurrency and system failures.

The olf algorithm demonstrates that application developers can have both the

functionality of locks and the performance scalability of a lock-free linked list.
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Chapter 1

Introduction

In current operating systems, applications access OS-managed resources, such as

files and signals, through hundreds of system calls. An individual system call can

generally be thought of as atomic, but the OS does not provide a general way to

combine system calls. As a result, application developers face consistency errors that

afford no good solution. Because applications can only access persistent storage and

other shared resources through the OS, the OS is the only place to address the need

for consistent access to these shared resources. The operating system programming

model must be improved so that application developers can express their consistency

requirements to the OS.

Just as multi-threaded applications must group accesses to shared data struc-

tures into critical regions, applications often need to group accesses to operating

system resources into logical units. For example, Linux and similar operating sys-

tems store local user and group accounts in three files that need to be mutually

consistent: /etc/passwd, /etc/shadow, and /etc/group. The lack of a general

mechanism to ensure consistent access to multiple system resources leads to a range

of seemingly unrelated application problems. These problems include security vul-

nerabilities arising from time-of-check-to-time-of-use (TOCTTOU) race conditions
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in privileged applications, an unusable system after a failed software upgrade, and

lost performance when concurrently accessing shared files.

Applications currently struggle to make consistent updates to system re-

sources. In the operating system API, individual system calls are generally atomic

and isolated from the rest of the system, but it is difficult, if not impossible, to con-

dense complex operations into a single system call. In simple cases, programmers

can use a powerful, single system call like rename, which atomically replaces the

contents of a file. For more complex updates, options like file locking are clumsy

and difficult to program. In the presence of concurrency, the problem is exacerbated

because existing interfaces are often insufficient to protect a series of system calls

from interference by buggy or malicious applications. With the current proliferation

of multi-core processors, concurrent processing is becoming ubiquitous, exposing the

inability of the traditional system call interface to ensure consistent accesses.

In the example of managing local user accounts, developers spend substantial

effort creating tools that minimize, but fail to eliminate consistency problems. The

vipw and useradd utilities help ensure that user account databases are formatted

correctly and mutually consistent. To address concurrency in the system, these tools

create lock files for mutual exclusion. A careless administrator, however, can corrupt

the files by simply editing them directly. The tools also use the sync() and rename()

commands to ensure that an individual file is not corrupted if the system crashes,

but cannot ensure that an update to multiple files is consistently propagated to every

file. For instance, suppose a system crashes after useradd writes /etc/passwd but

before it writes /etc/shadow. After rebooting the system, the new user will not be

able to log on, yet useradd will fail because it thinks the user already exists, leaving

the system administrator to manually repair the database files. The proliferation

of tools to mitigate such a simple problem, as well as the tools’ incompleteness,

indicate that developers need a better API for consistent system accesses.
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In practice, OS maintainers address the lack of concurrency control in the

system call API in an ad hoc manner: new system calls and complex interfaces are

added to solve new problems as they arise. The critical problem of eliminating file

system race conditions has motivated Solaris and Linux developers to add over a

dozen new system calls, such as openat, over the last seven years. Linux maintainers

added a close-on-exec flag to fifteen system calls in a recent version of Linux [Dre08]

to eliminate a race condition between calls to open and fcntl. Individual file sys-

tems have introduced new operations to address consistency needs: the Google

File System supports atomic append operations [GGL03], while Windows recently

adopted transactions in NTFS and the Windows registry [RS09]. Users should not

be required to lobby OS developers for new system calls and file system features to

meet their concurrent programming needs. Why not allow users to solve their own

problems by supporting composition of multiple system calls into arbitrary atomic

and isolated units?

This thesis proposes system transactions, which group accesses to system re-

sources via system calls into logical units that execute with atomicity, consistency,

isolation, and durability (ACID). System transactions are easy to use: program-

mers enclose code regions within the sys_xbegin() and sys_xend() system calls

to express consistency constraints to the OS. The user can abort an in-progress

transaction with sys_xabort(). Placing system calls within a transaction alters

the semantics of when and how their results are published to the rest of the sys-

tem. Outside of a transaction, actions on system resources are visible as soon as

the relevant internal kernel locks are released. Within a transaction, all accesses are

isolated until commit time, when they are atomically published to the rest of the

system. System transactions provide a simple and powerful way for applications to

express consistency requirements for concurrent operations to the OS.

This thesis describes the design and implementation of system transactions
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on Linux called TxOS, which provides transactional semantics for OS resources,

including the file system, memory management, signals, and process creation. To

efficiently provide strong guarantees, the TxOS implementation redesigns several

key OS data structures and internal subsystem interfaces. By making transactions

a core OS abstraction, users and OS developers can create powerful applications and

services. For example, given an initial implementation of TxOS, a single developer

needed less than a month to prototype a transactional ext3 file system.

This thesis makes three key contributions. First, it describes a new approach

to OS implementation that supports efficient transactions on commodity hardware

with strong atomicity and isolation guarantees. These techniques are implemented

in the TxOS prototype. Secondly, the thesis describes several case studies in using

system transactions to build better applications. It shows that system transactions

yield better applications in terms of parallel performance or stronger correctness

guarantees with simpler code. Finally, the thesis describes a new lock-free linked

list algorithm that is appropriate for use in an OS kernel. This algorithm addresses

two key limitations of previous lock-free list algorithms: composability and reliance

on dynamic memory management.

1.1 Motivating examples

A range of seemingly unrelated application problems share a root cause—the lack of

a general mechanism to ensure consistent access to system resources. This section

reviews two common application consistency problems and how system transac-

tions remedy those problems. System transactions greatly simplify recovery from a

failed software installation, leaving concurrent, independent updates to the system

undisturbed. System transactions also eliminate race conditions inherent in the file

system API, which can be exploited to undermine security.
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1.1.1 Software installation or upgrade

Installing new software or software patches is an increasingly common system ac-

tivity as time to market pressures and good network connectivity combine to make

software updates frequent for users. Yet software upgrade remains a dangerous ac-

tivity. For example, Microsoft recalled a prerequisite patch for Vista service pack

1 because it caused an endless cycle of boots and reboots [McD08]. In general, a

partial upgrade can leave a system in an unusable state.

Current systems are adopting solutions that mitigate these problems, but

each has its own drawbacks. Microsoft Windows and other systems provide a

checkpoint-based solution to the software update problem. Users can take a check-

point of disk state before they install software: if something goes wrong, they roll

back to the checkpoint. Windows checkpoints certain key structures, like the reg-

istry and some system files [Mic08]. Other systems, like ZFS’s apt-clone, check-

point the entire file system. If the software installation fails, the system restores the

pre-installation file system image, erasing file system updates that are concurrent

but independent from the software installation. Partial checkpointing mitigates this

problem, but loses the ability to recover from application installations that corrupt

files not checkpointed by the system. Moreover, the user or the system must cre-

ate and manage the disk-based checkpoints to make sure a valid image is always

available. Finally, if a bad installation affects volatile system state, errant programs

can corrupt files unrelated to the failed installation. Collectively, these problems

severely decrease the usability of checkpoint-based solutions.

System transactions provide a simple interface to address these software in-

stallation problems (Section 5.3). A user executes the software installation or update

within a transaction, which isolates the rest of the system until the installation suc-

cessfully completes. If the changes to the system made by the installation or upgrade

need to be rolled back, independent updates made concurrently remain undisturbed.
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Victim Attacker
if(access(’foo’)){

symlink(’secret’,’foo’);

fd=open(’foo’);

write(fd,...);

...

}

Victim Attacker
symlink(’secret’,’foo’);

sys xbegin();
if(access(’foo’)){

fd=open(’foo’);

write(fd,...);

...

}

sys xend();
symlink(’secret’,’foo’);

Figure 1.1: An example of a TOCTTOU attack, followed by an example that eliminates the race
using system transactions. The attacker’s symlink is serialized (ordered) either before or after the
transaction, and the attacker cannot see partial updates from the victim’s transaction, such as
changes to atime.

1.1.2 Eliminating races for security

Figure 1.1 depicts a scenario in which an application wants to make a single, con-

sistent update to the file system by checking the access permissions of a file and

conditionally writing it. Common in setuid programs, this pattern is the source of

a major and persistent security problem in modern operating systems. An attacker

can change the file system name space using symbolic links between the victim’s

access control check and the file open, perhaps tricking a setuid program into

overwriting a sensitive system file, like the password database. The OS API pro-

vides no way for the application to tell the operating system that it needs a consistent

view of the file system’s name space.

Although system API race conditions, or time-of-check-to-time-of-use (TOCT-
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TOU) races, are most common in applications’ uses of the file system APIs, they

are possible in other OS resources. Local sockets used for IPC are vulnerable to a

similar race between creation and connection. Versions of OpenSSH before 1.2.17

suffered from a socket race exploit in which a user steals another’s credentials [Ach];

the Plash sandboxing system suffers a similar vulnerability [Pla]. Zalewski describes

how to exploit races in signal handlers to compromise mature, widely-deployed ap-

plications, including sendmail, screen, and wu-ftpd [Zal01].

While TOCTTOU vulnerabilities are conceptually simple, they pervade de-

ployed software and are difficult to eliminate. At the time of writing, a search of the

U.S. national vulnerability database for the term “symlink attack” yields over 600

hits [NIS10]. Further, recent work by Cai et al. [CGJ09] exploits fundamental flaws

to defeat two major classes of TOCTTOU countermeasures: dynamic race detectors

in the kernel [TY03] and probabilistic user-space race detectors [THWS08b]. This

continuous arms race of measure and countermeasure suggests that the only way to

eliminate TOCTTOU vulnerabilities is changing the OS API.

In practice, such races are addressed with ad hoc extension of the system API.

Linux has added a new close-on-exec flag to fifteen different system calls to elimi-

nate a race condition between calls to open and fcntl. Tsafrir et al. [THWS08a]

demonstrate how programmers can use the openat() family of system calls to con-

struct deterministic countermeasures for many races by traversing the directory tree

and checking user permissions in the application. However, these techniques cannot

protect against all races without even more API extensions. In particular, they are

incompatible with the O_CREAT flag to open that prevents exploits on temporary file

creation [CBWK01].

Fixing race conditions as they arise is not an effective long-term strategy.

Complicating the API in the name of security is risky: code complexity is the

enemy of code security [Ber07]. Because system transactions provide deterministic
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safety guarantees and a natural programming model, they are an easy-to-use, general

mechanism that eliminates API race conditions (Section 5.6).

1.2 Composing linked list operations without locks

In order to safely share data structures, many programs adopt locking, which limits

the performance scalability of the application. For some data structures, the pro-

grammer can adopt specialized implementations that permit more concurrency, but

these specializations often restrict functionality. This thesis addresses the unsavory

dilemma between functionality and scalability in linked list implementations, de-

scribing a new linked list design that provides the complete functionality of locked

lists with performance scalability closer to that of current lock-free implementations.

Applications with invariants across multiple lists cannot benefit from the

performance scalability of lock-free lists, such as the ConcurrentSkipList classes

of the Java Concurrency package. Current lock-free list designs, including the pop-

ular Harris-Michael algorithm [Har01, Mic02], can safely insert or remove individual

items from a list, but cannot safely compose multiple operations. For instance, if an

application moves an item from one lock-free list to another, the list implementation

can atomically remove the item from the first list and atomically add the item to the

second list, but there will be a period during which the item is is either on both lists,

or on neither list. If an application invariant requires the item to be on exactly one

of two lists, the only safe option is to lock the lists. The inability to safely compose

complex list operations prevents some applications from enjoying the performance

benefits of lock-free lists.

A second barrier to adoption of lock-free lists is their reliance on dynamic

allocation and reclamation of list nodes. The Harris-Michael algorithm avoids syn-

chronization with readers of a deleted list node by deferring reclamation until it is

sure no threads have a reference to the node. If an item is added to another list, a
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new list node is dynamically allocated.

This reliance on dynamic allocation of list nodes is unacceptable for operating

system kernels, which manage physical memory and file system caches using lists.

For instance, it is difficult to write low-level memory management code so reentrant

that, under a low memory condition, the kernel can successfully allocate list nodes

in order to add reclaimed memory to a free list. Previous attempts to dynamically

allocate and garbage collect list nodes in kernel code have proved intractable [MS05].

For this reason, OS kernels including Linux avoid dynamic memory allocation of list

nodes by embedding the list nodes directly in the data structures to be listed. In

the Linux kernel, these sets of lists are protected by coarse grained locks, which

have proved to be a persistent scalability bottleneck [Cor09]. If OS kernels used

more scalable lists, all applications would benefit; this will require a lock-free list

design that can provide scalability benefits without such heavy reliance on dynamic

memory management.

This thesis presents a new lock-free linked list design, called olf, or opti-

mistic, lock-free lists. olf eliminates the functional restrictions of previous designs

while retaining performance scalability drastically superior to locking. The olf de-

sign is suitable for use in an OS kernel, and this thesis describes its application to

improve Linux kernel scalability.

1.3 Summary

This thesis contributes new, practical designs and implementations concurrent pro-

gramming abstractions that are simple for application programmers to use, but chal-

lenging for lower-level software to provide to applications. Specifically, the TxOS

prototype demonstrates that a mature OS running on commodity hardware can

provide system transactions at a reasonable performance cost. As a practical OS

abstraction for application developers, system transactions facilitate writing correct
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application code in the presence of concurrency and system failures. The olf algo-

rithm demonstrates that application developers can have both the functionality of

locks and the performance scalability of a lock-free linked list.

Previous publications. An extended motivation for system transactions in a

modern OS and a high-level description of the TxOS design appeared in [PW09].

Porter et al. [PHR+09] provide a thorough description of TxOS, and the later Linux

Symposium paper [PW10] provides additional technical details. Chapters 3 and 4

substantially extend previously published descriptions of the TxOS system. Ongoing

work with TxOS, described in 6, is previously unpublished. The lock-free list design

(olf) described in Chapter 8 is currently under submission.

1.4 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 provides a technical overview

of system transactions and the TxOS kernel. Chapter 3 describes the TxOS kernel.

Chapter 4 describes how to extend transactions into various kernel subsystems,

including the file system, memory management, and signals. Chapter 5 evaluates the

performance of the TxOS kernel on a range of benchmarks and microbenchmarks.

Chapter 6 describes how system transactions can serve as a building block for better

applications, describing both completed and future work. Chapter 7 reviews related

work on transactions in an OS kernel. Chapter 8 describes a new lock-free linked

list algorithm that eliminates certain restrictions imposed by previous algorithms,

which precluded their use in an OS kernel. Chapter 9 concludes.

10



Chapter 2

Technical overview

The design of system transactions seeks to give programmers a simple and intu-

itive abstraction for ensuring consistent access to system resources. This chap-

ter describes the API, semantics, and behavior of system transactions, followed by

an overview of TxOS, our prototype implementation of system transactions within

Linux.

2.1 System transactions

System transactions provide ACID semantics for updates to OS resources, such as

files, pipes, and signals. In this programming model, both transactional and non-

transactional system calls may access the same system state. The OS is responsible

for ensuring that all accesses are correctly serialized and contention is arbitrated

fairly. The interface for system transactions is intuitive and simple. Programmers

wrap a block of unmodified code in a transaction simply by adding sys_xbegin()

and sys_xend().
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2.1.1 System transaction semantics

System transactions share several properties with database transactions, which de-

velopers are likely familiar with. System transactions are serializable and recover-

able. Only committed data are read, and reads are repeatable; this corresponds to

the highest database isolation level (level 3 [GR93]). Transactions are atomic (the

system can always roll back to a pre-transaction state) and durable (transaction

results, once committed, survive system crashes).

To ensure isolation, the kernel enforces the invariant that a kernel object may

only have one writer at a time, excepting containers, which allow multiple writers

to disjoint entries. Two concurrent system transactions cannot both successfully

commit if they access the same kernel objects and at least one access is a write.

Such transactions conflict and the system will detect the conflict and abort one

of the transactions. The system prevents non-transactional updates to objects read

or written by an active system transaction. Either the system suspends the non-

transactional work before the update, or it aborts the transaction. By preventing

conflicting accesses to the same kernel object, the system provides conflict serializ-

ability, which is commonly used to enforce serializability efficiently.

System transactions make durability optional because durability often in-

creases transaction commit latency and the programmer does not always need it.

Durability is only relevant to file system state, as volatile system state does not

survive system crashes regardless of transactions. The increased commit latency

comes from flushing data to a slow block storage device, like a disk. Eliminating

the TOCTTOU race in the file system namespace is an example of a system trans-

action that does not require durability. Durability for system transactions in TxOS

is under the control of the programmer, using a flag to sys_xbegin() (Table 2.1).

Each kernel thread may execute a system transaction. Transactional updates

are isolated from all other kernel threads, including threads in different processes.
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Function Name Description

int sys xbegin
(int flags)

Begin a transaction. The flags specify transactional be-
havior, as described below. The call returns the current
retry attempt on success (i.e., 0 on the first instance,
1 after the first retry, etc.) and a negative value on
failure.

int sys xend() End of transaction. Returns whether commit suc-
ceeded.

void sys xabort
(int no restart)

Aborts a transaction. If the transaction was started
with the NO AUTO RETRY flag unset (the default
behavior), setting no restart overrides that flag and
does not restart the transaction after it is rolled back.

sys xbegin Flag Description

0 DEFAULTS By default, transactions are durable, provide rollback
of the application’s address space with copy-on-write
paging, automatically retry on an abort, and the trans-
action aborts if it attempts an unrecoverable system
call. Any of these features can be disabled with the
flags below.

1 NONDURABLE Transaction updates are not guaranteed to be on stable
storage when commit returns. Recommended to avoid
synchronous writes when durability is not required.

2 NO USER ROLLBACK Disables copy-on-write paging for the user-level address
space. If a transaction aborts, user-mode data is not
rolled back by the kernel, only kernel modifications are
rolled back. Recommended for use by expert program-
mers, or with a user-level transactional memory sys-
tem.

4 NO AUTO RETRY Disables automatic retry of an aborted transaction.

8 ERROR UNSUPPORTED If a transaction attempts an unrecoverable sys-
tem call, have that call return error number
(ENOTXSUPPORT—134). The transaction does not
abort.

16 LIVE DANGEROUSLY If a transaction attempts an unrecoverable system call,
proceed and log a warning to the system log.

Table 2.1: TxOS API

13



We call a kernel thread executing a system transaction a transactional kernel thread.

2.1.2 Interaction of transactional and non-transactional threads

The OS serializes system transactions and non-transactional system calls, providing

the strongest guarantees and most intuitive semantics to the programmer [GR93].

The serialization of transactional and non-transactional updates to the same re-

sources is called strong isolation [BLM05]. Previous OS transaction designs

have left the interaction of transactions with non-transactional activity semanti-

cally murky. Intuitive semantics for mixing transactional and non-transactional

access to the same resources is crucial to maintaining a simple interface to system

resources. Strong isolation prevents unexpected behavior when non-transactional

and transactional applications access the same system resources.

The presence of system transactions does not change the behavior of non-

transactional activity in the underlying operating system. While most system calls

are already isolated and atomic, there are important exceptions. For example, Linux

does not serialize read with write. In TxOS, read system calls inside of a system

transaction will be properly serialized with a non-transactional write, but non-

transactional system calls can still exhibit non-serializable behavior with respect to

each other. Non-transactional system calls serialize with transactions, but the inter-

actions among non-transactional system calls are generally undisturbed on TxOS.

2.1.3 System transaction progress

The operating system guarantees that system transactions do not livelock with other

system transactions. When two transactions, A and B, cannot both commit, the

system selects one to restart (let’s say B in this example), and ensures its decision

remains consistent. If A continues and B restarts and again conflicts with A, the

OS will again restart B. See Section 3.2.2 for details.

14



The TxOS design guarantees progress for transactional threads in the pres-

ence of non-transactional threads. Because non-transactional system calls cannot be

aborted, a simple approach to serializing transactions with non-transactional system

calls would always abort the transaction. This runs the risk of starving long-running

transactions. If an OS supports preemption of kernel threads (present in Linux 2.4

and 2.6 since 2004), then it can guarantee progress for long running transactions by

preempting non-transactional threads that would impede progress of the transaction

(Section 3.2.3).

The OS has several mechanisms to regulate the progress of transactions, but

the use of these mechanisms is a matter of policy. For instance, allowing a long

running transaction to isolate all system resources indefinitely is undesirable, so the

OS may want a policy that limits the size of a transaction. Limiting a transaction

that over-consumes system resources is analogous to controlling any process that

abuses system resources, such as memory, disk space, or kernel threads.

2.1.4 System transactions for system state

Although system transactions provide ACID semantics for system state, they do

not provide these semantics for application state. System state includes OS data

structures and device state stored in the operating system’s address space, whereas

application state includes only the data structures stored in the application’s address

space. When a system transaction aborts, the OS restores the kernel state to its

pre-transaction state, but it does not revert application state.

For most applications, we expect programmers will use a library or runtime

system that transparently manages application state as well as system transactions.

Most applications have state that operates in tandem with OS-managed state, such

as a memory allocator having user-level bookkeeping on top of a kernel-allocated

memory region. When OS state is rolled back, the application often needs to roll
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back the changes to its own state. In simple cases, such as the TOCTTOU exam-

ple, the developer could manage application state herself. TxOS provides single-

threaded applications with an automatic checkpoint and restore mechanism for the

application’s address space that marks the pages copy-on-write (similar to Specu-

lator [NCF05]), which can be enabled with a flag to sys_xbegin() (Table 2.1). In

Section 3.7, we describe how system transactions integrate with hardware and soft-

ware transactional memory, providing a complete transactional programming model

for multi-threaded applications.

2.1.5 Communication model

Application code that communicates outside of a transaction and requires a response

will not complete in a single transaction. Communication outside of a transac-

tion violates isolation. For example, a transaction may send a message to a non-

transactional thread over an IPC channel and the system might buffer the message

until commit. If the transaction waits for a reply on the same channel, the appli-

cation will deadlock. The programmer is responsible for avoiding this send/reply

idiom within a transaction.

Communication among threads within the same transaction is unrestricted.

A thread may only be in one transaction at a time, but beyond that, the mapping

of threads to transactions is quite flexible. Threads in the same process may be in

different transactions, and multiple threads, including threads in different processes,

may be in the same transaction. This thesis only considers system transactions on

a single machine, but future work could allow system transactions to span multiple

machines.
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Supported

Subsystem Tot. Part. Examples

Credentials 34 1 getuid, getcpu, setrlimit (partial)

Processes 13 3 fork, vfork, clone, exit, exec (partial)

Communication 15 0 rt sigaction, rt sigprocmask, pipe

Filesystem 63 4 link, access, stat, chroot, dup, open, close,
write, lseek

Other 13 6 time, nanosleep, ioctl (partial), mmap2 (par-
tial)

Totals 138 14 Grand total: 152

Unsupported

Subsystem Tot. Examples

Processes 33 nice, uselib, iopl, sched yield, capget

Memory 15 brk, mprotect, mremap, madvise

Filesystem 29 mount, sync, flock, setxattr, io setup, inotify

File Descriptors 14 splice, tee, sendfile, select, poll

Communication 8 socket, ipc, mq open, mq unlink

Timers/Signals 12 alarm, sigaltstack, timer create

Administration 22 swapon, reboot, init module, settimeofday

Misc 18 ptrace, futex, times, vm86, newuname

Total 151

Table 2.2: Summary of system calls that TxOS completely supports (Tot.) and partially supports
(Part.) in transactions, followed by system calls with no transaction support. Partial support indi-
cates that some (but not all) execution paths for the system call have full transactional semantics.
Linux 2.6.22.6 on the i386 architecture has 303 total system calls.
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2.2 TxOS overview

TxOS implements system transactions by isolating data read and written in a trans-

action using existing kernel memory buffers and data structures. When an appli-

cation writes data to a file system or device, the updates generally go into an OS

buffer first, to optimize OS device accesses. By making these buffers copy-on-write

for transactions, TxOS isolates transactional data accesses until commit. In TxOS,

transactions must fit into main memory, although this limit could be raised in future

work by swapping uncommitted transaction state to disk.

TxOS isolates updates to kernel data structures using recent implementation

techniques from object-based software transactional memory systems [FH07, HK08,

HLMS03]. These techniques are a departure from the logging and two-phase locking

approaches of databases and historic transactional operating systems (Section 3.1).

TxOS’s isolation mechanisms are optimistic, on the assumption that concurrent

transactions with conflicts are rare.

Table 2.2 summarizes the system calls and resources for which TxOS sup-

ports transactional semantics, including the file system, process and credential man-

agement, signals, and pipes. A partially supported system call means that some

processing paths are fully transactional, and some are not. For example, ioctl

is essentially a large switch statement, and TxOS does not support transactional

semantics for every case. When a partially supported call cannot support trans-

actional semantics, or an unsupported call is issued, the system logs a warning or

aborts the transaction, depending on the flags passed to sys_xbegin().

Ideal support for system transactions would include every reasonable system

call. TxOS supports a subset of Linux system calls as shown in Table 2.2. The

count of 152 supported system calls shows the relative maturity of the prototype,

but also indicates that it is incomplete. The count of unsupported system calls does

not proportionately represent the importance or challenge of the remaining work be-
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cause many resources, such as network sockets, IPC, etc., primarily use the common

file system interfaces. For instance, extending transactions to include networking (a

real challenge) would increase the count of supported calls by 5, whereas transac-

tion support for extended file attributes (a fairly straightforward extension) would

add 12 supported system calls. The remaining count of system calls falls into three

categories: substantial extensions (memory management, communication), straight-

forward, but perhaps less common or important (process management, timers, most

remaining file interfaces), and operations that are highly unlikely to be useful inside

a transaction (e.g., reboot, mount, init_module, etc.). TxOS supports transac-

tional semantics for enough kernel subsystems to demonstrate the power and utility

of system transactions.
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Chapter 3

The TxOS Kernel

The TxOS kernel provides transactional semantics for a series of system calls with

strong properties. This chapter describes the design and implementation of the core

transaction facilities in the TxOS kernel.

TxOS provides a framework for transactionalizing data structures in ker-

nel subsystems, such as the virtual file system and signals. Chapter 4 describes

the transactionalized subsystems in TxOS. Across all of these subsystems, TxOS

provides transactional semantics for 152 of 303 system calls in Linux, presented in

Table 2.2. The supported system calls include process creation and termination,

credential management operations, sending and receiving signals, and file system

operations.

System transactions in TxOS add roughly 3,300 lines of code for transac-

tion management, and 5,300 lines for object management. TxOS also requires

about 14,000 lines of minor changes to convert kernel code to use the new ob-

ject type system and to insert checks for asymmetric conflicts when executing non-

transactionally.
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3.1 Version management of transactional state

Version management is the first key design point of any transactional system, be

it a database, transactional memory implementation, or operating system. A trans-

actional system must track both speculatively modified data, so that the transaction

can commit, and the original data, so that the transaction can abort. As explained

in this section, the selected approach to version management has repercussions for

scheduling, including the risk of deadlock and high latency for interrupt handling.

A key innovation in this thesis is the design of a version management solution that

is suitable for the scheduling constraints of an operating system kernel.

Databases and historical transactional operating systems typically update

data in place and maintain an undo log. This approach is called eager version

management [LR06]. These systems isolate transactions by locking data when it

is accessed and holding the lock until commit. This technique is called two-phase

locking, and it usually employs locks that distinguish read and write accesses. Be-

cause applications generally do not have a globally consistent order for data accesses,

these systems can deadlock. For example, one thread might read file A then write

file B, while a different thread might read file B, then write file A.

The possibility of deadlock complicates the programming model of eager

versioning transactional systems. Deadlock is commonly addressed by exposing a

timeout parameter to users. Setting the timeout properly is a challenge. If it is too

short, it can starve long-running transactions. If it is too long, it can destroy the

performance of the system.

Eager version management degrades responsiveness in ways that are not ac-

ceptable for an operating system. If an interrupt handler, high priority thread, or

real-time thread aborts a transaction, it must wait for the transaction to process

its undo log (to restore the pre-transaction state) before it can safely proceed. This

wait jeopardizes the system’s ability to meet its timing requirements.
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TxOS, in contrast, uses lazy version management, where transactions

operate on private copies of a data structure. Applications never hold kernel locks

across system calls. Lazy versioning requires TxOS to hold locks only long enough

to make a private copy of the relevant data structure. By enforcing a global ordering

for kernel locks, TxOS avoids deadlock. TxOS can abort transactions instantly—the

winner of a conflict does not incur latency for the aborted transaction to process its

undo log.

The primary disadvantage of lazy versioning is the commit latency due to

copying transactional updates from the speculative version to the stable version

of the data structures. As we discuss in Subsection 3.1.2, TxOS minimizes this

overhead by splitting objects, turning a memcpy of the entire object into a pointer

copy.

3.1.1 Versioning kernel objects

TxOS implements transactional system call semantics by maintaining multiple ver-

sions of kernel data structures. Kernel data structures private to a thread, such as

the current user id, are versioned with a simple checkpoint and restore scheme. By

versioning shared kernel data structures with a more sophisticated, lazy versioning

system, the kernel has more flexibility in arbitrating conflicts and can recover from

a transactional conflict faster.

When a transaction accesses a shared kernel object, such as an inode, it

acquires a private copy of the object, called a shadow object. All system calls

within the transaction use this shadow object in place of the original, stable object

until the transaction commits or aborts. The use of shadow objects ensures that

transactions always have a consistent view of the system state. When the transaction

commits, the shadow objects replace their stable counterparts. If a transaction

cannot complete, it simply discards its shadow objects.
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struct inode_header {

atomic_t i_count; // Reference count

spinlock_t i_lock;

inode_data *data; // Data object

// Other objects

address_space i_data; // Cached pages

tx_data xobj; // for conflict detection

list i_sb_list; // kernel bookkeeping

};

struct inode_data {

inode_header *header;

// Common inode data fields

unsigned long i_ino;

loff_t i_size; // etc.

};

Figure 3.1: A simplified inode structure, decomposed into header and data objects in TxOS.
The header contains the reference count, locks, kernel bookkeeping data, and the objects that are
managed transactionally. The inode_data object contains the fields commonly accessed by system
calls, such as stat, and can be updated by a transaction by replacing the pointer in the header.

3.1.2 Splitting objects into header and data

To efficiently commit lazy versioned data, TxOS decomposes objects into a stable

header component and a volatile, transactional data component. Figure 3.1 pro-

vides an example of this decomposition for an inode. The object header contains a

pointer to the object’s data; transactions commit changes to an object by replacing

this pointer in the header to a modified copy of the data object.

Note that the header itself is never replaced by a transaction. The header

provides a stable target for incoming pointers, similar to a smart pointer. Pointers

to objects always point to the object headers. A näıve system might attempt to

leave kernel data structures untouched, and instead modify all incoming references.

This approach proves impractical because updating these pointers introduces writes

to additional objects; these writes potentially generate conflicting accesses and abort

otherwise non-conflicting transactions.

The object header can also contain data that is not modified by transactions.
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For instance, the kernel garbage collection thread (kswapd) periodically scans the

inode and dentry (directory entry) caches looking for unused, cached file system

data to garbage collect. In the case of inodes, kswapd reads certain kernel book-

keeping fields, including the reference count and the superblock list (i_sb_list in

Figure 3.1), to determine if the inode is in use. If it is being used by any sys-

tem call, transactional or not, kswapd simply moves on to the next thread. TxOS

avoids needless conflicts between a transaction writing to a field in the inode, such as

the permission bits, and kswapd by keeping the kernel bookkeeping in the header.

Kswapd scans never access the associated inode_data objects of an in-use inode

and thereby avoid false conflicts.

Multiple data objects. Several kernel objects, including inodes, have evolved

such that they contain sets of data that have little semantic relationship to each

other. In these cases, TxOS decomposes an object into multiple data payloads. For

instance, a process may may often read or write a file without updating the meta-

data. In TxOS, the inode_data contains both file metadata (owner, permissions,

etc.) and the header has the mapping of file blocks to cached pages in memory (i_-

data). TxOS versions these objects separately, allowing metadata operations and

data operations on the same file to execute concurrently when it is safe.

3.1.3 Read-only objects

A system transaction often reads many kernel objects that it does not modify. For

instance, path lookup code can read each of the parent directories while locating a

file to modify. To avoid the cost of making shadow copies, kernel code can specify

read-only access to an object, which marks the object data as read-only for the

length of the transaction. Each data object has a transactional reader reference

count. If a writer, transactional or non-transactional, wins a conflict for an object

with a non-zero reader count, it must create a new copy of the object and install
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it as the new stable version. Once all transactional readers release the read-only

version and after all CPUs have quiesced, the OS garbage collects the old copy via

read-copy update (RCU) [McK04]. In the Linux kernel, a CPU quiesces when it

context switches a process. Linux follows an implementation convention that all

references to a freeable object (i.e., with a zero reference count) must be released

before a thread is descheduled; this convention is enforced by disabling preemption

in the kernel if needed. RCU reclamation of read-only objects ensures that all active

references to the old, read-only version have been released before it is freed and all

tasks see a consistent view of kernel data.

In the current TxOS prototype, non-transactional threads can hold refer-

ences to read-only data objects across scheduling events; these data objects can be

replaced while the thread is suspended. For instance, a non-transactional thread

may read an inode’s metadata from a read-only inode_data object before issu-

ing a disk read. While the thread is descheduled for the disk read, the read-only

inode_data could be garbage collected. After the disk read completes, the non-

transactional thread resumes with a stale reference to the inode_data. In TxOS,

if a non-transactional task is descheduled during a blocking call, it must re-acquire

references to any data objects by reading the object header. Note that the reference

count on the header object will be non-zero, so the header can be safely used to

re-acquire the data object reference. As an alternative, the programming model

might be simplified by imposing additional constraints on reclamation of read-only

objects; the ramifications on memory pressure and consistency of non-transactional

system calls would need to be more carefully evaluated.

Marking data objects as read-only in a transaction is a structured way to

eliminate substantial overhead for memory allocation and copying. Although this

optimization complicates the kernel programming model slightly, the instances where

reacquisition is needed are small (in the tens). Special support for read-mostly
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transactions is a common optimization in transactional systems, and using RCU

gives TxOS efficient, concurrent access to read-mostly data.

3.2 Conflict detection and interoperability

Conflicts occur when a transaction attempts to write an object that has been read or

written by another transaction. In order to ensure the safety of system transactions,

TxOS must serialize conflicting transactions, typically by having one roll back and

retry. TxOS efficiently serializes transactions with other transactions as well as non-

transactional system calls. In order to uphold concurrent performance, TxOS must

avoid needlessly serializing transactions that can safely execute at the same time.

This section explains several key design points related to detecting and resolving

conflicts.

3.2.1 Conflict detection

In order to provide serializable transactions, TxOS must detect conflicts between

transactions, and detect asymmetric conflicts [RRP+07] between transactions

and non-transactional threads. In general, a conflict is defined as a write to an

object that has been read or written by another transaction. An asymmetric con-

flict is defined similarly: a non-transactional thread attempts to write an object a

transaction has read or written, or vice versa.

TxOS serializes non-transactional accesses to kernel objects with transactions

by leveraging the current locking practice in Linux and augmenting stable objects

with information about transactional readers and writers. Both transactional and

non-transactional threads use this information to detect accesses that would violate

conflict serializability when they acquire a kernel object.

TxOS embeds a transactional_object structure (Figure 3.2) in the header

portion of all shared kernel objects that can be accessed within a transaction. The
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struct transactional_object {

// Type encoding

enum tx_object_type type;

// Writer pointer

struct transaction *writer;

// List of readers

struct list_head readers;

// Spinlock, for synchronization - acquired after object’s non-blocking lock

spinlock_t lock;

};

Figure 3.2: The transactional_object structure, or xobj for brevity, which is embedded in the
header of each object. The type field indicates in which type of kernel object the xobj is embedded.
The writer pointer, if set, indicates the current transaction with exclusive (write) access. The reader
list, if non-empty, indicates which transactions have shared (read) access. The lock protects the
xobj from concurrent access.

transactional_object structure (or xobj, for brevity) includes a pointer to a trans-

actional writer and a reader list. A non-null writer pointer indicates an active trans-

actional writer, and a non-empty reader list indicates there are transactional readers.

Note that the reader list is attached to the stable header object, whereas the reader

count (§3.1) is used for garbage collecting obsolete data objects. The writer pointer

and reader list included in each object header for conflict detection are referred to

as annotations.

When a transaction accesses an object for the first time, it first acquires the

appropriate object locks. These locks prevent transactions from acquiring an object

that is concurrently accessed by a non-transactional thread. When a thread acquires

these locks, either to make a shadow copy (transaction) or to directly access the

object (non-transaction), it then acquires the lock on the xobj and uses the writer

pointer and reader list to detect a conflict. When a thread detects a conflict, TxOS

uses these fields to determine which transactions are in conflict; the conflict is then

arbitrated by the contention manager (§3.2.2).

TxOS efficiently provides strong transaction isolation inside the kernel by
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requiring all system calls to follow the same locking discipline, and by requiring

that transactions annotate accessed kernel objects. When a thread, transactional

or non-transactional, accesses a kernel object for the first time, it must check for a

conflicting annotation. The scheduler arbitrates conflicts when they are detected.

In many cases, conflicts are detected when a thread first enters a critical region.

3.2.2 Contention Management

When a conflict is detected between two transactions or between a transaction and

a non-transactional thread, TxOS invokes the contention manager to resolve the

conflict. The contention manager is kernel code that implements a policy to arbitrate

conflicts among transactions, dictating which of the conflicting transactions may

continue. All other conflicting transactions must abort.

As a default policy, TxOS adopts the osprio policy [RHP+07]. Osprio always

selects the process with the higher static scheduling priority as the winner of a

conflict, eliminating priority and policy inversion in transactional conflicts. When

processes with the same priority conflict, the older transaction wins (a policy known

as timestamp [RG02]), guaranteeing liveness for transactions within a given priority

level.

The current TxOS prototype allows the system-wide contention management

policy to be configured by writing to /proc/tx_res_policy_ctl. Linux provides a

special file system in the /proc directory for dynamic kernel configuration. TxOS

also provides the timestamp policy and a version of osprio based on dynamic schedul-

ing priority.

3.2.3 Asymmetric conflicts and fairness

A conflict between a transactional and non-transactional thread is called an asym-

metric conflict. Transactional threads can always be aborted and rolled back, but
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non-transactional threads cannot be rolled back. TxOS must have the freedom to

resolve an asymmetric conflict in favor of the transactional thread, otherwise asym-

metric conflicts will always win, undermining fairness in the system and possibly

starving transactions.

While non-transactional threads cannot be rolled back, they can often be

preempted, which allows them to lose conflicts with transactional threads. Kernel

preemption is a recent feature of Linux that allows the kernel to preemptively de-

schedule threads executing system calls inside the kernel, unless they are inside of

certain critical regions. In TxOS, non-transactional threads detect conflicts with

transactional threads before they actually update state, usually when they acquire

a lock for a kernel data structure. A non-transactional thread can simply desched-

ule itself if it loses a conflict and is in a preemptible state. If a non-transactional,

non-preemptible process aborts a transaction too many times, the kernel can still

prevent it from starving the transaction by placing the non-transactional process

on a wait queue the next time it makes a system call. The kernel reschedules the

non-transactional process only after the transaction commits.

Linux can preempt a kernel thread if the thread is not holding a spinlock

and is not in an interrupt handler. TxOS has the additional restriction that it

will not preempt a conflicting thread that holds any blocking locks (mutexes or

semaphores). Otherwise, TxOS risks a deadlock with a transaction that might need

that kernel lock to commit. In all cases, the kernel locking discipline is followed and

deadlock is not a risk. In the pathological case where a transaction is aborted by

non-preemptible non-transactional tasks many times, more extreme measures can be

taken to ensure progress, such as suspending non-transactional threads that might

abort the transaction. These fail-stop features are unimplemented in the current

TxOS prototype.

Because asymmetric conflicts in TxOS are often detected before a non-
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State Description

exclusive Any attempt to access the list is a conflict with the current owner

write Any number of insertions and deletions are allowed, provided they
do not access the same entries. Reads (iterations) are not allowed.
Writers may be transactions or non-transactional tasks.

read Any number of readers, transactional or non-transactional, are al-
lowed, but insertions and deletions are conflicts.

notx There are no active transactions, and a non-transactional thread
may perform any operation. A transaction must first upgrade to
read or write mode.

Table 3.1: The states for a transactional list in TxOS. Having multiple states allows TxOS lists to
tolerate access patterns that would be conflicts in previous transactional systems.

transactional thread enters a critical region, the scheduler has the option of sus-

pending the non-transactional thread, enforcing fairness between transactions and

non-transactional threads. By using kernel preemption and lazy version manage-

ment, TxOS has more flexibility to coordinate transactional and non-transactional

threads than previous transactional operating systems.

3.2.4 Minimizing conflicts on lists

Linked lists are a key data structure in the Linux kernel, and they present key

implementation challenges for system transactions. This subsection addresses false

conflicts on linked lists in the TxOS kernel. Chapter 8 describes olf, a new lock-free

linked list algorithm, which addresses a different, but related problem. A helpful

distinction is that TxOS uses locking to protect list operations (e.g., adding or

removing an element), and adds additional bookkeeping to prevent false conflicts at

the granularity of the system transaction (described in this section). olf eliminates

locking on list operations. Adopting olf in TxOS is future work.

Simple read/write conflict semantics for lists throttle concurrent performance,

especially when the lists contain directory entries. For instance, two transactions
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should both be allowed to add distinct directory entries to a single list, even though

each addition is a list write. TxOS adopts techniques from previous transactional

memory systems to avoid conflicts on list updates that do not semantically con-

flict [HK08]. TxOS isolates list updates with a lock and defines conflicts according

to the states described in Table 3.1. For instance, a list in the write state allows

concurrent transactional and non-transactional writers, so long as they do not ac-

cess the same entry. Individual entries that are transactionally added or removed

are annotated with a transaction pointer that is used to detect conflicts. If a writ-

ing transaction also attempts to read the list contents, it must upgrade the list to

exclusive mode by aborting all other writers. The read state behaves similarly.

This design allows maximal list concurrency while preserving correctness.

A second implementation challenge for linked lists is that an object may be

speculatively moved from one list to another. This requires a record of membership

in both the original list (marked as speculatively deleted) and the new list (marked

as speculatively added). Ideally, one would simply embed a second list_head in

each object for speculatively adding an entry to a new list; however, if multiple

transactions are contending for a list entry, it is difficult to coordinate reclaiming

the second embedded entry from an aborted transaction. For this reason, if a trans-

action needs to speculatively add an object to a list, it dynamically allocates a

second list_head, along with some additional bookkeeping. Dynamic allocation of

speculative list entries allows a transaction to defer clean-up of speculatively added

entries from an aborted transaction until a more convenient time (i.e., one that does

not further complicate the locking discipline for lists).

Although TxOS dynamically allocates list_head structures for transactions,

the primary list_head for an object is still embedded in the object. During com-

mit, a transaction replaces any dynamically allocated, speculative entries with the

embedded list head. Thus, non-transactional code never allocates or frees memory
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for list traversal or manipulation. Transactional allocations require an atomic mem-

ory allocation; if this allocation fails, the transaction may have to abort in order to

refill the allocator. Although unimplemented in the current prototype, the risk of

allocation failure can be minimized by ensuring the list node allocator has sufficient

memory before entering a non-preemptible code region.

A final issue with lists and transactional scalability is that most lists in the

Linux kernel are protected by coarse locks, such as the dcache_lock. Ideally, two

transactions that touch disjoint data should be able to commit concurrently, yet

acquiring a coarse lock will cause needless performance loss. Thus, we implemented

fine-grained locking on lists, at the granularity of a list. The TxOS dcache replaces

the Linux dcache_lock with a lock for each of the four types of list a directory entry

can participate in: 1) a least-recently used list for memory reclamation, 2) a list of

all hard links to a file’s inode, 3) a list of all cached files in a given directory, and

4) a hash list, for fast name lookup. Fine-grained list locking improves scalability

(§ 5.7), but complicates the locking discipline. Locks in TxOS are ordered by kernel

virtual address, except that list locks must be acquired after other object locks. This

discipline roughly matches the paradigm in the directory traversal code.

3.3 Managing transaction state

TxOS introduces a transaction object to the kernel to store metadata and statistics

for a transaction. The kernel thread’s control block (the task_struct in Linux)

points to the transaction object, shown in Figure 3.3. A thread can have at most

one active transaction, though transactions can flat nest, meaning that all nested

transactions are subsumed into the enclosing transaction. Transactions are inde-

pendent of a process’s address space, so each thread in a multi-threaded application

can operate in a separate transaction. Moreover, multiple threads (even those in

different processes) may share a transaction, as we discuss in Section 3.3.1. Cur-
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struct transaction {

atomic_t status; // live/aborted/inactive

uint64 tx_start_time;// timestamp

uint32 retry_count;

int flags; // autoretry, durable, etc.

wait_queue_head_t losers; /* Wait queue for losers */

/* Workset */

struct skiplist_head object_list;

struct skiplist_head list_list;

struct list_head data_writer_list;

spinlock_t workset_lock;

/* Fields used for multi-process transactions */

spinlock_t mp_lock; /* Protects the multi-process fields */

/* The threads associated with this transaction */

struct list_head tasks;

atomic_t task_count;

/* Wait queue for commit */

wait_queue_head_t sibling_threads;

orphaned_deferred_ops; // operations done at commit

orphaned_undo_ops; // operations undone at abort

};

Figure 3.3: Data contained in a system transaction object, which is pointed to by the thread control
block (task_struct).

rently, multi-threaded and multi-process transactions are only created by forking a

new thread inside of a system transaction, although adding an interface for threads

to join a transaction would be straightforward if needed. In order to avoid needless

synchronization in a multiprocess transaction, some thread-local transaction data is

also stored in the task_struct, shown in Figure 3.4.

Figure 3.3 summarizes the fields of the transaction object. The transaction

includes a status word (status). If another thread wins a conflict with this thread,

it will update this word atomically with a compare-and-swap instruction. The kernel
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struct task_tx_data {

struct transaction *transaction;

/* Node in transaction->tasks list */

struct list_head transaction_list;

struct pt_regs *checkpointed_registers;

orphaned_deferred_ops; // operations done at commit

orphaned_undo_ops; // operations undone at abort

};

Figure 3.4: Task-local data used by a system transaction object, embedded in the thread control
block (task_struct).

checks the status word when attempting to add a new shadow object to its workset

and checks it before commit.

The tx_start_time field of the transaction object is used by the contention

manager (see Section 3.2.2), while the retry_count field stores the number of times

the transaction aborted. The flags field stores the flags passed to sys_xbegin()

(Table 2.1).

The transaction object includes a wait_queue for threads that lose a con-

flict to this transaction. Rather than immediately restart, threads that lose a con-

flict use this queue to deschedule themselves until the winning transaction commits.

When a transaction commits, it reschedules all of the tasks waiting on this queue.

Transaction workset. The transaction workset is tracked in three lists, the ob-

ject_list, list_list, and data_writer_list. The object_list and list_list

are skip lists [Pug90] that store references to all of the objects for which the trans-

action has private copies. Each object in these skip lists must be locked during

commit to synchronize the committed updates. To avoid deadlock, these objects

are locked according to a kernel locking discipline. The skip lists are sorted by the

kernel locking discipline for a faster commit, as the lists are only traversed during

commit. Because kernel lists are locked after kernel objects to allow a sensible kernel
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locking discipline, they are stored on a separate skip list (Section 3.3.1).

Each entry in the workset contains a pointer to the stable object, a pointer

to the shadow copy, information about whether the object is read-only or read-

write, and a set of type-specific methods (commit, abort, lock, unlock, release).

When a transactional thread adds an object to its workset, the thread increments

the reference count on the stable copy. This increment prevents the object from

being unexpectedly freed while the transaction still has an active reference to it.

Kernel objects are not dynamically relocatable, so ensuring a non-zero reference

count is sufficient for guaranteeing that memory addresses remain unchanged for

the duration of the transaction.

The data_writer_list tracks the order files were written in the course of

the transaction. TxOS uses this bookkeeping to retire writes to the underlying file

system in roughly the same order they were issued during the transaction. Ordered

write-back implements a simple block allocation heuristic based on the assumption

that later reads of newly-allocated blocks are likely to follow the same pattern.

Ordered write-back is only a performance optimization; it is not necessary for cor-

rectness.

Thread checkpointing. If a transactional system call reaches a point where it

cannot complete because of a conflict with another thread, it must immediately abort

execution. This abort is required because Linux cannot safely follow pointers if it

does not have a consistent view of memory. For instance, if a thread is traversing a

list in the kernel and reads a bad next pointer, it could overwrite arbitrary memory

or get into an infinite loop. While a managed language might better detect and

handle bad memory accesses than C, following inconsistent pointers in any language

could result in infinite loops or inconsistent results.

To allow roll-back at arbitrary points during execution, the transaction stores

the register state on the stack at the beginning of the current system call in the
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checkpointed_registers field added to the task_struct. If the system aborts

the transaction midway through a system call, it restores the register state and

jumps back to the top of the kernel stack (like the C library function longjmp).

Because a transaction can hold a lock or other resource when it aborts, supporting

the longjmp-style abort involves a small overhead to track certain events within a

transaction so that they can be cleaned up on abort.

Deferred and logged operations. Transactions must defer certain operations

until commit time, such as freeing memory, delivering signals and file system mon-

itoring events (i.e., inotify and dnotify). The deferred_ops field stores these

events in the task_struct. Similarly, some operations must be undone if a trans-

action is aborted, such as releasing the locks it holds and freeing the memory it

allocates. These operations are stored in the undo_ops field.

3.3.1 Multi-process transactions

A dominant paradigm for UNIX application development is the composition of sim-

ple but powerful utility programs into more complex tasks. Following this pattern,

applications may wish to transactionally fork a number of child processes to execute

utilities and wait for the results to be returned through a pipe.

To support this programming paradigm in a natural way, TxOS allows multi-

ple threads to participate in the same transaction. The threads in a transaction may

share an address space, as in a multi-threaded application, or the threads may reside

in different address spaces. Threads in the same transaction share and synchronize

access to speculative state.

When a process forks a child inside a transaction, the child process executes

within the active transaction until it performs a sys_xend() or it exits (where an

exit is considered an implicit sys_xend()). The transaction commits when all tasks

in the transaction have issued a sys_xend(). There is no transactional isolation be-
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tween threads within a transaction—all threads share speculative OS state. In this

method of process management, transactional programs call high-level convenience

functions, like system, and easily create processes using the full complement of shell

functionality. Transactionally forked programs run with transactional semantics,

though they might not contain any explicitly transactional code. After a child pro-

cess commits, it is no longer part of the transaction and subsequent sys_xbegin()

calls will begin transactions that are completely independent from the parent.

System calls that modify process state, for example by allocating memory

or installing signal handlers, are faster in transactionally forked tasks because they

do not checkpoint the process’s system state. An abort will simply terminate the

process; no other rollback is required.

The TxOS prototype does not provide an API for a thread to join a transac-

tion, but one could be added if needed. Currently, only newly spawned threads can

be added to a transaction, as this is sufficient for the applications we have studied.

Similarly, TxOS does not isolate nested transactions, as our workloads so far have

not required sophisticated nesting. Isolated nesting may be a requirement to safely

compose a multi-process transaction from a multi-threaded application that relies

on multiple, isolated transactions for safety.

Multi-process transaction state. The transaction object includes several fields

to coordinate commit of a multi-process transaction. The task_count tracks how

many threads are still active in the transaction. When a thread exits or issues an

sys_xend() system call, it does an atomic decrement-and-return on this counter. If

the decrement returns one, it commits or aborts the transaction.

If a thread is waiting on a sibling to end the transaction, it wait on the

sibling_threads wait queue. The thread that ends the transaction iterates over

the tasks list and issues the deferred and undo operations of its siblings. Tasks can

fork and exit within a transaction; if a task exits, its deferred and undo operations
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are “orphaned” onto the shared transaction structure. Thus, these operations are

also processed by the terminating thread.

List locking discipline

The Linux kernel locks objects according to kernel virtual address; TxOS augments

this to lock objects by the kernel virtual address of the header, followed by lists,

also sorted by kernel virtual address. Lists are locked last to maintain a tractable

locking discipline within the directory traversal code.

Recall that TxOS replaces coarse-grained locks on lists with fine-grained list

locks. Linux’s tangled use of lists complicates any attempt to globally order locks

on individual lists. The Linux file system code commonly traverses a list to find

and lock an intermediate object, and then follows a reference from the intermediate

object to another list, and so on. A straightforward approach to fine-grained locking

would be to use hand-over-hand locking on the lists; unfortunately there are multiple

traversal paths through these lists that can deadlock with each other. Moreover, one

needs a simple enough discipline that transaction commit can avoid deadlock with

the list-traversal code. Ordering list and object locks by kernel virtual address is a

simple solution for commit, but in some traversal paths it could require a list to be

locked before the intermediate object one needs to follow to find the list in the first

place. Converting a complex body of list code originally written with coarse-grained

locks to fine-grained locking will likely introduce complexity on some code paths.

The list locking discipline in TxOS attempts to minimize the locking com-

plexity by following the structure of the list traversal code as much as possible.

The high-level strategy is to sort list locks by kernel virtual address and lock lists

after other kernel objects. There are few places where multiple lists need to be

simultaneously locked, and in that code it is easy to sort the lists by kernel virtual

address. In the traversal code, one locks a list, and increments the reference count of
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Figure 3.5: The major steps involved in committing Transaction A with inode 57 in its workset,
changing the mode from 0777 to 0755. The commit code first locks the inode. It then replaces the
inode header’s data pointer to the shadow inode. Finally, Transaction A frees the resources used
for transactional bookkeeping and unlocks the inode.

the intermediate object to prevent it from being garbage collected. The first list is

then unlocked, and the intermediate object is locked, followed by the next list. The

intermediate object is then unlocked and its reference count decremented, and the

pattern repeats. This modified hand-over-hand locking protocol matches the struc-

ture of the Linux traversal code, minimizing the fine-grained locking complexity of

both the traversal code and transaction commit.

3.4 Commit protocol

When a system transaction calls sys_xend(), it is ready to begin the commit pro-

tocol. The flow of the commit protocol is shown in Figure 3.5. In the first step, the

transaction acquires locks for all items in its workset. The workset is kept sorted

according to the kernel locking discipline to enable fast commit and eliminate the
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possibility of deadlock among committing transactions.

TxOS iterates over the objects twice, once to acquire the blocking locks and

a second time to acquire non-blocking locks. TxOS is careful to acquire blocking

locks before spinlocks, and to release spinlocks before blocking locks. Acquiring or

releasing a mutex or semaphore can cause a process to sleep, and sleeping with a

held spinlock can deadlock the system.

After acquiring all locks, the transaction does a final check of its status word

with an atomic compare-and-swap instruction. If it has not been set to ABORTED,

then the transaction can successfully commit. This CAS instruction is the trans-

action’s linearization point [HW90]. The committing process holds all relevant ob-

ject locks during commit, thereby excluding any transactional or non-transactional

threads that would compete for the same objects.

After acquiring all locks, the transaction copies its updates to the stable ob-

jects. The transaction’s bookkeeping data are removed from the objects, then the

locks are released. Between releasing spinlocks and mutexes, the transaction per-

forms deferred operations (like memory allocations/frees and delivering file system

monitoring events) and performs any pending writes to stable storage.

During commit, TxOS holds locks that are not otherwise held at the same

time in the kernel. As a result, TxOS extends the locking discipline slightly, for

instance by requiring that rename locks inodes in order of kernel virtual addresses.

TxOS also introduces additional fine-grained locking on objects, such as lists, that

are not locked in Linux. Although these additional constraints complicate the lock-

ing discipline, TxOS uses them to elide coarse-grained locks such as the dcache_lock,

which protects updates to the hash table of directory entries cached in memory. By

eliminating these coarse-grained locks, TxOS improves performance scalability for

individual system calls.

40



3.5 Abort Protocol

If a transaction detects that it lost a conflict, it must abort. The abort protocol is

similar to the commit protocol, but simpler because it does not require all objects to

be locked at once. If the transaction is holding any kernel locks, it first releases them

to avoid stalling other processes. The transaction then iterates over its working set

and locks each object, removes any references to itself from the object’s transactional

state, and then unlocks the object. Next, the transaction frees its shadow objects

and decrements the reference count on their stable counterparts. The transaction

walks its undo log to release any other resources, such as memory allocated within

the transaction.

3.6 Impact of data structure changes

The largest source of lines changed in TxOS comes from splitting objects such as

inodes into multiple data structures (Section 3.1.2). After a small amount of careful

design work in the headers, most of the code changes needed to split objects were

rather mechanical.

A good deal of design effort went into assessing which fields might be modified

transactionally and must be placed in the data object, and which can remain in the

header, including read-only data, kernel-private bookkeeping, or pointers to other

data structures that are independently versioned.

A second design challenge was assessing when a function should accept a

header object as an argument and when it should accept a data object. The checks

to acquire a data object are relatively expensive and would ideally occur only once

per object per system call. Thus, once a system call path has acquired a data

object, it would be best to pass the data object directly to all internal functions

rather than reacquire it. For example, when the path name resolution code initially
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static inline struct inode_data *

tx_get_inode(struct inode *inode,

enum access_mode mode){

if(!aborted_tx())

return error;

else if(!live_transaction()){

return inode->inode_data;

else {

contend_for_object(inode, mode);

return get_private_copy(inode);

}

}

struct inode *inode;

// Replace idata = inode->inode_data with

inode_data *idata = tx_get_inode(inode, RW);

Figure 3.6: Pseudo-code for the hook used to acquire an inode’s data object, and an example
of its use in code.

acquires shadow data objects, it then passes these shadow objects directly to helper

functions such as vfs_link and vfs_unlink. In making a data object pointer a

function argument, one must carefully evaluate whether the object is used in com-

mon case, lest one add objects to the transaction workset needlessly. For instance,

the filesystem-specific ioctl routine takes a pointer to the inode_header, not the

inode_data object, as many opcodes do not use any fields in the inode_data, nor

does the parent call (do_ioctl).

Once the function signatures and data structure definitions are in place, the

remaining work is largely mechanical. The primary change that must be propagated

through the code is replacing certain pointer dereferences with hooks (Figure 3.6),

so that TxOS can redirect requests for a data object to the transaction’s private

copy where appropriate. It is in this hook code where TxOS checks for conflicts

between transactions. By encapsulating this work in a macro, we hide much of the

complexity of managing private copies from the rest of the kernel code, reducing the

chances for error.
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A benefit of changing the object definitions is that it gives us confidence in

the completeness of our hook placement. In order to dereference a field that can

be modified in a transaction, the code must acquire a reference to a data object

through the hook function. If the hook is not placed properly, the code will not

compile. A question for future work is assessing to what degree these changes can

be automatically applied during compilation using a tool like CIL [NMRW02]. This

“header crawl” technique leads to more lines of code changed, but increases our

confidence that the changes were made throughout the large code base that is the

Linux kernel.

3.7 Integration with transactional memory

System transactions protect system state, not application state. For multi-threaded

programs, the OS has no efficient mechanism to save and restore the memory state

of an individual thread. User-level transactional memory (TM) systems, however,

are designed to provide efficient transactional semantics to memory modifications by

a thread, but cannot isolate or roll back system calls. Integrating user and system

transactions creates a simple and complete transactional programming model.

System transactions fix one of the most troublesome limitations of transac-

tional memory systems—that system calls are disallowed during user transactions

because they violate transactional semantics. System calls on traditional operating

system are not isolated, and they cannot be rolled back if a transaction fails. For

example, a file append performed inside a hardware or software user transaction can

occur an arbitrary number of times. Each time the user-level transaction aborts and

retries, it repeats the append.

On a TM system integrated with TxOS, when a TM application makes a

system call, the runtime begins a system transaction. The user-level transactional

memory system handles buffering and possibly rolling back the application’s memory
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state, and the system transaction buffers updates to system state. The updates to

system state are committed or aborted by the kernel atomically with the commit or

abort of the user-level transaction. The programmer sees the simple abstraction of

an atomic block that can contain updates to user data structures and system calls.

In order for a user-level transactional memory system to use system trans-

actions, the TM system must coordinate commit of application state with commit

of the system transaction. The remaining subsections provide commit protocols for

the major classes of TM implementations.

3.7.1 Lock-based STM requirements

TxOS uses a simplified variant of the two-phase commit protocol (2PC) [Gra78]

to coordinate commit of a lock-based user-level software (STM) transaction with a

system transaction. The TxOS commit consists of the following steps.

1. The user prepares a transaction.

2. The user requests that the system commit the transaction through the sys_-

xend() system call.

3. The system commits or aborts.

4. The system communicates the outcome to the user through the sys_xend()

return code.

5. The user commits or aborts in accordance with the outcome of the system

transaction.

This protocol naturally follows the flow of control between the user and

kernel, but requires the user transaction system to support the prepared state. We

define a prepared transaction as being finished (it will add no more data to its

working set), safe to commit (it has not currently lost any conflicts with other

threads), and guaranteed to remain able to commit (it will win all future conflicts

until the end of the protocol). In other words, once a transaction is prepared,
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another thread must stall or rollback if it tries to perform a conflicting operation.

In a system that uses locks to protect a commit, prepare is accomplished by simply

holding all of the locks required for the commit during the sys_xend() call. On a

successful commit, the system commits its state before the user, but any competing

accesses to the shared state are serialized after the user commit.

Depending on the implementation details of the user TM implementation,

additional integration effort may be required of the STM implementation. For in-

stance, a lazy versioned STM needs to ensure that a transactional write system

call is issued with the correct version of the buffer. As an optimization, the STM

runtime can check the return code on system calls within a transaction to detect an

aborted system transaction sooner. For the TM systems we examined, coordinating

commit and adding extra return checks were sufficient.

3.7.2 HTM and obstruction-free STM requirements

Hardware transactional memory (HTM) and obstruction-free software transactional

memory systems [HLMS03] use a single instruction (xend and compare-and-swap,

respectively), to perform their commits. For these systems, a prepare stage is un-

necessary. Instead, the commit protocol should have the kernel issue the commit

instruction on behalf of the user application after the kernel has locked and val-

idated its workset but before committing any kernel state. Both the system and

user-level transaction commit or abort together depending upon the result of this

specific commit instruction.

To safely integrate HTM with TxOS, the hardware must suspend a user-

level hardware transaction on entry to the kernel, or allow the kernel to suspend it.

Every HTM proposal that supports an OS [MBM+06a, RHP+07, ZB06] supports

mechanisms that suspend user-initiated transactions, avoiding the mixture of user

and kernel addresses in the same hardware transaction. Mixing user and kernel
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address in a hardware transaction creates a security vulnerability in most HTM

proposals. For HTM integration, transactional pause or escape is sufficient for TxOS

as long as the kernel can ensure that the transaction is properly suspended when

entering the kernel. The kernel must also be able to issue an xend instruction on

behalf of the application.

Though TxOS supports user-level HTM, it runs on commodity hardware and

does not require any special HTM support itself.
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Chapter 4

TxOS Kernel Subsystems

This chapter discusses how various kernel subsystems support ACI[D] semantics in

TxOS. In several cases, transactional semantics need not be developed from scratch,

but extend functionality already present in the subsystem. For example, TxOS uses

the journal in ext3 to provide true, multi-operation durability. TxOS leverages

Linux’s support for deferring signal delivery to manage signals sent to and from

transactional threads.

In general, the effort required to transactionalize a subsystem is proportional

to the number of data structures involved in servicing requests. In many cases,

this effort involves a single additional data structure, as most devices drivers, IPC

abstractions, etc. store their state in a single opaque pointer attached to the inode

for the file which represents the object to users. Even complex systems, such as

the virtual file system or the memory management system have fewer than 10 data

structures to transactionalize, although their interactions can be complex.
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4.1 Virtual file system

In the original UNIX design, files are the primary abstraction for all resources [RT74];

Linux inherits files as a core abstraction. Many kernel subsystems are accessed

through the file system interface (e.g., read, write, open). In the discussion of

supported system calls in Section 2.2 and listed in Table 2.2, many file system calls

will be partially supported essentially forever for this reason, and the effort to add

complete transactional support for the tail of system calls is disproportionately high.

Because the virtual file system interface is so pervasive throughout the kernel,

many examples in Chapter 3 also use VFS structures, such as inodes and dentries.

This section addresses features of the VFS not previously described, namely how

file data is buffered, and the interaction between the VFS and specific file systems,

such as ext3.

4.1.1 Transactional file data access

Accesses to file data in a transaction are isolated at byte granularity according to

a standard single-writer, multiple-reader compatibility matrix. Thus, transactions

may concurrently write to disjoint regions of the same file. Written data is buffered

in main memory until commit; if the transaction is durable and the file is backed by

stable storage, the data is guaranteed to be written to disk before commit returns.

If the underlying file system can guarantee atomic updates of stable storage, for

instance by using a journal in ext3 [Twe], then writes will be atomic. Many file

systems support atomic updates to stable storage [Bes, Kur, SDH+96], although

some do not (e.g., ext2).

File data in Linux is stored in the page cache, which serves the larger purpose

of tracking the allocation of each page of RAM. In Linux, each file’s inode includes

an address_space object, called i_data, which is in the inode_header in TxOS.

The address_space structure stores a sparse logical mapping of offsets to pages of
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physical memory using a radix tree [Mor68]. In servicing a read or write, if a page

storing a given file offset is not found in the radix tree, the block is fetched from

disk. Note that pages can be added and removed from the radix tree independently

of any system call based on caching heuristics, including file read-ahead and least-

recently-used reclamation.

TxOS adds a second radix tree, called the shadow tree, to the address space

object. Data written by transactions is versioned in the shadow tree. When a

transaction reads data, it first checks the shadow tree for a page, and if the page

is not found, the transaction looks in the main radix tree. All transactions share a

single shadow tree per file, which stores speculatively written data.

In order to isolate byte ranges within the shared shadow tree, TxOS uses

range locks to track shared and exclusive ownership of file regions. Range locks

specify a contiguous file region, access mode, and transaction owner. In each address

space, TxOS adds a skip list for shared (read) range locks and exclusive (write) range

locks, sorted by file offset. Because skip lists can be searched in time logarithmic to

their size, checks of a given file range are efficient.

If a conflict is identified for a region and the owner of an existing range lock

loses the conflict, the range lock can be evicted, effectively invalidating its pages

in the shadow tree. When the winner allocates a new range lock, the winner is

responsible for re-copying committed state from the main radix tree. If the winner

needs a smaller range than the evicted range lock such that a page in the shadow

tree is no longer needed, the winner is responsible for freeing it. Because disjoint

range locks can occupy the same page, pages in the shadow tree contain a reference

count. When a transaction aborts, it checks each file it has written for range locks

that have not been evicted, and frees the remaining range locks along with any pages

in the shadow tree for which it is removing the last reference.

If a transactional write covers an entire page, when the transaction is com-
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mitted the page is simply moved to the main radix tree and frees the old contents.

For writes smaller than a page, the updated regions are copied to the page in the

main radix tree and the reference count on the shadow tree page is lowered. Al-

though memcpy is a relatively slow operation, this simple approach obviates the need

to ensure that the remaining bytes of the page remain up to date. Once a region of

committed data is moved to the pages in the main radix tree, a write is issued to

the underlying file system, scheduling the buffers for write back to the disk.

4.1.2 Transactional file systems

The VFS layer in Linux provides a common interface to dozens of different spe-

cific file systems, which provide various features including network transparency,

journaling, and data layout strategies tuned for specific physical media. In order

for transactions to become a ubiquitous feature in this environment, the cost of

adoption for a specific filesystem must be relatively small.

TxOS simplifies the task of writing a transactional file system by detecting

conflicts and managing versioned data in the virtual filesystem layer. The OS pro-

vides the transactional semantics—versioning updates and detecting conflicts. The

primary responsibility of a specific file system is to provide the ability to atomically

commit updates to stable storage (e.g., via a journal or with versioning). This is a

good balance of responsibilities for implementing transactional file systems, as many

file systems already provide atomic disk updates.

As a case study, we added transactions to the ext3 file system. The ext3

file system uses a journal to ensure that each system call is atomically committed

to disk in a journal transaction.1 Once a journal transaction is committed, updates

may be written to the file system. After a failure, the journal can be replayed to

1The ext3 journal typically batches all system calls within a 5 second window, unless there is an
explicit sync() system call. The journal is typically configured to only record metadata, allowing
partial updates to file data on disk in the event of a failure.
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Object Function Name Description

inode init tx Initialize fs-specific extensions in a private
copy.

lock Acquire locks for fs-specific fields.

unlock Release locks for fs-specific fields.

commit Commit fs-specific fields.

abort Perform any cleanup of fs-specific fields dur-
ing rollback.

validate Compare fs-specific fields in the shadow and
stable object to a checkpoint, validating the
transition is valid. Called in a debug build
only.

super block commit Commit fs-specific fields.

abort Perform any cleanup of fs-specific fields dur-
ing rollback.

validate Compare fs-specific fields in the shadow and
stable object to a checkpoint, validating the
transition is valid. Called in a debug build
only.

address space prepare tx write Update fs bookkeeping on a buffered trans-
actional write.

Table 4.1: File system hooks added by TxOS.

ensure that journaled updates are present in the file system. In TxOS, the ext3

journal interface is slightly augmented to ensure that disk updates from a system

transaction are written in a single journal transaction.

In addition to ensuring atomic updates to disk, file system code must be con-

verted to use the new split data types by appropriately placing the hooks described

in Section 3.6. This work is quite mechanical. For example, in-memory file systems,

including proc and tmpfs, were made transactional with very minimal code changes.

TxOS provides additional hooks into VFS code to a file system, summarized

in Table 4.1. File systems commonly extend the inode and super_block with

additional fields, largely to manage the mapping of the object to disk. The additional

methods TxOS provides on these objects give the file system an opportunity to
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perform any initialization, commit, or rollback that cannot be accomplished with a

simple memcpy. Note that file systems approximate sub-classing of objects in C by

having each object store a pointer to a table of function pointers, which is initialized

by the file system. These pointers can be NULL if they are not required.

The final hook we provide is the prepare_tx_write function on the address_-

space, which is called when a transactional write is buffered in the page cache. This

hook was introduced for the ext3 journal, which requires some rather detailed book-

keeping about expected writes at the start of a journal transaction. In general, this

hook is also expected to give any file system block pre-allocation algorithms visibility

into buffered writes.

Supporting multiple file systems. TxOS does not currently commit updates

to multiple, non-volatile file systems atomically. Commits could span multiple file

systems in future work by adopting a form of two-phase commit for the disks [Gra78].

Taking a journaling file system as an example, each system transaction would provide

a unique identifier for the transaction and a universally unique identifier for the file

system2, that would be recorded in the journal transaction. The file system should

not allow subsequent journal transactions until all file systems have committed their

journal entry. After a system failure, each file system would only replay this journal

transaction only if all other participants have a committed transaction in the journal

with the same identifier.

4.1.3 Serializable directory reads

Many applications use lock files to synchronize file system accesses; even on dis-

tributed file systems with weak consistency semantics, file creation is usually atomic.

2Most modern Linux systems generate a random number-based UUID for each file system when
it is created. Distributions, including Ubuntu, use this to identify disk mount points in /etc/fstab

rather than the conventional device names (e.g., /dev/sda1). The traditional names are based on
the order the devices are enumerated by the kernel at boot, which can change if a new disk is
plugged in, the BIOS or kernel is upgraded, etc.
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Transactional Thread Non-Transactional Thread
sys_xbegin();

if(!exists(’lockfile’)){

if(create(’lockfile’)) {

/* modify data file */ /* modify data file */

unlink(’lockfile);

} }

sys_xend();

Figure 4.1: An example of a straightforward conversion of application code to use transactions that
is only correct if file system directory reads are serialized (i.e., system transactions provide degree
3 consistency, or full serializability). System transactions in TxOS provide full serializability.

Thus, creating a “lock file” is often used as a synchronization primitive. If an ap-

plication incrementally adopts transactions, transactions may need to coordinate

access to a data file through a lock variable.

Because system transactions are serializable, a straightforward conversion to

use transactions would simply check whether the lock file exists, and if not, modify

the data file, as illustrated in Figure 4.1. This optimization is sensible because the

lock file would normally be deleted before the transaction commits, so there is no

reason to create it. This code is only correct if the OS detects a conflict on the

non-existence of the lock file—the transaction requires isolation on the file name

without actually creating the file.

Ensuring fully serializable reads on databases is a classic problem. Without

serializable reads, a database transaction that enumerates the contents of a table

twice may have newly created entries appear on the second read (called “ghosting”),

as traditional implementations only acquire read locks on entries that exist at the

time they are read. To eliminate ghosting and provide repeatable reads in databases,

more expensive predicate locks are used to prevent concurrent updates to a table

that is enumerated. Because of this expense, applications that can tolerate ghost

updates often run their transactions with degree 2 isolation, which gets most of the

benefits of full serializability with lower overheads.
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Transactions in TxOS are serializable, also known as degree 3 isolation, en-

suring that checks for lock files (as in Figure 4.1) are properly serialized. The reason

directory reads are serializable is that when a lookup fails because a file does not

exist, the kernel creates a negative dentry, which caches the fact that a file does not

exist and avoids going back to disk on a second lookup. This negative dentry is

added to the workset of a transaction, and attempts to create the file outside of the

transaction will create a conflict on the negative dentry.

This feature was experimentally verified by writing a version of the code

in Figure 4.1 that single-steps two threads with the sleep() function. When run

without sys_xbegin() and sys_xend() on unmodified Linux, the data file is cor-

rupted. When run with transactions on TxOS, the conflict is detected and the

threads serialized. In the current prototype, the negative dentry is placed in the

transaction’s working set in exclusive (write) mode. The actual conflict is detected

before the negative dentry is used by the non-transactional thread on the dentry

hash list containing the negative dentry. Because the transaction modified the list,

and the non-transactional thread must read the list to check whether the file exists

in the cache, these operations are conflicting and are serialized. Because the neg-

ative dentry is pinned in memory and the dcache’s hash table until commit, any

attempts to create the file outside of the transaction will be detected as conflicts,

providing degree 3 isolation.

4.1.4 Early release of file handles

If a file handle is created and closed in the same transaction, it is never externally

visible and can be removed from the workset of the transaction. Note that the file

handle only stores a reference to a file and a cursor into the file; updates to the file

itself are versioned in the inode. In some cases, such as transactional shell scripting,

freeing file handles and private resources simplifies kernel bookkeeping. Thus, TxOS

54



provides an early release function to remove an object from its workset, for use only

in these limited circumstances.

4.2 Memory mapping

Defining useful transactional semantics for memory mapping system calls is tricky,

as one must distinguish modifications to the mapping from changes to memory con-

tents. A straightforward semantics would roll back all modifications to system state

and application state if a system transaction failed. As discussed earlier, the only

tool available to the OS for versioning memory contents is copy-on-write (COW)

paging, which is very inefficient. Thus, TxOS generally defers management of mem-

ory contents to more efficient user-level tools, such as transactional memory. In

most cases, this distinction is not important to programmers: changes to memory

protection are rolled back in a straightforward manner, unshared, mapped regions

are unmapped and deleted, and writes to mapped files are rolled back, as trans-

actional accesses to mapped files operate on shadow pages (Section 4.1.1). If a

transactional mapping of a shared memory buffer is rolled back, the transactionally-

written contents may persist. Programmers that combine system transactions with

shared memory must synchronize access to shared data structures and manually

undo changes to its contents.

The approach to anonymous memory mappings in TxOS is to version mod-

ifications to the memory mapping for a process, but not to isolate or version the

contents of memory. The virtual memory layout of a process is represented in the

kernel by a list of vm_area_struct’s (vma); each vma represents a contiguous region

of virtual addresses and stores the permissions and references to the data structures

necessary to populate the address on a page fault (e.g., from swap, creating a new

page, reading a file). Modifications to a vma by a system call, such as mmap, munmap,

and mprotect are isolated and rolled back by standard modifications to the vma.
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A similar approach is taken to pages mapping a file inside a transaction,

except that writable pages mapping a file must be removed when the transaction

begins, forcing a page fault. If a page faults inside of a transaction, a range lock at

page granularity is acquired by the transaction (Section 4.1.1), and a shadow page

is allocated and mapped into the process. When an update to a mapped file page

is committed, the kernel invalidates the page mapping in any other processes that

map the file and issues TLB shoot-down for the page.

If multiple threads share a page of memory, either in the same address space

or through shared memory, they must synchronize access to data structures in the

memory page using application-level techniques.

4.3 Pipes

Reads to and writes from pipes in TxOS have similar semantics to files, with the

exception that transactional pipe reads only permit a single reader. This is because

reads from a pipe remove data from the pipe, so the readers must also be serialized.

TxOS defers destruction of read data until a transaction commits. Unless the reader

and writer are part of the same transaction, a reader blocks once it consumes all

committed data; data written by another transaction are not available to a reader

until the writing transaction commits. As an optimization, when the creator, reader,

and writer of a pipe are participants in the same transaction, this buffering can be

elided.

Pipe data are stored in a pipe_inode_info structure, which is referenced

through a pointer in the inode_header. In Linux, a pipe may buffer up to 16

pages of data, and a page on x86 is 4 kilobytes by default, for a total of 64 KB of

buffered data. Statically limiting the amount of buffered data in Linux pipes is a

simple mechanism to avoid resource exhaustion and rate limit producers that are

substantially faster than consumers.
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The TxOS implementation of pipes adopts a similar static limit of 16 pages

of shadow buffers, which are also associated with the pipe’s inode. Written data are

stored in a shadow buffer, so that the written data can be removed if a transaction

aborts. Data read in a transaction are not destroyed, so that the data can be

restored to the pipe if the transaction aborts; TxOS instead tracks a read offset into

the buffered data until the transaction ends. The static limit of 16 buffered shadow

pages is sufficient for our workloads, and easily modifiable to grow dynamically.

The changes needed to implement pipe semantics are entirely localized to the

pipe_inode_info data structure and fs/pipe.c.

4.4 Text console

TxOS provides simple buffering of output to text consoles, which are typically rep-

resented by tty devices. This feature is implemented using the deferred operations

facility in a transaction. This feature can be disabled during kernel compilation

to facilitate debugging of the kernel or applications—a very useful feature in our

experience.

4.5 Signal delivery

Signal semantics in TxOS provide isolation among threads in different transactions,

as well as isolation between non-transactional and transactional threads. Any signal

sent to a thread outside of the sender’s transaction is deferred until the sender

commits by placing it in a queue. Signals in the outgoing queue are delivered in the

order sent if the transaction commits, and discarded if the transaction aborts.

A thread in a transaction may specify whether incoming signals should be de-

livered. When an application begins a transaction, a flag to sys_xbegin() specifies

whether incoming signals should be delivered speculatively within the transaction
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(speculative delivery) or deferred until commit (deferred delivery). Speculative deliv-

ery enables transactional applications to be more responsive to input. When signals

are delivered speculatively, they must be logged. If the transaction aborts, these sig-

nals are re-delivered to the receiving thread so that, from the sender’s perspective,

the signals do not disappear. When a transaction that has speculatively received a

signal commits, the logged signals are discarded.

When signal delivery is deferred, incoming signals are placed in a queue;

when the transaction commits or aborts the signals are delivered to the thread in

the order received. Deferring signals allows transactions to ensure that they are

atomic with respect to signal handlers [Zal01]. Enclosing signal handling code in

a transaction ensures that system calls in the handler are atomic, and forces calls

to the same handler to serialize. Transactional handling of signals eliminates race

conditions without the need for the additional API complexity of sigaction. While

the sigaction API addresses signal handler atomicity within a single thread by

making handlers non-reentrant, the API does not make signal handlers atomic with

respect to other threads.

Speculative and deferred delivery apply only to delivery of incoming signals

sent from threads outside of the transaction. Signals sent among threads in the

same transaction are delivered immediately.

An application cannot block or ignore the SIGSTOP and SIGKILL signals out-

side of a transaction. TxOS preserves the special status of these signals, immediately

delivering them to transactional threads, even if the transaction started in deferred

delivery mode.

4.6 Future work

TxOS does not yet provide transactional semantics for several classes of OS re-

sources. Currently, TxOS either logs a warning or aborts a transaction that attempts
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to access an unsupported resource: the programmer specifies the behavior via a flag

to sys_xbegin(). This section considers some challenges inherent in supporting

these resources, which we leave for future work.

Networking The network is among the most important resources to transaction-

alize. Within a system transaction, some network communication could be buffered

and delayed until commit, while others could be sent and logically rolled back by

the communication protocol if the transaction aborts. Network protocols are of-

ten written to explicitly tolerate the kinds of disruptions (e.g., repeated requests,

dropped replies) that would be caused by restarting transactions. The open chal-

lenge is finding a combination of techniques that is high performance across a wide

range of networking applications, while retaining a reasonably simple transaction

API.

Interprocess communication While TxOS currently supports transactional sig-

nals and pipes, a range of IPC abstractions remain that TxOS could support. These

abstractions include System V shared memory, message queues, and local sockets.

IPC has much in common with networking, but presents some additional opportu-

nities because the relevant tasks are on the same system. IPC on the same system

admits more creative approaches, such as aborting a transaction that receives a

message from a transaction that later aborts.

User interfaces Exchanging messages with a user while inside a transaction is

unlikely to become a popular paradigm (although TABS implemented a transaction

GUI by crossing out text dialogs from aborted transactions [SDD+85]), because

the I/O-centric nature of user interfaces is not a natural fit with the transactional

programming model. Like other communication channels, however, the OS could

naturally support transactions that only read from or write to a user I/O device
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by buffering the relevant data. Maintaining a responsive user interface will likely

mandate that developers keep transactions involving interfaces short.

Logging Applications may wish to explicitly exempt certain output from isolation

while inside a transaction, primarily for logging. Logging is useful for debugging

aborted transactions, and it is also important for security sensitive applications.

For instance, an authentication utility may wish to log failed attempts to minimize

exposure to password guessing attacks. An attacker should not be able to subvert

this policy by wrapping the utility in a transaction that aborts until the password

is guessed.

Most system resources can be reasonably integrated with system transac-

tions. However, extending transactions to these resources may complicate the pro-

gramming interface and slow the implementation. Future work will determine if

system transactions for these resources are worth the costs.

4.7 Summary

A key design goal of TxOS is that transactions should be a core kernel abstraction,

with a modular implementation that encourages code reuse across subsystems. This

chapter describes the implementation of transactions in several kernel subsystems.

In general, each subsystem essentially implements a subclass of a more general trans-

actional object type. This approach minimizes the implementation effort and risk

of programmer error. The effort to transactionalize new code paths is generally

proportional to the number of data structures involved. Further, the semantics and

interfaces of each subsystem can be rather idiosyncratic, as the POSIX API has

evolved rather organically. Thus, it is unlikely that one could eliminate the need

for subclassing the transactional abstractions for each subsystem without a more

uniform system call API.
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This same approach to subclassing is also adopted in the division of respon-

sibilities between the VFS and individual file systems. Transactional behavior of

file system metadata and page mappings is largely implemented in shared VFS and

page cache code, while individual file systems are required to adopt the transactional

data types and provide atomic update to disk where appropriate. In designing for

an Linux, which includes dozens of file systems, this modular design minimizes the

transaction implementation burden on the developer of a particular file system.
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Chapter 5

Evaluation

This chapter evaluates the overhead of system transactions in TxOS, as well as its

behavior for several case studies: transactional software installation, a transactional

ext3 file system, the elimination of TOCTTOU races, scalable atomic operations,

and integration with hardware and software transactional memory.

All of experiment are performed on a server with 1 or 2 quad-core Intel X5355

processors (total of 4 or 8 cores) running at 2.66 GHz with 4 GB of memory. The

4 core machine has a 7200 RPM SATA drive with a 3.0 GB/s link, and the 8 core

machine has a 10,000 RPM SAS drive. All single-threaded experiments use the 4-

core machine, and scalability measurements were taken using the 8 core machine. We

compare TxOS to an unmodified Linux kernel, version 2.6.22.6—the same version

extended to create TxOS.

The hardware transactional memory experiments use MetaTM [RRP+07] on

Simics version 3.0.27 [MCE+02]. The simulated machine has 16 1000 MHz CPUs,

each with a 32 KB level 1 and 4 MB level 2 cache. An L1 miss costs 24 cycles and

an L2 miss costs 350 cycles. The HTM uses the timestamp contention management

policy and linear backoff on restart.
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Call Linux Base Static NoTx Bgnd Tx

access 2.4 2.4 1.0× 2.6 1.1× 3.2 1.4× 3.2 1.4×
stat 2.6 2.6 1.0× 2.8 1.1× 3.4 1.3× 3.4 1.3×
open 2.9 3.1 1.1× 3.2 1.2× 3.9 1.4× 3.7 1.3×
unlink 6.1 7.2 1.2× 8.1 1.3× 9.4 1.5× 10.8 1.7×
link 7.7 9.1 1.2× 12.3 1.6× 11.0 1.4× 17.0 2.2×
mkdir 64.7 71.4 1.1× 73.6 1.1× 79.7 1.2× 84.1 1.3×
read 2.6 2.8 1.1× 2.8 1.1× 3.6 1.3× 3.6 1.3×
write 12.8 9.9 0.7× 10.0 0.8× 11.7 0.9× 13.8 1.1×
geomean 1.03× 1.14× 1.29× 1.42×
Call Linux In Tx Tx

access 2.4 11.3 4.7× 18.6 7.8×
stat 2.6 11.5 4.1× 20.3 7.3×
open 2.9 16.5 5.2× 25.7 8.0×
unlink 6.1 18.1 3.0× 31.9 7.3×
link 7.7 57.1 7.4× 82.6 10.7×
mkdir 64.7 297.1 4.6× 315.3 4.9×
read 2.6 11.4 4.3× 18.3 7.0×
write 12.8 16.4 1.3× 39.0 3.0×
geomean 3.93× 6.61×

Table 5.1: Execution time in thousands of processor cycles of common system calls on TxOS and
performance relative to Linux. Base is the basic overhead introduced by data structure and code
modifications moving from Linux to TxOS, without the overhead of transactional lists. Static
emulates compiling two versions of kernel functions, one for transactional code and one for non-
transactional code, and includes transactional list overheads. These overheads are possible with
compiler support. NoTX indicates the current speed of non-transactional system calls on TxOS.
Bgnd Tx indicates the speed of non-transactional system calls when another process is running a
transaction in the background. In Tx is the cost of a system call inside a transaction, excluding
sys_xbegin()and sys_xend(), and Tx includes these system calls.

5.1 Single-thread system call overheads

A key goal of TxOS is efficient transactions, taking special care to minimize the over-

head incurred by non-transactional applications that are not using transactions. To

evaluate performance overheads for substantial applications, we measured the aver-

age compilation time across three non-transactional builds of the Linux 2.6.22 kernel

on unmodified Linux (3 minutes, 24 seconds), and on TxOS (3 minutes, 28 seconds).

Linux compilation is CPU bound by user-space computations, spending well below

10% of its time in the kernel or blocked on disk I/O. Like many applications, system

calls in Linux compilation account for a small portion of the execution time and
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the application is rather insensitive to system call overheads. This slowdown of less

than 2% indicates that for most applications, the non-transactional overheads will

be negligible. At the scale of a single system call, however, the average overhead is

currently 29%, and could be cut to 14% with improved compiler support.

Table 5.1 shows the performance of common file system system calls on TxOS.

We ran each system call 1 million times, discarding the first and last 100,000 mea-

surements and averaging the remaining times. The elapsed cycles were measured

using the rdtsc instruction. The purpose of the table is to analyze transaction over-

heads in TxOS, but it is not a realistic use case, as most system calls are already

atomic and isolated. Wrapping a single system call in a transaction is the worst case

for TxOS performance because there is very little work across which to amortize the

cost of creating shadow objects and commit.

The Base column shows the base overhead from adding transactions to

Linux. These overheads have a geometric mean of 3%, and are all below 20%,

including a performance improvement for write. Most overheads are attributable

to increased fine-grained locking in TxOS, trading single-thread latency for scala-

bility, and the extra indirection necessitated by data structure reorganization (e.g.,

separation of header and data objects). These low overheads show that transactional

support does not significantly slow down non-transactional activity.

TxOS replaces simple linked lists with a more complex transactional list

(§3.2.4). The transactional list allows more concurrency, both by eliminating trans-

actional conflicts and by introducing fine-grained locking on lists, at the expense of

higher single-thread latency. The Static column adds the latencies due to transac-

tional lists to the base overheads (roughly 10%, though more for link).

The Static column assumes that TxOS can compile two versions of all sys-

tem calls: one used by transactional threads and the other used by non-transactional

threads. Our TxOS prototype uses dynamic checks, which are frequent and expen-
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sive. With compiler support, these overheads (geometric mean of 14%) are achiev-

able. The dynamic checks of the current prototype account for half of the current

non-transactional system call overheads (represented by the NoTx column, average

of 29%).

The NoTx column presents measurements of the current TxOS prototype,

with dynamic checks to determine if a thread is executing a transaction. The Bgnd

Tx column are non-transactional system call overheads for TxOS while there is an

active system transaction in a different thread. Non-transactional system calls need

to perform extra work to detect conflicts with background transactions. The In Tx

column shows the overhead of the system call in a system transaction. This overhead

is high, but represents a rare use case. The Tx column includes the overheads of

the sys_xbegin() and sys_xend()system calls.

5.2 Applications and micro-benchmarks

Table 5.2 shows the performance of TxOS on a range of applications and micro-

benchmarks. Each measurement is the arithmetic mean of three runs. The slowdown

relative to Linux is also listed. Postmark is a file system benchmark that simulates

the behavior of an email, network news, and e-commerce client. We use version

1.51 with the same transaction boundaries as Amino [WSSZ07]. The LFS small

file benchmark operates on 10,000 1024 bytes files, and the large file benchmark

reads and writes a 100MB file. The Reimplemented Andrew Benchmark (RAB) is a

reimplementation of the Modified Andrew Benchmark, scaled for modern comput-

ers. Initially, RAB creates 500 files, each containing 1000 bytes of pseudo-random

printable-ASCII content. Next, the benchmark measures execution time of four dis-

tinct phases: the mkdir phase creates 20,000 directories; the cp phase copies the

500 generated files into 500 of these directories, resulting in 250,000 copied files; the

du phase calculates the disk usage of the files and directories with the du command;
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and the grep/sum phase searches the files for a short string that is not found and

checksums their contents. The sizes of the mkdir and cp phases are chosen to take

roughly similar amounts of time on our test machines. In the transactional version,

each phase is wrapped in a transaction. Make wraps a software compilation in a

transaction. Dpkg and Install are software installation benchmarks that wrap the

entire installation in a transaction, as discussed in the following section.

Across most workloads, the overhead of system transactions is quite reason-

able (1–2×), and often system transactions speed up the workload (e.g., postmark,

LFS small file create, RAB mkdir and cp phases). Benchmarks that repeatedly

write files in a transaction, such as the LFS large file benchmark sequential write or

the LFS small file create phase, are more efficient than Linux. Transaction commit

groups the writes and presents them to the I/O scheduler all at once, improving

disk arm scheduling and, on ext2 and ext3, increasing locality in the block alloca-

tions. Write-intensive workloads outperform non-transactional writers by as much

as a factor of 29.7×.

TxOS requires extra memory to buffer updates. We surveyed several appli-

cations’ memory overheads, and focus here on the LFS small and large benchmarks

as two representative samples. Because the utilization patterns vary across different

portions of physical memory, we consider low memory, which is used for kernel data

structures, separately from high memory, which can be allocated to applications

or to the page cache (which buffers file contents in memory). High memory over-

heads are proportional to the amount data written. For LFS large, which writes a

large stream of data, TxOS uses 13% more high memory than Linux, whereas LFS

small, which writes many small files, introduced less than 1% space consumption

overhead. Looking at the page cache in isolation, TxOS allocates 1.2–1.9× as many

pages as unmodified Linux. The pressure on the kernel’s reserved portion of physical

memory, or low memory, is 5% higher for transactions across all benchmarks. This
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Microbenchmark Linux ext2 TxOS ACI Linux ext3 TxOS ACID

postmark 38.0 7.6 0.2× 180.9 154.6 0.9×
lfs small
create 4.6 0.6 0.1× 10.1 1.4 0.1×
read 1.7 2.2 1.2× 1.7 2.1 1.3×
delete 0.2 0.4 2.0× 0.2 0.5 2.4×
lfs large
write seq 1.4 0.3 0.2× 3.4 2.0 0.6×
read seq 1.3 1.4 1.1× 1.5 1.6 1.1×
write rnd 77.3 2.6 0.03× 84.3 4.2 0.05×
read rnd 75.8 71.8 0.9× 70.1 70.2 1.0×
RAB
mkdir 8.7 2.3 0.3× 9.4 2.2 0.2×
cp 14.2 2.5 0.2× 13.8 2.6 0.2×
du 0.3 0.3 1.0× 0.4 0.3 0.8×
grep/sum 2.7 3.9 1.4× 4.2 3.8 0.9×
geomean .4× .5×
Application Linux ext2 TxOS ACI Linux ext3 TxOS ACID

dpkg .8 .9 1.1× .8 .9 1.1×
make 3.2 3.3 1.0× 3.1 3.3 1.1×
install 1.9 2.7 1.4× 1.7 2.9 1.7×
geomean 1.2× 1.3×

Table 5.2: Execution time in seconds for several transactional benchmarks on TxOS and slowdown
relative to Linux. ACI represents non-durable transactions, with a baseline of ext2, and ACID
represents durable transactions with a baseline of ext3 with full data journaling.

overhead comes primarily from the kernel slab allocator, which allocates 2.4× as

much memory. The slab allocator is used for general allocation (via kmalloc) and

for common kernel objects, like inodes. TxOS’s memory use indicates that buffering

transactional updates in memory is practical, especially considering the trend in

newer systems toward larger DRAM and 64-bit addresses.
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5.3 Software installation

By wrapping system commands in a transaction, we extend make, make install,

and dpkg, the Debian package manager, to provide ACID properties to software

installation. We first test make with a build of the text editor nano, version 2.0.6.

Nano consists of 82 source files totaling over 25,000 lines of code. Next, we test

make install with an installation of the Subversion revision control system, version

1.4.4. Finally, we test dpkg by installing the package for OpenSSH version 4.6. The

OpenSSH package was modified not to restart the daemon, as the script responsible

sends a signal and waits for the running daemon to exit, but TxOS defers the signal

until commit. This script could be rewritten to match the TxOS signal API in a

production system.

As Table 5.2 shows, the overhead for adding transactions is quite reasonable

(1.1–1.7×), especially considering the qualitative benefits. For instance, by checking

the return code of dpkg, our transactional wrapper was able to automatically roll

back a broken Ubuntu build of OpenSSH (4.6p1-5ubuntu0.3), and no concurrent

tasks were able to access the invalid package files during the installation.

5.4 Solid state drive measurements

Because disk scheduling has a significant effect on the performance measurements

collected above, we measure the overheads of using TxOS on a storage medium with

lower latency, namely a solid state drive (SSD). We replaced the root disk in the test

machine with an 80GB Intel X25-M drive, which contains MLC NAND flash. We

re-ran the microbenchmarks and application benchmarks, excepting compilation

of nano, which executed too quickly to differentiate significantly. Attempting to

follow best practices for solid state drives, we mounted the root file system with the

noatime option, selected the deadline scheduler, and batched writes. We also only
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Microbenchmark Linux ext2 TxOS ACI

postmark 9.8 6.7 0.7×
lfs small
create 2.3 0.5 0.1×
read 1.2 2.8 2.3×
delete 0.1 0.3 3.0×
lfs large
write seq 1.3 1.6 1.2×
read seq 0.6 0.5 1.2×
write rnd 6.5 4.8 0.7×
read rnd 3.5 3.6 1.0×
RAB
mkdir 7.7 1.1 0.1×
cp 3.7 2.5 0.7×
du 0.3 0.3 1.0×
grep/sum 1.9 3.1 1.6×
geomean .8×
Application Linux ext2 TxOS ACI

dpkg .6 .8 1.3×
install 1.7 2.9 1.7×
geomean 1.5×

Table 5.3: Execution time in seconds for several transactional benchmarks on TxOS and slowdown
relative to Linux on a Solid State Drive. ACI represents non-durable transactions, with a baseline
of ext2.

ran the ext2 benchmarks to avoid noise introduced by journaling. Table 5.3 lists

the measurements collected from the SSD, again the arithmetic mean of three runs.

Overall, the overheads are comparable and slightly higher—geometric mean

overheads of .4 and 1.2 on a SATA drive, compared to .6 and 1.5. This is expected,

since we are losing the dramatic effects of improved disk scheduling discussed above.

For instance, the speedup of the LFS large random write phase drops from 29.7×

on a SATA drive to 35% on the SSD. While better disk scheduling can improve the

performance of TxOS on a traditional hard drive, the overheads remain acceptable

on a storage medium with different performance characteristics.
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5.5 Transactional ext3

In addition to measuring the overheads of durable transactions, we validate the

correctness of our transactional ext3 implementation by powering off the machine

during a series of transactions. After the machine is powered back on, we mount the

disk to replay any operations in the ext3 journal and run fsck on the disk to validate

that it is in a consistent state. We then verify that all results from committed

transactions are present on the disk, and that no partial results from uncommitted

transactions are visible. To facilitate scripting, we perform these checks using Simics.

Our system successfully passes over 1,000 trials, giving us a high degree of confidence

that TxOS transactions correctly provide atomic, durable updates to stable storage.

5.6 Eliminating race attacks

System transactions provide a simple, deterministic method for eliminating races

on system resources. To qualitatively validate this claim, we reproduce several race

attacks from recent literature on Linux and validate that TxOS prevents the exploit.

We downloaded the symlink TOCTTOU attacker code used by Borisov et

al. [BJSW05] to defeat Dean and Hu’s probabilistic countermeasure [DH04]. This

attack code creates memory pressure on the file system cache to force the victim

to deschedule for disk I/O, thereby lengthening the amount of time spent between

checking the path name and using it. This additional time allows the attacker to

win nearly every time on Linux.

On TxOS, the victim successfully resists the attacker by reading a consistent

view of the directory structure and opening the correct file. The attacker’s attempt

to interpose a symbolic link creates a conflicting update that occurs after the trans-

actional access check starts, so TxOS puts the attacker to sleep on the asymmetric

conflict. The performance of the safe victim code on TxOS is statistically indistin-
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Figure 5.1: Time to perform 500,000 renames divided across a number of threads (lower is better).
TxOS implements its renames as calls to sys_xbegin(), link, unlink, and sys_xend(), using 4
system calls for every Linux rename call. Despite higher single-threaded overhead, TxOS provides
better scalability, outperforming Linux by 3.9× at 8 CPUs. At 8 CPUs, TxOS also outperforms a
simple, non-atomic link/unlink combination on Linux by 1.9×.

guishable from the vulnerable victim on Linux.

To demonstrate that TxOS improves robustness while preserving simplicity

for signal handlers, we reproduced two of the attacks described by Zalewksi [Zal01].

The first attack is representative of a vulnerability present in sendmail up to 8.11.3

and 8.12.0.Beta7, in which an attacker induces a double-free in a signal handler.

The second attack, representative of a vulnerability in the screen utility, exploits

lack of signal handler atomicity. Both attacks lead to root compromise; the first

can be fixed by using the sigaction API rather than signal, while the second

cannot. We modified the signal handlers in these attacks by wrapping handler code

in a sys_xbegin, sys_xend pair, which provides signal handler atomicity without

requiring the programmer to change the code to use sigaction. In our experiments,

TxOS serializes handler code with respect to other system operations, and therefore

defeats both attacks.
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5.7 Concurrent performance

System calls like rename and open have been used as ad hoc solutions for the lack

of general-purpose atomic actions. These system calls have strong semantics (a

rename is atomic within a file system), resulting in complex implementations whose

performance does not scale. As an example in Linux, rename has to serialize all

cross-directory renames with a single file-system-wide mutex, as finer-grained locking

would risk deadlock. The problem is not that performance tuning rename is difficult,

but it would substantially increase the implementation complexity of the entire file

system, including unrelated system calls.

Transactions allow the programmer to combine simpler system calls to per-

form more complex operations, yielding better performance scalability and a sim-

pler implementation. Figure 5.1 compares the unmodified Linux implementation

of rename to calling sys_xbegin(), link, unlink, and sys_xend() in TxOS. In

this micro-benchmark, we divide 500,000 cross-directory renames across a number

of threads.

TxOS has worse single-thread performance because it makes four system

calls for each Linux system call. But TxOS quickly recovers the performance, per-

forming within 6% at 2 CPUs and out-performing rename by 3.9× at 8 CPUs. The

difference in scalability is directly due to TxOS using fine-grained locking to im-

plement transactions, whereas Linux must use coarse-grained locks to maintain the

fast path for rename and keep its implementation complexity reasonable. While

this experiment is not representative of real workloads, it shows that solving con-

sistency problems with modestly complex system calls like rename will either harm

performance scalability or introduce substantial implementation complexity. Be-

cause of Linux’s coarse-grained locks, TxOS’ atomic link/unlink pair outperforms

the Linux non-atomic link/unlink pair by a factor of 1.9× at 8 CPUs.
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Execution Time System Calls Allocated Pages

TxOS Linux TxOS Linux TxOS Linux

.05 .05 1,084 1,024 8,755 25,876

Table 5.4: Execution Time, number of system calls, and allocated pages for the genome benchmark
on the MetaTM HTM simulator with 16 processors.

5.8 Integration with software TM

We qualitatively verify that system transactions can be integrated with existing

transactional memory systems by extending a software and hardware TM implemen-

tation to use system transactions. We integrated DATM-J [RRHW09], a Java-based

STM, with system transactions. The only modifications to the STM are to follow

the commit protocol when committing a user level transaction that invokes a system

call and to add return code checks for aborted system transactions, as outlined in

Section 3.7.

We tested the integration of DATM-J with TxOS by modifying Tornado, a

multi-threaded web server that is publicly available on sourceforge, to use transac-

tions. Tornado protects its data structures with STM transactions, and the STM

transparently protects concurrent reads and writes to its data files from interfering

with each other. The original code uses file locking. For one synthetic workload,

the STM version is 47% faster at 7 threads, attributable to concurrent file system

accesses. This result is not necessarily representative of all STM workloads, as

many may not benefit from optimistic parallelism in both the application and OS,

but rather a proof-of-concept that STM transactions can inter-operate with system

transactions.
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5.9 Integration with hardware TM

In the genome benchmark from the Stanford STAMP transactional memory bench-

mark suite [MCKO08], the lack of integration between the hardware TM system

and the operating system results in an unavoidable memory leak. Genome allocates

memory during a transaction, and the allocation sometimes calls mmap. When the

transaction restarts, it rolls back the allocator’s bookkeeping for the mmap, but not

the results of the mmap system call, thereby leaking memory. When the MetaTM

HTM system [RRP+07] is integrated with TxOS, the mmap is made part of a system

transaction and is properly rolled back when the user-level transaction aborts.

Table 5.4 shows the execution time, number of system calls within a transac-

tion, and the number of allocated pages at the end of the benchmark for both TxOS

and unmodified Linux running on MetaTM. TxOS rolls back mmap in unsuccessful

transactions, allocating 3× less heap memory to the application. Benchmark per-

formance is not affected. No source code or libc changes are required for TxOS to

detect that mmap is transactional.

The possibility of an mmap leak is a known problem [ZB06], with several

proposed solutions, including open nesting [MBM+06b] and a transactional pause

instruction [ZB06]. All previously proposed solutions complicate the programming

model for the application developer, the hardware, or both. Some of the API com-

plexity might be encapsulated in a heap implementation closely integrated with the

TM system; to the best of our knowledge, this has not been developed in the liter-

ature. System transactions encapsulate this complexity in the OS, addressing the

memory leak with the simplest hardware requirements and user API.
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5.10 Summary

This chapter demonstrates that system transactions can be a practical abstraction

for a modern OS kernel to provide, by evaluating the performance characteristics

and the capabilities of the TxOS prototype. The overheads introduced in TxOS can

be high in many cases, but performance of write-heavy workloads can also improve

dramatically. In general, high overheads for using transactions are more acceptable

when an application is also benefitting from enhanced functionality. The more

concerning overhead is the overhead of non-transactional operations. This chapter

identifies the key sources of non-transactional overhead and proposes techniques to

reduce this overhead in future work.

This chapter also shows that application developers can address several chal-

lenging problems, including recovery from failed software installations and eliminat-

ing TOCTTOU race conditions, with system transactions on TxOS. The chapter

also describes how TxOS eliminates several coarse-grained locks that limit kernel

scalability, and how system transactions integrate with two different user-level trans-

actional memory implementations. Developers need system transactions to fill the

gaps in the current OS API, and system transactions can be provided at an accept-

able performance cost.
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Chapter 6

Transactions as a Building

Block for Distributed

Applications

Improving application performance and enabling new features are key goals for sys-

tem transactions. This chapter describes ongoing and future work to leverage system

transactions in distributed applications.

Implementations of distributed systems can be substantially limited by the

low-level system services presented to the application developer. For instance, the

maildir IMAP storage format is designed to be lock free [Ber], yet the POSIX

API is insufficient for an IMAP server to guarantee repeatable reads of a maildir

directory. This insufficiency leads IMAP implementations such as Dovecot to rein-

troduce locks on backend files [Dovb]. When server threads holding file locks ter-

minate unexpectedly, for instance due to a bad client interaction, users experience

unpredictable email behavior, such as lost email or messages that cannot be marked

as read. System transactions can make reliable distributed applications easier to

build by providing a better abstraction for managing system-level concurrency and
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durability,

This chapter describes three target distributed applications for system trans-

actions: a Lightweight Directory Access Protocol (LDAP) server, server-side spec-

ulation in replicated, fault tolerant systems, including Byzantine Fault Tolerant

(BFT) systems, and an IMAP email server. The work with LDAP is complete and

evaluated, whereas the discussion of BFT and IMAP are designs for ongoing work.

6.1 LDAP server

The Lightweight Directory Access Protocol (LDAP) is a standardized protocol for

storing and accessing directory information. The LDAP protocol is commonly used

to implement user directories (including the one used by the University of Texas

to track employees and students), as well as to centralize management of user ac-

counts and password hashes for a network of computers. LDAP forms the basis of

Microsoft’s Active Directory product, and is often used as a replacement for Sun’s

Unix Network Information Service (nis). LDAP deployments generally manage a

relatively small data set with modest storage requirements, that threads in the server

should be able to access concurrently for good performance.

The concurrency control and recovery abstractions provided by modern oper-

ating systems are insufficient for applications with even modest storage requirements,

such as LDAP. An average LDAP data set is sufficiently large that storing the data

in a single file and serializing write requests with rename system calls will severely

harm performance. If an LDAP server splits its data across multiple files, it has to

use file locking, which provides no durability guarantees and requires extreme care

to avoid deadlock among application and file system locks. LDAP servers, such as

the popular OpenLDAP system, often work-around the shortcomings of the OS by

replacing OS-managed storage with a database, which provides stronger semantics.

LDAP servers represent a class of concurrent servers with modest storage,
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recovery, and concurrency requirements that are forced by their semantic require-

ments to adopt a heavier-weight database system than is strictly necessary for their

stable data storage. Databases are designed to optimize complex queries of large

data sets; there are certain trade-offs that introduce overheads that are only offset

if the data set is sufficiently large. For these “middle ground” applications, current

tools do not strike right balance of strong semantics with low overheads. System

transactions can provide a simple, lightweight storage solution for such applications.

6.1.1 Replacing database transactions with system transactions

To demonstrate that system transactions can provide lightweight concurrency con-

trol for server applications, we modified OpenLDAP 2.3.35’s flat file storage module

(called LDIF) to use system transactions. The OpenLDAP server supports a number

of storage modules; the default is Berkeley DB (BDB).

In adding system transactions to the LDIF storage module, we opted to

manage rollback of application state after a failed system transaction by hand. We

initially expected the task to be daunting, but we could not use copy-on-write paging,

as the server is multi-threaded, and we did not want to incur the high overheads

of software transactional memory. As it turns out, the LDAP server code, like any

mature software package, has fairly robust error handling code for any system call

it issues. System calls can fail for a number of reasons and mature applications

must be prepared to handle these failures. Thus, in most code pathways, the only

modifications required were to ensure that a system call which failed because of an

aborted transaction exited through the appropriate error handling code.
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6.1.2 Evaluation

We used the SLAMD distributed load generation engine1 to exercise the server, run-

ning in single-thread mode. We run the server in single-thread mode because the

current implementation of TxOS does not provide transactional semantics for the

file descriptor table when multiple threads in the same process attempt to open or

close file handles concurrently. Note that modifications to individual file descriptors

(e.g., seek, read, etc.) are transactional, the limitation is in the mapping of integer

file handles to file descriptor structures in the kernel. We plan to fix this in future

work.

Table 6.1 shows throughput for the unmodified Berkeley DB storage module,

the LDIF storage module augmented with a simple cache, and LDIF using system

transactions. These experiments were performed using the same setup described

in Chapter 5. The “Search Single” experiment exercises the server with single item

read requests, whereas the “Search Subtree” column submits requests for all entries

in a given directory subtree. The “Add” test measures throughput of adding entries,

and “Del” measures the throughput of deletions.

The read performance (search single and search subtree) of each storage

module is within 3%, as most reads are served from an in-memory cache. LDIF

has 5–14× the throughput of BDB for requests that modify the LDAP database

(add and delete). However, the LDIF module does not use file locking, synchronous

writes or any other mechanism to ensure consistency. LDIF-TxOS provides ACID

guarantees for updates. Compared to BDB, the read performance is similar, but

workloads that update LDAP records using system transactions outperform BDB

by 2–4×. This speedup is commensurate with speedups observed for write-intensive

microbenchmarks in Section 5.2, attributable to better I/O scheduling. LDIF-TxOS

provides the same guarantees as the BDB storage module with respect to concur-

1http://www.slamd.com/
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Back end Search Search Add Del
Single Subtree

BDB 3229 2076 203 172

LDIF 3171 2107 1032 (5.1×) 2458 (14.3×)

LDIF-TxOS 3124 2042 413 (2.0×) 714 (4.2×)

Table 6.1: Throughput in queries per second of the OpenLDAP server (higher is better) for a read-
only and write-mostly workload. For the Add and Del workloads, the increase in throughput over
BDB is listed in parentheses. The BDB storage module uses Berkeley DB, LDIF uses a flat file
with no consistency for updates, and LDIF-TxOS augments the LDIF storage module use system
transactions on a flat file. LDIF-TxOS provides the same crash consistency guarantees as BDB
with more than double the write throughput.

rency and recoverability after a crash.

For developers of applications with modest storage requirements, this exper-

iment shows that system transactions are a simpler alternative to even lightweight

databases like BDB.

6.2 Design: Replication and Byzantine Fault Tolerance

Distributed systems often replicate services in order to tolerate faults. If one replica

fails, others can absorb its load while the failed replica recovers.

The canonical approach to designing a replicated service is to design the

server as a replicated state machine [Sch90]. The key principle behind replicated

state machines is that if the same set of inputs are presented to each replica in the

same order, each replica will produce the same outputs and have the same internal

state—yielding identical replicas. Note that inputs in this model include inputs both

from a client connected over the network and inputs from the operating system, such

as the contents of a file or the output of a random number generator.

Research on replicated systems focuses on one of two fault models. The

first is a fail-stop system, in which a failures can only manifest as a replica halting

unexpectedly. The second class of systems tolerate a bounded number of Byzantine

80



faults, in which a faulty replica can exhibit arbitrary behavior, including malicious

behavior [LSP82].

6.2.1 BFT in a nutshell

Byzantine Fault Tolerance (BFT) is a framework for building replicated systems

that encompasses a wide range of faults. When the total number of replicas is n,

the system can tolerate (n − 1)/3 faults, more commonly written as 3f + 1, where

f is the number of faults.

BFT protocols essentially process requests in a pipeline consisting of three

stages: authentication, ordering, and execution. Each of these stages must be per-

formed by a quorum of replicas (the precise minimum varies slightly by implemen-

tation), and several of the stages must wait for broadcast communication among

the replicas. When a request arrives from a client, it is first authenticated to ensure

that it came from a legitimate client and is well-formed. The ordering phase then

imposes a global order on each accepted message. Once agreement completes, each

replica can then execute the request and return a response to the client. These

responses are generally checked by the client for a two-thirds majority consensus on

the response; responses that disagree indicate a faulty node.

A key limitation of BFT systems is the lack of parallelism in the implemen-

tation of a service (i.e., the execution phase). Because multi-threading introduces

non-determinism, BFT servers generally cannot leverage the increasingly abundant

parallelism of commodity multi-core hardware in the execution phase of the system

to increase throughput or decrease request processing latency.

A reasonable approach to the performance constraint of serial execution is

to use optimistic parallel execution. To the best of our knowledge, optimistic ex-

ecution has not been used in a BFT server for any real-world workloads because

of the complexity of rolling back server state and especially system calls on a mis-
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speculation. The Zyzzva system proposed a protocol for exactly the latter form of

speculation [KAD+07], but did not implement this speculation for any non-trivial

services. Wester et al. [WCN+09] developed a speculation mechanism for a BFT

client, but did not implement server-side speculation.

The key piece of missing infrastructure for existing fault-tolerant systems is

simple optimistic execution of server code; system transactions, perhaps combined

with user-level TM, provide this mechanism. While this section has focused primar-

ily on BFT, where the request processing pipeline is the most complex, any fault-

tolerance mechanism based on replicated state machines will suffer similar pipeline

stalls and lack parallelism.

6.2.2 Recovery

A second challenge for replication-based fault tolerant systems is recovering from a

node failure. Specifically, when a failed replica is replaced with a new correct node

(or the same node repaired), the new replica must be brought up to speed with the

rest of the system. The typical strategy for recovery is for correct replicas to take

periodic checkpoints of their state and to keep a log of subsequent requests. The new

replica loads the checkpoint and replays the log until it catches up. During recovery,

requests are processed sequentially, and new requests are buffered. Assuming that

a fair number of requests can execute safely and concurrently, optimistic execution

during recovery could allow much quicker failure recovery.

6.2.3 Required extensions to system transaction API

System transactions provide the key building block of OS-level recovery from a

misspeculation, but our existing API will require two modest extensions to work

with BFT.
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Ordered commit. In a general-purpose transaction processing environment, any

serialization is generally acceptable. Because replicated state machines need to be

deterministic, it is only acceptable to execute in a serialized order equivalent to

the order specified by the agreement stage of execution. We propose extending the

TxOS API with a mechanism to specify a commit order for a set of transactions,

similar to thread-level speculation [SBV95, SCZM00].

Relaxed isolation for BFT protocol messages. In servicing an execution re-

quest, a thread may still need to receive messages from the agreement phase in order

to determine its execution order. In order to permit communication with the BFT

layer, we propose an interface for the developer to selectively specify network or IPC

traffic that can escape the transaction.

Both of these extensions are relatively straightforward to implement, and

necessary to support BFT server-side speculation. Work to incorporate the BFT

UpRight library [CKL+09] with TxOS is ongoing.

6.3 Design: IMAP email server

The Internet Message Access Protocol (IMAP) is a widely used protocol for access-

ing email messages [Cri03]. IMAP stores the definitive versions of email messages

in folders on a server, and an email client acts as a cache of these emails. IMAP is

considered an improvement over the previous Post Office Protocol (POP) [Mye96],

which simply downloads incoming messages from the server and then deletes them.

IMAP provides features missing from POP, including seamless offline email oper-

ations, which are later synchronized with the server, and concurrent email clients

(e.g., a laptop, desktop, and smartphone can simultaneously connect to an inbox).

A key feature advertised by IMAP is concurrent access by multiple clients,

yet the protocol specifies very little about how the server should behave in the
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presence of concurrency. There is no protocol-level guarantee about what happens

if two clients simultaneously modify a message or folder. If something goes wrong

while moving a message to a subfolder, the outcome depends heavily on the client

and server implementations: you can lose the message or end up with multiple copies

of it.

Allowing a wide range of IMAP client and server implementations to dictate

ad hoc concurrency semantics leads to practical challenges. For instance, if a user

leaves a mail client running at home that aggressively checks for new email messages,

the implementation-specific locking behavior on the server may deny the user’s client

at work the ability to delete, move, or mark new messages as read. This denial of

service can result from either aggressive polling by the client (i.e., lock fairness),

or “orphaned” file locks from an improper error handling of a client request. This

erratic behavior stems from the limitations of the underlying OS API with respect

to concurrency and durability.

6.3.1 Backend storage formats and concurrency challenges

Although the specific storage formats can vary across IMAP server implementations,

there are two widely-used storage formats: mbox and maildir. The selected backend

storage format used dictates much of the concurrent behavior of the server; servers

that support both backends will behave differently with each.

mbox The mbox format stores an entire email folder as a single file. Most mbox

implementations also have a single file lock, which serializes all accesses to the mail

folder. If a server thread fails to release a file lock on a user’s inbox, perhaps because

it received a malformed client message, all clients can be locked out of the mailbox

until the lock is manually cleaned up by an administrator.
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maildir To alleviate the issues with stale locks in mbox, the maildir format was

created [Ber]. Maildir is designed to be lock free. Maildir represents a mail folder

as a directory on a file system, and each message as a file. Mail flags and other

metadata are encoded in the file name.

Although maildir is lock free, the design does not provide repeatable reads

for a user’s inbox. Reading a user’s inbox is typically implemented by a series of

readdir system calls, which get the names of each file in the inbox, and a series of

stat or open/read system calls, which extract other metadata about the message.

If another client is concurrently marking a message as read (by rename-ing the file

to change its flags), the first client cannot distinguish the change in flags from a

deletion, leading to disturbing artifacts such as messages randomly disappearing.

The lack of repeatable reads in maildir led a major IMAP implementation, dovecot,

to reintroduce file locking for its maildir backend [Dovb].

File locking in both storage formats introduces substantial portability issues,

as Unix systems have multiple, mutually incompatible file locking regimes, including

flock and fcntl locks. The system administrator must understand the low-level

details of the OS and specific file system in configuring the mail server. Even under

the best of circumstances, the proliferation of locking mechanisms diffuses bug fixing

effort in the kernel, increasing the likelihood of bugs in specific locking mechanisms.

For instance, a Dovecot bug report indicates that using flock on Linux triggered

a race condition that was eliminated by switching to fcntl locks; no bug in the

Dovecot source was identified to explain the problem [Dova].

6.3.2 Opportunity for transactions

System transactions address several challenges IMAP implementations face by giv-

ing the IMAP developers a better interface for managing system-level concurrency.

For instance, file locks introduce problems when a server thread exits without clean-
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ing up the lock; failed transactions are automatically cleaned up and obviate the

need for file locks. System transactions also provide repeatable reads, as they are

serializable2. Repeatable reads can eliminate the disturbing artifacts that can arise

from concurrent access to a maildir inbox. Finally, transactions can be adopted

incrementally in an IMAP server, causing minimal disruption to the common code

paths. Work to adopt transactions in an IMAP server is ongoing.

2Serializability is also known as degree 3 isolation [GLPT76], which guarantees repeatable reads.
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Chapter 7

Related Work

This chapter surveys related work, distinguishing system transactions from previous

research in OS transactions, journaling file systems, transactional file systems, Spec-

ulator, and transactional memory. This chapter also provides additional background

on time-of-check-to-time-of-use (TOCTTOU) race conditions.

7.1 Previous transactional operating systems

Locus [WTWPLP85] and QuickSilver [HMC88, SW91] are historical systems that

provide some system support for transactions. The primary goal of these systems is

committing file writes atomically with distributed transactions. Both systems use

database implementation techniques for transactions, isolating data structures with

two-phase locking and rolling back failed transactions from an undo log.

A shortcoming of this approach is that simple locks, and even reader-writer

locks, do not capture the semantics of container objects, such as a directory. Multiple

transactions can concurrently and safely create files in the same directory so long as

none of them use the same file name or read the directory. Unfortunately, creating a

file in these systems requires a write lock on the directory, which prevents concurrent
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access to the directory, even to unrelated files in the directory. To compensate for

the poor performance of reader-writer locks in both systems, directory contents may

change during a transaction, which reintroduces the possibility of the TOCTTOU

race conditions that system transactions ought to eliminate. In contrast, TxOS

implements system transactions with lazy version management, more sophisticated

containers, and asymmetric conflict detection, allowing it to provide higher isolation

levels while minimizing performance overhead.

Another key challenge when two-phase locking is used inside an OS kernel is

the risk of deadlocking the kernel. Holding kernel locks for the duration of a trans-

action can deadlock the kernel if two transactions simply access the same resources

in opposite order. Locus does not detect deadlock (but does allow pluggable detec-

tion mechanisms), and Quicksilver times out long-running transactions. Timeouts

can starve long-running transactions. TxOS does not have to resort to timing out

because it uses lazy version management, thus it does not hold locks across system

calls. It only holds locks long enough to copy objects and always acquires them in

an ordered fashion.

Finally, Quicksilver does not support strong isolation (Section 3.2), and hence

does not necessarily serialize non-transactional operations with transactional oper-

ations. Locus allows transactional and nontransactional applications to access the

same data, but requires an explicit commit by the non-transactional thread. Uncom-

mitted, non-transactional records are committed by the next transaction to access

the data. It is unclear what happens to such a record if the subsequent transaction

aborts. The current STM literature shows a number of situations that lead to data

structure corruption when strong isolation is not provided [MBS+08, SMAT+07].

Because TxOS performs both transactional and non-transactional updates to ker-

nel data structures, it must provide strong isolation lest the kernel data structures

become corrupted.
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7.1.1 VINO

The VINO kernel uses transactions in the OS to recover from misbehaved kernel ex-

tensions [SESS96, Sma98]. The VINO kernel has an extensible design: applications

may load custom code into the kernel that overrides or extends kernel functional-

ity. For instance, an application could load extensions that augment the kernel’s

TCP/IP stack with proposed extensions for the application’s network connections.

The key challenge is permitting untrusted kernel extensions without exposing the

kernel to compromise from these extensions. A monolithic OS, like Linux, must

trust any code loaded into the OS. In the TCP/IP example, either the Linux system

administrator must trust the extensions and expose all users to potential bugs or

malware in the kernel extension, or the untrusted application must reimplement the

entire TCP/IP stack in its address space on top of a lower-level OS abstraction.

VINO restricts untrusted modules to an explicit API with careful access control

checks using software fault isolation [WLAG93].

If an untrusted module misbehaves and must be removed, VINO uses trans-

actions to recover OS resources held by the untrusted module. When the kernel

calls an untrusted module, that call is wrapped in a transaction. All calls from the

untrusted module back to the kernel execute in a transactional context. Transac-

tional updates to kernel state are isolated using two-phase locking, and recovery is

implemented with a combination of undo logs and deferred actions tracked by a redo

log. If misbehavior is detected, such as a failed access check or a timed out request,

the transaction is aborted and the kernel uses the undo log to release locks, free

memory, etc.

VINO does not export system transactions to applications as part of the

system call API; transactions are only used by the kernel to isolate untrusted exten-

sions. User-level applications may not arbitrarily compose system calls to perform

an atomic software installation in VINO, as they can in TxOS. TxOS, like Linux,
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must trust kernel modules and cannot use system transactions to isolate kernel ex-

tensions. The VINO transaction design is similar to other transactional OSes and is

subject to the same problems, including deadlock, which the TxOS design addresses.

7.2 Transactional Memory

Transactional Memory (TM) systems provide a mechanism to provide atomic and

isolated updates to application data structures. Transactional memory is imple-

mented either with modifications to cache coherence hardware (HTM) [HWC+04,

MBM+06a], in software (STM) [DSS06], or as a hybrid of the two [CMTC+07,

DFL+06].

System transactions fix one of the most troublesome limitations of transac-

tional memory systems—that system calls are disallowed during user transactions

because they violate transactional semantics. System calls on traditional operating

systems are not isolated and they cannot be rolled back if a transaction fails. For

example, a file append performed inside a hardware or software user transaction can

occur an arbitrary number of times. Each time the user-level transaction aborts and

retries, it repeats the append.

Integrating user and system transactions creates a simple and complete trans-

actional programming model. On a TM system integrated with TxOS, when a TM

application makes a system call, the runtime begins a system transaction. The user-

level transactional memory system handles buffering and possibly rolling back the

application’s memory state, and the system transaction buffers updates to system

state. The updates to system state are committed or aborted by the kernel atomi-

cally with the commit or abort of the user-level transaction. The programmer sees

the simple abstraction of an atomic block that can contain updates to user data

structures and system calls.

The remainder of this subsection reviews other approaches to supporting sys-
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tem calls inside of a memory transaction, as well as particularly related transactional

memory applications and systems.

7.2.1 Open nesting

Several proposals for transactional memory systems, both in hardware [MBM+06b,

MCC+06] and software [HSATH06], support open nested transactions [Mos81] to

allow system calls inside of a transaction. When an open nested transaction commits,

its results are immediately visible, temporarily removing isolation guarantees of the

parent transaction. In order for open nesting to be correct, the application must

enforce some sort of logical isolation on the operations executed inside the open

nested code.

A classic motivating use for open nesting is to optimize page locking in

database implementations. Database transactions that update a record typically

acquire a record lock and then a lock on the page of memory containing the record.

Holding the page lock until commit needlessly prevents other transactions from per-

forming updates to unrelated records on the same page. Performing the page write

in an open nested transaction allows the page lock to be released early, increasing

concurrency of the system. The write to the page is still logically isolated because

the transaction retains the record lock until it commits.

Enforcing logical isolation on operating system managed resources in a user-

level transactional memory system, however, is much trickier. One key challenge is

that the OS interfaces for isolating updates to shared resources are quite limited.

Many shared resources and abstractions, such as signals and pipes, do not provide

any isolation mechanism. File locking is the primary isolation mechanism available

to users, and support for mandatory file locking is incomplete or difficult to use on

modern operating systems.

An even more difficult challenge to supporting system calls with open nesting
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is rolling back the system calls. All open nesting proposals require open nested

transactions to provide a commit handler to release logical isolation and an abort

handler to undo its effects. Some system calls have logical complements, like deleting

a created file or freeing allocated memory. The problem is that even these simple

calls can have far-flung side effects that are difficult to anticipate and undo. For

instance, creating a new file may implicitly delete an existing file with the same

name, which must somehow be detected and restored by the application. Mapping

a page of memory can also implicitly unmap another page, permanently deleting it

from the system. If a page if permanently deleted by the OS, the application loses

the ability to recover from a restarted transaction. While open nesting may work

for the simple cases and even many common cases, a complete solution will require

cooperation from the operating system to identify, isolate, and undo these far-flung

side effects.

7.2.2 Transactional pause and escape actions

Zilles and Baugh [ZB06] propose a transactional pause primitive that serves similar

purposes to open nesting, including support for memory allocation inside of a trans-

action. LogTM [MBM+06b] adopts a similar primitive called an escape action. The

primary distinction between transactional pause and open nesting is whether the

nested code executes atomically or not. The transactional pause primitive makes no

atomicity guarantees for the paused code or its commit and abort handlers. This

tradeoff makes the TM implementation simpler, but requires more expertise to be

used correctly. This is arguably a good tradeoff because the marginal benefit to

TM designers is much larger than the marginal cost to the programmer, and be-

cause both primitives are sufficiently difficult to require expert programmers. This

argument is supported by Ni et al. [NMAT+07] who discuss the challenges of writ-

ing correct commit and compensating actions, and examine implementation issues
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posed by overlapping read-write sets between ancestor and open nested transac-

tions. Moravan et al. [MBM+06b] address some of these challenges by defining a set

of formal correctness conditions, under which the TM system can guarantee correct

execution of these primitives.

7.2.3 Inevitable transactions

Several transactional memory proposals also include inevitable transactions, which

cannot be restarted [BDLM07, SMS08]. Inevitable transactions allow transactions

to complete even if they encounter conditions that make rollback difficult, such

as system calls or cache overflow in a hardware TM system. As long as the TM

system doesn’t support explicit transaction abort operations, this approach provides

a practical solution to these problems. TM implementations can only support one

inevitable transaction at a time. Thus, a key drawback to this approach for system

calls is that it can needlessly restrict concurrency when the system calls are logically

independent, such as writing to two separate files. System support for transaction

rollback, as provided by system transactions, can obviate the need for inevitable

transactions in many situations.

7.2.4 xCalls

Volos et al. [VTG+09] extend the Intel STM compiler with xCalls, which support

deferral or rollback of common system calls when performed in a memory transac-

tion. Depending on the semantics of a given system call, the xCalls implementation

will either defer the operation (e.g., buffering writes to a file in memory), or use

application-level locking to isolate the resource (e.g., using application locks to en-

sure consistent file reads). The xCalls system requires support for a transactional

pause primitive or open nesting from the underlying TM system, but encapsulates

much of the complexity of writing compensating actions for system calls and rea-
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soning about OS semantics.

A key benefit of xCalls over other user-level approaches is that the interface

makes explicit when these operations will occur. For instance, the API specifies

that data returned from a deferred operation will not be available until the trans-

action commits. Similarly, errors from deferred operations are returned when the

transaction terminates.

xCalls have the advantage of not requiring changes to the OS kernel, but

this also limits their utility outside of a single application. Because xCalls are im-

plemented in a single, user-level application, they cannot isolate transaction effects

from kernel threads in different processes, ensure durable updates to a file, or sup-

port multi-process transactions, all of which are needed to perform a transactional

software installation and are supported by TxOS.

7.2.5 TxLinux

The system transactions supported by TxOS solve a fundamentally different prob-

lem from those solved by TxLinux [RHP+07]. TxLinux is a variant of Linux that

uses hardware transactional memory as a synchronization primitive to protect OS

data structures within the kernel, whereas TxOS exports a transactional API to

user programs. The techniques used to build TxLinux enforce consistency for kernel

memory accesses within short critical regions. However, these techniques are insuf-

ficient to implement TxOS, which must guarantee consistency across heterogeneous

system resources, and which must support system transactions spanning multiple

system calls. TxLinux requires hardware transactional memory support, whereas

TxOS runs on currently available commodity hardware.

94



7.2.6 Precise conflicts

Transactional memory systems, especially hardware implementations, can have high

conflict rates on data accesses that are semantically safe. One common example is

concurrent insertions into a sorted linked-list. One operation will read a next pointer

the other is trying to change, causing a conflict and serializing the operations. Con-

current list insertions, however, can be semantically safe as long as invariants of the

list are upheld (e.g., sorted, unique entries) and no transaction attempts to enumer-

ate the list concurrently. The key problem is that the atomicity and consistency

guarantees of conflict serializability are often stronger than the programmer really

needs. Although conflict serializability is always safe, this generality can come at a

needless performance cost.

As discussed above, one solution to this problem is releasing physical isolation

on hotly contended resources through the use of open nesting or transactional pause

mechanisms. Open nesting and transactional pause are appealing solutions because

they are the least restrictive and arguably the most general. These mechanisms

require the programmer to ensure logical isolation in the application, and the runtime

releases all isolation enforcement on data accessed while the transaction is paused or

when an open nested transaction commits. The lack of structure provided by these

APIs is a double-edged sword, as it can be difficult for programmers to correctly

isolate all side-effects of an operation.

A more structured alternative is type-specific locking, where each object type

defines a compatibility matrix for its operations. A compatibility matrix is essen-

tially a table of which operations conflict [BHG87]. Categorizing all operations

as reads and writes is simplest and closely matches current transactional memory

implementations.

In general, type-specific locking is implemented in an object by having the

object class provide its own locking scheme rather than using the default read-
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er/writer locking. Returning to the linked-list example, one might gain additional

concurrency by allowing concurrent list operations via more sophisticated locking

schemes. For instance, one could use hand-over-hand locking while traversing the in-

cidental list nodes to retain isolation only on the nodes modified, allowing additional

concurrency.

The Galois System [KPW+07] and Transactional Boosting [HK08] are similar

in spirit to type-specific locking, in that each object can define which operations must

be isolated from one another and which can run concurrently (even if the operations

are not strictly conflict serializable). Galois and Boosting provide more structure

to the programmer by identifying compatible operations through properties such as

inverse and commutative functions.

Similarly, database implementations frequently use increment and decrement

locks, a type-specific lock of sorts, to protect statistics. These exploit the commu-

tativity of addition to allow concurrent atomic increments and decrements, but

no reads or writes of any other type [BHG87]. The DASH SMP prototype [LL98]

similarly provides the Fetch&Inc and Fetch&Dec instructions to reduce the synchro-

nization cost of atomic counter operations. This is one of the few cache coherence

additions that was considered worthwhile enough to be included in the SGI Origin

(as Fetch&Op) [LL97].

TxOS draws inspiration from these systems by supporting type-specific lock-

ing to increase concurrency without sacrificing strong consistency guarantees. This

approach is particularly valuable for providing transactional semantics to container

objects, such as lists of files in a directory. TxOS is able to support concurrent

transactional access to disjoint files in the same directory, whereas previous trans-

actional operating systems had to serialize these accesses or allow non-serializable

operations to maintain performance.
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7.3 Speculator

Speculator [NCF05] extends the operating system with an application isolation and

rollback mechanism that is similar to transactions in many respects, improving sys-

tem performance by speculating past high-latency events. The initial motivation for

Speculator was to hide the latency of common NFS server requests. When appli-

cations access files hosted on a network filesystem, the OS generates synchronous

requests to the server to ensure that the cached data is coherent. In the common

case, the cached data is correct and this latency needlessly harms performance.

Speculator is an extension to the Linux 2.4 kernel that allows applications to

speculate past NFS requests. Rather than wait for a server response, system calls

can be serviced from cached file data. Before using potentially stale, cached data,

Speculator checkpoints the process, and allows the process to continue execution

inside of a speculative environment. The speculation ends when the OS receives a

response from the NFS server. If the cached data was stale, the application rolls

back to the checkpoint and restarts. Otherwise, the application continues execution

unencumbered.

The key to safe speculation is preventing speculative processes from pub-

lishing speculative data to external I/O devices (in the database literature, this is

known as the “output commit” problem). If a speculative process attempts to ex-

ecute an unsupported action, the process is blocked until the speculation resolves.

Speculator also tracks dependences among processes on the system. If speculative

process A writes data to a pipe that is read by process B, B’s state is checkpointed

and it becomes part of A’s speculation. Dependence tracking in Speculator allows

cascading rollbacks when a speculation fails.

In subsequent work, Speculator was extended to hide the latency of syn-

chronous writes to a local file system [NVCF06], by maintaining the property of

external synchrony. External synchrony is the property that once a synchronous
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write is issued by an application, no other output from the application is exter-

nally visible until the write has completed. In this work, applications can continue

to speculatively execute after a synchronous write is issued, but subsequent I/O is

blocked until the first synchronous write completes. Speculator has been extended

to parallelize security checks [NPCF08], to debug system configuration [SAF07], and

to hide the latency of requests to replicated network services (e.g., Byzantine fault

tolerant services) at the client [WCN+09].

Because Speculator and TxOS both provide certain isolation guarantees and

a checkpoint/restore mechanism, the distinctions between the systems can be subtle.

The primary difference is that Speculator is designed to isolate a series of operations

from external visibility, whereas TxOS transactions are designed to isolate concur-

rent applications on the same system. Speculations may become dependent and

share data, meaning that Speculator does not eliminate TOCTTOU vulnerabilities.

If a TOCTTOU attack occurred in Speculator, the attacker and victim would be

part of the same speculation, allowing the attack to succeed.

Another useful distinction is that Speculator is primarily transparent to

the application, whereas system transactions provide ACID semantics for a user-

delimited series of operations. A substantial benefit of the Speculator design is that

difficult operations, such as device I/O, need not be supported, as the application

can simply block until the speculation resolves. The benefit of providing transac-

tions is that the ACID properties provided by transactions enable more powerful

applications such as atomic software installation/update.

7.4 Transactional file systems

TxOS simplifies the task of writing a transactional file system by detecting conflicts

and versioning data in the virtual file system layer. Some previous work such as

OdeFS [GJR94], Inversion [Ols93], and DBFS [MTV02] provide a file system inter-
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Feature Amino TxF Valor TxOS

Low overhead kernel implementation No Yes Yes Yes

Can be root fs? No Yes Yes Yes

Framework for transactionalizing other file
systems

No No 1 Yes Yes

Simple programmer interface Yes No No Yes

Other kernel resources in a transaction No Yes 2 No Yes

Table 7.1: A summary of features supported by recent transactional file systems.

face to a database, implemented as a user-level NFS server. These systems do not

provide atomic, isolated updates to local disk, and cannot address the problem of

coordinating access to OS-managed resources. Berkeley DB and Stasis [SB06] are

transactional libraries, not file systems. Amino [WSSZ07] supports transactional file

operation semantics by interposing on system calls using ptrace and relying on a

user-level database to store and manage file system data and metadata. Other file

systems implement all transactional semantics directly in the file system, as illus-

trated by Valor [SGC+09], Transactional NTFS (also known as TxF) [RS09], and

others [GT05, Sel93, SW91].

Table 7.1 lists several desirable properties for a transactional file system and

compares TxOS with recent systems. Because Amino’s database must be hosted on

a native file system, it cannot be used as the root file system. TxF can be used as

the root file system, but the programmer must ensure that the local system is the

two-phase commit coordinator if it participates in a distributed transaction.

Like TxOS, Valor provides kernel support in the page cache to simplify the

task of adding transactions to new file systems. Valor supports transactions larger

than memory, which TxOS currently does not. Valor primarily provides logging

and coarse-grained locking for files. Because directory operations require locking the

1Windows provides a kernel transaction manager, which coordinates commits across transac-
tional resources, but each individual filesystem is still responsible for implementing checkpoint,
rollback, conflict detection, etc.

2Windows supports a transactional registry.

99



directory, Valor, like QuickSilver, is more conservative than necessary with respect

to concurrent directory updates.

Sun et al. develop a roughly transactional file system based on VFS interpo-

sition, with which they sandbox untrusted applications [SLSV05]. This file system

does not provide a transaction abstraction to the application directly, but untrusted

applications are forced to run inside of a transaction. When the untrusted appli-

cation completes, the user is presented with a summary of the changes to the file

system, which the user can commit or roll back. Like TxOS and Valor, this system

benefits from modularity and code reuse by implementing transactions near the VFS

layer. A transactional file system built entirely by interposing between the VFS and

file system layer, but not changing either layer otherwise, will be limited by the

VFS interface. For instance, Sun et al. use POSIX file locks to isolate updates to

files and ensure an atomic commit. POSIX locks do not apply to directories, and

cannot ensure that updates to the directory namespace are committed atomically.

Implementing a “stackable” transactional file system layer is a laudable goal, but the

current VFS API is insufficient to implement ACID transactions robustly. TxOS

implements transactions in the VFS layer and modifies the VFS API, providing

a modular transactional file system design with minimal impact on a specific file

system.

In addition to TxF, Windows Vista introduced a transactional registry (TxR)

and a kernel transaction manager (KTM) [RS09]. KTM allows applications to create

kernel transaction objects that can coordinate transactional updates to TxF, TxR,

and user-level applications, such as a database or software updater. KTM coordi-

nates transaction commit, but each individual filesystem or other kernel component

must implement its own checkpoint, rollback, conflict detection, etc. In contrast,

TxOS minimizes the work required to transactionalize a file system by providing

conflict detection and isolation in shared virtual filesystem code. Modularity at the
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file system level is less important in Windows, which provides many fewer file sys-

tems than Linux, but modularity across different subsystems is useful in both cases.

The individual file systems in both Windows and TxOS must use a journal or other

mechanism for atomic, durable commits to disk.

TxOS and KTM also represent different points in the design space of trans-

actional application interfaces. KTM requires that all transactional accesses be

explicit, whereas TxOS allows unmodified libraries or applications to be wrapped

in a transaction. Requiring each system call to be explicitly transactional is a more

conservative design because unsupported operations do not compile, whereas TxOS

detects these dynamically. A key downside to KTM’s low-level interface is that it

requires individual application developers to be aware of accesses that can deadlock

with completely unrelated applications on the same system (such as accessing two

files in opposite order), and implement their own timeout and backoff system. In

contrast, transactions in TxOS cannot deadlock and TxOS can arbitrate conflicts

according to scheduler policies (Section 3.2.2) without any expert knowledge from

the developer.

TxOS provides programmers with a simple, natural interface, augmenting the

POSIX API with only three system calls (Table 2.1). Other transactional file sys-

tems require application programmers to understand implementation details, such

as deadlock detection (TxF) and the logging and locking mechanism (Valor).

7.5 Distributed transactions

A number of systems, including TABS [SDD+85], Argus [LCJS87, Lis88], and Sin-

fonia [AMS+07], provide support for distributed transactions at the language or

library level. These user-level transaction systems are subject to the same chal-

lenges in isolating system resources as transactional memory systems. These sys-

tems do, however, provide useful insights into the implementation and application
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of transactions.

Among other services, TABS [SDD+85] provides transactional support in its

window manager. Transactions in the window manager were visible to the end user;

text dialogs from aborted transactions were crossed out by the window manager.

TABS also provided developers with a weak queue, which relaxes the strict

FIFO ordering of enqueues to increase concurrency. Liskov et al. present a similar

example of a banking system in Argus where querying the total amount held at a

branch can return slightly stale values via a user-defined atomic type, increasing

concurrency [Lis88].

Argus is also an early transaction system that allows users to control the

safety/performance tradeoff in an application by specifying the level of durability

risk they can tolerate [Lis88]. This approach is also taken in the Microsoft’s .NET

framework by allowing resource managers to be specified as volatile [Mic]. TxOS

similarly allows transactions to relax durability guarantees to avoid blocking on

synchronous writes during commit.

Sinfonia [AMS+07] increases the concurrency of transactions by restricting

their generality. A Sinfonia minitransaction consists of a list of memory locations and

values to be read, written, and compared. Essentially, a minitransaction is a multi-

data compare-and-swap operation. The only control flow inside a minitransaction

is that the minitransaction will abort if any of the comparisons fail. This restriction

forces the minitransactions to remain short and allows minitransaction execution to

overlap completely with the execution of the two-phase commit protocol, minimizing

network round trips.

The authors of Sinfonia demonstrate the utility of minitransactions by imple-

menting a network file system and a group communication system. These systems

construct larger units of work that appear atomic and consistent to the rest of the

system by using minitransactions to read data into a private cache, operating on the
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Victim Attacker
if(access(’foo’)){

symlink(’secret’,’foo’);

fd=open(’foo’);

write(fd,...);

...

}

Victim Attacker
symlink(’secret’,’foo’);

sys xbegin();
if(access(’foo’)){

fd=open(’foo’);

write(fd,...);

...

}

sys xend();
symlink(’secret’,’foo’);

Figure 7.1: An example of a TOCTTOU attack, followed by an example that eliminates the race
using system transactions. The attacker’s symlink is serialized (ordered) either before or after the
transaction, and the attacker cannot see partial updates from the victim’s transaction, such as
changes to atime.

private copy with no transactional context, and then using a final minitransaction to

atomically revalidate the cache and write the updates to shared memory. In many

regards, this is like users manipulating their own lazy versioned cache with lazy con-

flict detection. Minitransactions have the added advantage that consistency is easily

verified by checking that each minitransaction maintains data structure invariants.

7.6 TOCTTOU race conditions

Figure 7.1 depicts a scenario in which an application wants to make a single, con-

sistent update to the file system by checking the access permissions of a file and

conditionally writing it. Common in setuid programs, this pattern is the source of

a major and persistent security problem in modern operating systems. An attacker
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can change the file system name space using symbolic links between the victim’s

access control check and the file open, perhaps tricking a setuid program into

overwriting a sensitive system file, like the password database. The POSIX API

provides no way for the application to tell the operating system that it needs a

consistent view of the file system’s name space.

Although most common in the file system, system API races, or time-of-

check-to-time-of-use (TOCTTOU) races, can be exploited in other OS resources.

Local sockets used for IPC are vulnerable to a similar race between creation and

connection. Versions of OpenSSH before 1.2.17 suffered from a socket race exploit

that allowed a user to steal another’s credentials [Ach]; the Plash sandboxing sys-

tem suffers a similar vulnerability [Pla]. Zalewski demonstrates how races in signal

handlers can be used to crack applications, including sendmail, screen, and wu-

ftpd [Zal01].

While TOCTTOU vulnerabilities are conceptually simple, they pervade de-

ployed software and are difficult to eliminate. At the time of writing, a search of

the U.S. national vulnerability database for the term “symlink attack” yields over

600 hits [NIS10]. Further, recent work by Cai et al. [CGJ09] exploits fundamental

flaws to defeat two major classes of TOCTTOU countermeasures: dynamic race de-

tectors in the kernel [TY03] and probabilistic user-space race detectors [THWS08b].

This continuous arms race of measure and countermeasure suggests that TOCTTOU

attacks can be eliminated only by changing the API.

In practice, such races are addressed with ad hoc extensions to the system

API. Linux has added a new close-on-exec flag to fifteen different system calls to

eliminate a race condition between calls to open and fcntl. Tsafrir et al. [THWS08a]

demonstrate how programmers can use the openat() family of system calls to con-

struct deterministic countermeasures for many races by traversing the directory tree

and checking user permissions in the application. However, these techniques cannot
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protect against all races without even more API extensions. In particular, they

are incompatible with the O_CREAT flag to open that is used to prevent exploits on

temporary file creation [CBWK01].

TOCTTOU races are more problematic on UNIX systems than Windows.

Windows reduces the risk of privilege escalation from TOCTTOU attacks by only

allowing privileged applications to create symbolic links. Windows applications use

mandatory locking more heavily than UNIX applications, reducing the likelihood of

race conditions in exchange for a higher risk of improperly released locks.

Fixing race conditions in the API as they arise is not an effective long-term

strategy. Complicating the API in the name of security is risky: code complexity

is often the enemy of code security [Ber07]. Because system transactions provide

deterministic safety guarantees and a natural programming model, they are an easy-

to-use, general mechanism that eliminates API race conditions.
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Chapter 8

Composing Linked List

Operations Without Locks

Software developers need better tools to write concurrent programs that effectively

leverage new generations of multicore hardware. In order to safely share data struc-

tures, many programs adopt locking, which limits the performance scalability of

the application. For some data structures, the programmer can adopt specialized

implementations that permit more concurrency, but these often heavily restrict func-

tionality. This chapter addresses this unsavory dilemma between functionality and

scalability in linked list implementations, describing a new linked list design that

provides the complete functionality of locked lists with performance scalability near

that of current lock-free implementations.

Applications with invariants across multiple lists cannot benefit from per-

formance scalability of lock-free lists, such as the ConcurrentSkipList classes of

the Java Concurrency package. Current lock-free list designs, including the popu-

lar Harris-Michael algorithm [Har01, Mic02], can safely insert or remove individual

items from a list, but cannot safely compose multiple operations. For instance, if an

application moves an item from one lock-free list to another, the list implementation
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can atomically remove the item from the first list and atomically add the item to

the second list, but there will be a period during which the item is is either on both

lists, or on neither list. If the application has an invariant that requires the item to

be on exactly one of two lists, the only safe option is to use locking. The inability

to safely compose complex list operations prevents some applications from enjoying

the performance benefits of lock-free lists.

A second barrier to adoption of lock-free lists is their reliance on dynamic

allocation and reclamation of list nodes. The Harris-Michael algorithm avoids syn-

chronization with readers of a deleted list node by deferring reclamation until it is

sure no threads are referencing the node. If an item is moved to another list, a new

list node is dynamically allocated.

This reliance on dynamic allocation of list nodes is unacceptable for operating

system kernels, which manage physical memory and file system caches using lists.

For instance, it is difficult to write low-level memory management code so reentrant

that, under a low memory condition, the kernel allocator can successfully allocate

list nodes in order to add reclaimed memory to a free list. Previous attempts to

dynamically allocate and garbage collect list nodes in kernel code have proved in-

tractable [MS05]. For this reason, both Linux and Windows avoid dynamic memory

allocation of list nodes by embedding the list nodes directly in the data structures to

be listed. These sets of lists are protected with coarse grained locks which, at least

in the Linux kernel, have proved to be a persistent scalability bottleneck [Cor09].

If OS kernels used more scalable lists, all applications would benefit, but this will

require a lock-free design that does not impose such heavy memory management

requirements on low-level kernel code.

This chapter presents a new lock-free linked list design, called olf, or opti-

mistic, lock-free lists. olf eliminates the functional restrictions of previous designs

while retaining performance scalability drastically superior to locking. At a high
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Function Name Description

bool insert (key t key,
val t value)

Insert a value into the list. Returns true if the value
was not already present.

bool delete(key t key) Remove an item from a list. Returns true if the item
was found and removed, false if the item is not present.

val t search(key t key) Find an entry in the list, returning the associated value.

Table 8.1: The canonical linked-list API.

level, list nodes in olf are versioned according to a shared epoch counter. Read-

ers of an olf list execute concurrently with writers, and concurrent writers can

optimistically create new versions of a list node, retrying incompatible attempts

to modify the same list node. The olf algorithm ensures that threads can safely

traverse lists, the system always makes forward progress, and that writing threads

can compose arbitrary list modifications safely. The olf design is suitable for use

in an OS kernel, and the chapter describes its application to improve Linux kernel

scalability. We leave integration of olf with TxOS for future work.

8.1 Background on lock-free lists

This section reviews the Harris-Michael lock-free list algorithm [Har01, Mic02], the

de facto lock-free list algorithm. The Harris-Michael algorithm is used in the Java

Concurrency Package’s ConcurrentSkipListSet and ConcurrentSkipListMap class-

es. This section also reviews the use of read-copy update (RCU) to protect read-

mostly lists in the Linux kernel. RCU applies similar concepts to the Harris-Michael

algorithm to eliminate read locks, but still requires write locks to compose opera-

tions. Write locking in RCU prevents concurrent modifications of lists. Section 8.5

provides more exhaustive coverage of related work on lock-free linked lists.
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8.1.1 Harris-Michael algorithm

The Harris-Michael algorithm is restricted to singly-linked lists, and in these exam-

ples, we assume the list is sorted by key. The canonical interface for a lock-free list

implementation, including this algorithm, consists of three functions: search, insert,

and delete, listed in Table 8.1.

The search function is implemented in a fairly straightforward manner: read-

ing threads simply follow a series of next pointers until they arrive at the desired

list node. A key concern of the insert and delete functions, therefore, is to modify

the list such that searches do not dereference a bad pointer value.

60 70 90

80

60 70 9080

Figure 8.1: Key steps to insert a node in a Harris-Michael list.

The implementation of insert is fairly straightforward, as illustrated in Fig-

ure 8.1. The list is first traversed to identify where to insert the node. The new

list node, for key 80 in the Figure, is allocated and populated with an appropriate

next pointer. Finally, the next pointer of the previous node (70) is set with an

atomic compare-and-swap (CAS) instruction. If the CAS fails, the insert must be

retried. This CAS ensures that no other node was inserted after node 70 in the list,

but there is another race condition that requires additional effort to prevent. As

node 80 is being inserted into the list, another thread could delete node 70 from

the list, as depicted in Figure 8.2. For this reason, a number of lock-free linked list

algorithms require a double-compare-and-swap (DCAS) instruction [GC96, MP92].

For performance reasons, DCAS has not been implemented on a processor since the

Motorola 68k.
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Figure 8.2: Insertion race condition with a single compare-and-swap.

Thus, the challenge for lock-free list algorithms is implementing delete such

that other, concurrent operations work correctly. The key insight of Harris’s original

algorithm is separating logical deletion from physical deletion, as illustrated in Fig-

ure 8.3. Logical deletion is performed by setting the next pointer of a deleted node

(70 in the example above) to a numerically distinct value that still allows traversal.

For example, one could set the low bit of the pointer to indicate logical deletion,

assuming that all list nodes are word-aligned. This allows a reader or inserter to

continue traversing the list, as well as reliably test for logical deletion. Thus, an

inserter would not insert a new node after a logically deleted node, but would back

up one step.

60 70 90 60

70

90

Figure 8.3: Key steps to delete a node from a Harris-Michael list.

After a node is logically deleted, it is then physically removed from the list

by changing the next pointer of the previous node with a CAS operation. A reader

can safely traverse the list and filter out any logically deleted nodes, regardless of

concurrent deletions.

The final issue is determining when the memory for a deleted list node can
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be reclaimed safely. Note that even after physical deletion, a reading thread may

still refer to this node for some time. Harris’s original algorithm proposed reference

counting garbage collection; Michael later refined the algorithm to incorporate other

strategies including hazard pointers [Mic04a], which explicitly track active object

references by readers. In order for either memory reclamation approach to work,

a deleted list node must persist until all potential readers cannot read the node.

This precludes embedding list nodes directly in the object to be listed, because a

statically allocated list node must be repurposed immediately if an object is deleted

and then inserted in another list.

8.1.2 RCU lists

Read-copy update (RCU) linked lists [McK04] allow limited composition with a

Harris-Michael-like design that is lock-free for readers, but serializes writers with a

lock. RCU linked lists inherit many of the limitations discussed above, including

the requirement of only singly-linked lists and the inability to recycle embedded list

nodes until after all potential readers have released a reference.

RCU is primarily used in the Linux kernel to mitigate scalability problems

on read-mostly lists, as heavily written lists are protected with a lock and will see no

benefits. In this context, garbage collection of list nodes is simplified based on the

kernel coding discipline that no references to an RCU-freeable object can be held

across a CPU scheduling event. While any reader is traversing an RCU-protected

list, it must disable preemption and cannot call any function that can block (e.g.,

dynamic memory allocation, disk read, etc.). At a high level, freed objects are

placed on a pending list; once each CPU has quiesced, or scheduled another thread,

the objects on the pending list can be freed.
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List Property Why required? Current
Techniques

Compose multiple
operations

Atomically move items from one list to
another, doubly linked lists, multiple
lists with mutual consistency require-
ments, etc.

Locking

Embedded list nodes Use lists in code where dynamic mem-
ory allocation is not available.

Locking, lim-
ited RCU

Table 8.2: Required linked list properties, why they are necessary, and the current options available
to developers.

8.1.3 Limitations

The Harris-Michael algorithm is elegant in its simplicity, but it is also functionally

limited. Concurrent insertions and removals are handled safely, but it cannot com-

pose these operations into larger operations, such as moving an item from one list

to another. Harris-Michael lists are singly-linked; doubly-linked lists require locks.

RCU partially addresses these limitations by reverting to locking for writers. Harris-

Michael lists also require a lock-free memory allocator and garbage collector; while

lock-free allocators exist for user-level programs, they may be impractical to adopt in

low-level system software. This chapter addresses these limitations, summarized in

Table 8.2, without reverting to locking, thereby retaining the performance scalability

benefits.

8.2 Optimistic lock-free list algorithm

This section describes the key contribution of this chapter: a new optimistic, lock-

free list (olf). The olf algorithm supports atomic composition of multiple list

operations as well as embedded list nodes, eliminating reliance on dynamic memory

allocation and reclamation of list nodes.

List nodes in olf are versioned according to a monotonically increasing
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epoch. List nodes contain multiple slots, which consist of a previous and next

pointer associated with a given epoch. Threads manipulate lists in explicit read

and write critical regions, which are associated with a given epoch. Writers allocate

slots and speculative list entries, which are committed in epoch order. As readers

traverse a list, at each list node they follow the pointers in the slot with the greatest

epoch less than or equal to their own.

Among a set of lists, epochs are managed using three shared counters: the

value of the highest committed epoch (committed_epoch), the value of the high-

est uncommitted epoch (max_epoch), and a cache of the oldest reader’s epoch

(read_epoch). These counters can be thought of as replacing a lock variable.

All other bookkeeping associated with olf is in thread-local storage (Figure 8.7);

thread-local bookkeeping is only written by one thread, but must be readable by

other threads.

Prev NextEpoch

0 AA

2 BB

Prev NextEpoch

2 AA

Node A (head) Node B - key 20

Reader - Epoch 0

Reader - Epoch 2

Figure 8.4: Two threads with different epoch reading a list. Each thread sees a view of the list
appropriate to the point in logical time in which it is serialized. The reader with epoch value 2 sees
Node B with key 20, and the reader with the earlier epoch of 0 does not.

Figure 8.4 illustrates two list readers, one that started at epoch 0 (before a

writer added Node B at epoch 2), and one that began after the writer completed

(epoch 2). The earlier reader sees a view of the list head that shows it empty (next

and previous pointers to itself), while the later reader traverses a different set of

slots that lead to Node B. Note that valid epochs increase by 2 because the low bit
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of an epoch indicates a failed speculation that should be ignored.

Optimistic writers. The olf algorithm is optimistic, in that it allows concurrent

writers to speculatively update different nodes in the list. If the list nodes are

uncontended, multiple write critical sections can execute in parallel and then commit

in quick succession. If two writers collide, one may have to retry its modifications.

Figure 8.5 illustrates two concurrent write threads. Each thread is inserting a new

list node between disjoint pairs of committed nodes. As long as writes are to disjoint

list nodes, they can proceed concurrently.

Writers must commit their changes in epoch order. When a writer completes

a critical region, it must wait for any writers with an earlier epoch to complete.

Writers track an undo log of each modified list node. In order to commit, the writer

walks this log and checks for concurrent modifications by a writer with an earlier

epoch. If any update was unsafe, all written slots are invalidated by setting the

low bit of the epoch and the writer retries. If the commit is safe, the writer simply

increments committed_epoch. For simplicity and fairness, olf essentially always

arbitrates conflicts in favor of the oldest writer. In the previous example, if the

two writing threads attempted to modify the same list node, the younger writer

would ultimately invalidate its speculative modifications and retry. Committing

and arbitrating conflicts according to a prescribed order ensures that all writers will

complete eventually, as no writer can obstruct the oldest writer, and each writer will

eventually become the oldest.

Note that there is a tradeoff between space and the amount of speculative

parallelism for list writers, as writers can only speculate when there are reclaimable

slots available. A list with only two slots per node will behave equivalently to RCU;

by allocating additional slots, non-conflicting writers can execute in parallel. For

all experiments in this chapter, we allocate four slots per node, as the benefit of

additional slots diminishes quickly.
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Prev NextEpoch

0 AA

2 BB

4 BD

6 ED

Prev NextEpoch

2 AA

4 CA

6 CE

Node A (head) Node B - key 20
Prev NextEpoch

4 DB

8 FB

Node C - key 30
Prev NextEpoch

4 AC

8 AF

Node D - key 50

Prev NextEpoch

6 BA

Node E - key 10
Prev NextEpoch

8 DC

Node F - key 40

Committed state - Committed epoch: 4

Speculative writer - Epoch 6 Speculative writer - Epoch 8

Figure 8.5: Two concurrent, speculative writers in an olf list. One thread with epoch 6 is spec-
ulatively adding a node between nodes A and B, and another is adding a node between C and D.
Writes to disjoint nodes are allowed to proceed in parallel, but must be committed in epoch order.
Readers will ignore speculative entries until they are committed.

Slot reclamation. The number of slots in the list node is limited to four by default

in our implementation. Thus, slots must eventually be reclaimed. Intuitively, a

writer can reclaim a slot if it is sure that the oldest reader will not read it. In order

to assess this, the algorithm maintains a shared variable, read_epoch, a potentially

stale cache of the oldest reader’s epoch. If a list node has two or more slots with an

epoch less than or equal to read_epoch, only the most recent of these slots will be

read by any threads. Thus, the older slots may be reclaimed, as described further

in §8.2.4. If the read_epoch is 4 in Figure 8.5’s example, the first and second slots
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Goal Invariant

A slot is not reclaimed until all
readers will use a later slot (i.e.,
readers can safely traverse lists
without locks).

read_epoch

≤ {e|e is the epoch of any active reader}
≤ committed_epoch

The oldest writer can always
make progress.

Each list node has at least one slot the oldest
writer can allocate, potentially after waiting
for readers with epochs less than the com-
mitted epoch complete.

Table 8.3: Key correctness goals for the olf algorithm, and list invariants that ensure them.

in Node A (epochs 0 and 2) can be reclaimed by a writer.

The rest of this section describes olf in more detail. §8.2.1 describes the data

structure invariants that ensure safe, concurrent access. §8.2.2 presents olf usage

examples, and §8.2.3 describes the steps needed to begin and end a critical region.

§8.2.4 describes the acquire_entry function, which creates new versions within a

list node. §8.2.5 explains where memory barriers are required in the algorithm on the

x86 architecture, §8.2.6 explains how the algorithm, simplified for presentation here,

can be extended to recover from thread failures, §8.2.7 concludes with discussion of

design issues.

8.2.1 Key invariants

Most of the complexity of the olf algorithm comes from careful management of

slots. Table 8.3 shows the two key list node invariants that prevent deadlock as well

as prevent unsafe traversal of the list.

A slot must not be reused if another thread might still read its pointers. The

first invariant, that read_epoch is less than or equal to the epoch of any reader,

ensures that slots are not reclaimed while a reader can access them. Recall that

read_epoch is used by writers to determine when a slot can be reclaimed. As long

as this value is less than or equal to the oldest reader’s epoch (the left inequality),
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writers will not overwrite pointers a reader is trying to follow. Reclamation is

discussed in more detail in §8.2.4.

Similarly, speculative writers should not consume available slots to the point

that writers deadlock waiting for slots. For example, suppose two writers wish to

modify the same two list nodes, and each list node has only one free slot. If each

writer allocates one of the two slots, the two can deadlock. The second invari-

ant is that younger writers always reserve a reclaimable slot for the oldest (i.e.,

next to commit) writer. If a slot is not available, a thread may spin until the

committed_epoch or read_epoch advances. This invariant ensures that the oldest

writer can always make progress and eventually commit. By induction, all writing

threads will eventually make progress, as critical regions commit in the same order

they started.

8.2.2 Code example

This subsection describes several examples taken from the port of the Linux file

system directory cache (dcache) to use olf lists, illustrating relatively straightfor-

ward changes required to use olf. Figure 8.6 shows the conversion of the Linux

list_add function and list_for_each iterator to the olf equivalents. Figure 8.7

provides key structure definitions used in code and pseudo-code examples through-

out the rest of the chapter. Note that both the interface and implementation are

quite similar. The main difference is that the pointers to be manipulated (slot_t

structures) must first be allocated and initialized, using the acquire_entry routine,

described in §8.2.4. Figure 8.6 also shows the conversion of a potentially read-only

iterator (list_for_each) to olf equivalent, using the much simpler read_entry

function.

Programmers using the olf list must explicitly annotate the beginning and

end of critical regions, as illustrated in Figure 8.8. Writers use the functions
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1 s t a t i c i n l i n e void o l f l i s t a d d ( s t r u c t o l f l i s t h e a d ∗new ,
2 s t r u c t o l f l i s t h e a d ∗head ){
3 s t r u c t o l f l i s t h e a d ∗next ;
4 s t r u c t s l o t t ∗prev e , ∗new e , ∗ next e ;
5
6 prev e = acqu i r e en t ry ( head ) ;
7 new e = acqu i r e en t ry (new ) ;
8 next = prev e−>next ;
9 next e = acqu i r e en t ry ( next ) ;

10
11 // Quit e a r l y and r e t r y i f w r i t e r i s i nva l i d a t ed
12 i f ( need r e t ry ) re turn ;
13
14 next e−>prev = new ;
15 new e−>next = next ;
16 new e−>prev = prev ;
17 prev e−>next = new ;
18 }
19
20 /∗ Or ig ina l l i s t a d d implementation and i n t e r f a c e
21 ∗ Helper func t i on l i s t a d d i n l i n e d f o r c l a r i t y . ∗/
22 s t a t i c i n l i n e void l i s t a d d ( s t r u c t l i s t h e a d ∗new ,
23 s t r u c t l i s t h e a d ∗head ) {
24 s t r u c t l i s t h e a d ∗prev , ∗next ;
25
26 prev = head ;
27 next = prev−>next ;
28
29 next−>prev = new ;
30 new−>next = next ;
31 new−>prev = prev ;
32 prev−>next = new ;
33 }
34
35 #de f i n e l i s t f o r e a c h ( pos , head ) \
36 f o r ( pos = ( head)−>next ; pos != ( head ) ; \
37 pos = pos−>next )
38
39 #de f i n e o l f l i s t f o r e a c h ( pos , head ) \
40 f o r ( pos = read ent ry ( head)−>next ; \
41 pos != ( head ) ; \
42 pos = read ent ry ( pos)−>next )

Figure 8.6: olf list add and olf list iterator implementations in the Linux kernel. Retains similar
interface and implementation as original list add and list for each, also depicted for comparison.

write_cs_enter() and write_cs_exit(), while readers use the read variants, de-

scribed in §8.2.3. In adding olf lists to the Linux kernel, these generally replaced

lock and unlock calls on the coarse-grained lock protecting the cache-related lists.

A second difference introduced by optimistic execution is that a writer can

fail and retry if it modifies the same list node as a concurrent writer with an earlier
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1 s t r u c t s l o t t {
2 s t r u c t o l f l i s t h e a d ∗next , ∗prev ;
3 i n t attempt ;
4 a tomic l ong t epoch ;
5 } ;
6 s t r u c t o l f l i s t h e a d { /∗ L i s t node ∗/
7 s t r u c t s l o t t e n t r i e s [MAX SPECULATION] ; /∗ 4 ∗/
8 } ;
9 s t r u c t o l f l i s t r e c o r d { /∗ Log entry ∗/

10 s t r u c t o l f l i s t h e a d ∗head ;
11 i n t index ;
12 unsigned long copy epoch ;
13 } ;
14 s t r u c t o l f l i s t i n f o { /∗ Thread−l o c a l bookkeeping ∗/
15 v o l a t i l e unsigned long epoch ;
16 i n t f l a g s ; /∗ wri te r , need ret ry , attempt count ∗/
17 i n t o l f r e c o r d c oun t ; /∗ undo log l ength ∗/
18 s t r u c t o l f l i s t r e c o r d ∗ o l f r e c o r d s ; /∗ undo log ∗/
19 } ;

Figure 8.7: olf data types. The olf_list_head replaces a list_head structure in a kernel data
structure, such as a dentry. Individual readers or writers operate on slot_t structures. The
olf_list_info is a per-thread data structure used to track critical section writes and other book-
keeping.

epoch. In modifying Linux to use olf lists, write critical regions typically execute in

a do loop until they can commit. For example, Figure 8.8 shows a modified version

of d_instantiate, which associates an inode with a newly created dentry. A

dentry (directory entry) represents a file name in cached in memory. This function

acquires and releases the dcache_lock in Linux, but in this code example, places

the d_alias list modification in a write critical region loop.

8.2.3 Beginning and ending critical sections

When a thread begins a read critical section, the thread sets its thread-local epoch

to the currently committed epoch. As the reader encounters a list node, it selects

the slot with the greatest epoch less than or equal to the thread’s epoch. When a

thread exits a read critical section, the thread marks its epoch as inactive by setting

the lower bit of its epoch. Because the low bit of an epoch number indicates an

inactive speculation, epoch values increase by 2.

Because readers always select the slot with the greatest epoch less than or
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1 void d i n s t a n t i a t e ( dentry ∗ entry , inode ∗ inode )
2 {
3 dentry−>d inode = inode ;
4 i f ( inode ) {
5 w r i t e c s e n t e r ( ) ;
6 do {
7 o l f l i s t a d d (&dentry−>d a l i a s , &inode−>i d en t r y ) ;
8 } whi le ( w r i t e c s e x i t ( ) ) ;
9 }

10 f s n o t i f y d i n s t a n t i a t e ( dentry , inode ) ;
11 s e c u r i t y d i n s t a n t i a t e ( entry , inode ) ;
12 }

Figure 8.8: olf usage example, from the modified Linux source code. d_instantiate is used to
associate a new dentry with an inode. Simplified slightly for clarity, including expansion of macros
and inlined functions.

equal to their thread-local epoch, writers can assess which slots in a list node can be

reused without harming any readers. This assessment is based on the oldest reader’s

epoch, cached in the shared counter read_epoch. The value of read_epoch is lazily

updated when a writer is under space pressure by scanning each thread’s epoch.

A write critical section begins by allocating a new epoch through an atomic

increment of max_epoch. The end of a write critical section is a bit more com-

plex, as it is the key point at which all speculative operations are serialized. The

write_cs_exit() function consists of three key steps: 1) It waits for previous writes

to complete. 2) It walks its undo log to check that a concurrent writer has not in-

validated any list nodes 3) If valid, it increments committed_epoch. If invalid, it

sets the low bit on each slot it created. Writers must detect conflicting updates to a

list node in order to prevent lost updates, which can occur if two concurrent writers

initialize a speculative slot from the same committed state (i.e., the older writer’s

updates would be effectively ignored by the younger writer). When a writer initial-

izes a slot, it records the epoch of the committed slot it copied to initialize the new

slot. A writer detects a missed update by an earlier writer when it is committing

by scanning the slots in a list node for any epochs between the thread’s epoch and

its logged copy of the epoch for that slot.
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8.2.4 The acquire_entry function

At the heart of the olf algorithm is the acquire_entry function, which allocates a

slot in a list node. Figure 8.9 provides high-level pseudo-code for this function, which

this section walks through, and Figure 8.10 provides pseudo-code for a key helper

function. Note that readers call a much simpler function (read_entry), that simply

selects the slot with the greatest epoch less than or equal to the reader thread’s

epoch.

The acquire_entry function consists of the following key steps: 1) Record

the list head in an undo log, 2) Allocate a slot, and 3) Initialize the slot. The undo

log for a thread is a straightforward array of pointers in thread-local storage (listed

as olf_records in Figure 8.7). After logging the entry, the remaining code executes

in a loop until it either acquires and initializes a slot or fails and subsequently retries

the entire write critical section.

The second step of acquire_entry (Figure 8.10) determines the number

of reclaimable slots, the best candidate for reclamation (to_alloc), and the most

recent committed slot to copy into the newly allocated slot (to_copy). An entry is

safe to reclaim if there is a more recent committed entry in the node and there are

no readers that could be reading this entry. A slot is also safe to reclaim if it was

invalidated by a failed writer that has subsequently committed without reusing the

slot.

A writer only attempts to allocate a slot if it is the oldest writer or it can

reserve at least one more slot available for the oldest writer. If more space is required,

a writer may update the value of read_epoch (Figure 8.9, Line 20) to the oldest

reader’s epoch by by reading each thread’s private epoch value and calculating the

minimum. If a writer gets to the point that space is low and it isn’t the next to

commit, the writer stalls until it is the next to commit (Line 24). This heuristic

typically yields marginally higher performance by avoiding bus traffic that is likely
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1 s t r u c t s l o t t ∗ acqu i r e en t ry ( s t r u c t o l f l i s t h e a d ∗head ) {
2 s t r u c t s l o t t ∗ entry = NULL, ∗ to copy , ∗ t o a l l o c ;
3 i n t new = 1 ;
4 unsigned long cached max epoch , a l l o c epoch , copy epoch ;
5 /∗ Record t h i s entry in wr i t e r ’ s p r i va t e l og . ∗/
6 th r ead l og ( head ) ;
7 do {
8 to copy = t o a l l o c = NULL;
9 i n t count = −1;

10
11 i f ( f i n d s l o t t o a l l o c (&count , &to copy , &copy epoch ,
12 &t o a l l o c , &a l l o c epoch , &entry , &new ) )
13 return NULL;
14
15 /∗ I f space i s t i ght , advance the shared read epoch
16 ∗ to enable garbage c o l l e c t i o n . ∗/
17 i f ( ( ! entry ) &&
18 ( count < 1 | |
19 ( count < 2 && ! next to commit ( ) ) ) ) {
20 advance read epoch ( ) ;
21 i f ( count < 1 | | read epoch not advanced )
22 cont inue ;
23 /∗ Throt t l e un l i k e l y−to−complete w r i t e r s ∗/
24 whi le ( ! next to commit ( ) ) rep pause ( ) ;
25 i f ( count < 1)
26 cont inue ;
27 }
28
29 i f ( ! entry ) {
30 /∗ Try to a l l o c a t e an entry . ∗/
31 i f ( a l l o c epo ch ==
32 CAS(& t o a l l o c−>epoch , a l l o c epoch , my epoch ) )
33 entry = t o a l l o c ;
34 e l s e cont inue ;
35 }
36
37 /∗ I n i t the entry i f i t i s new . ∗/
38 i f ( entry && new) {
39 ∗ entry = ∗ to copy ;
40 /∗ Make sure to copy didn ’ t change ∗/
41 i f ( to copy−>epoch != copy epoch ) {
42 cont inue ;
43 log copy epoch ( ) ;
44 }
45 } whi le ( entry == NULL) ;
46 re turn entry ;
47 }

Figure 8.9: High-level pseudo-code for the acquire_entry function, which allocates and initializes
an slot_t from an olf_list_head.

to be fruitless, but this heuristic isn’t necessary for correctness.

Because younger writers always reserve space for the oldest writer, the only
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1 i n t f i n d s l o t t o a l l o c ( i n t &count , s t r u c t s l o t t ∗&to copy ,
2 unsigned long &copy epoch , s t r u c t s l o t t ∗&to a l l o c ,
3 unsigned long &a l l o c epoch , s t r u c t s l o t t ∗&entry ,
4 i n t &new) {
5 unsigned long cached read epoch = read epoch ;
6 unsigned long cached committed epoch = committed epoch ;
7
8 f o r ( i = 0 ; i < MAX SPECULATION; i++) {
9 unsigned long entry epoch = head−>e n t r i e s [ i ] . epoch ;

10
11 i f ( entry epoch == current epoch ) {
12 /∗ We can re−ac c e s s our own wr i t t en entry ∗/
13 entry = &head−>e n t r i e s [ i ] ;
14 i f ( ! a l l o c ) { new = 0 ; re turn 0 ; }
15 }
16
17 i f ( entry epoch <= cached committed epoch | INACTIVE) {
18 i f ( ( ( ! to copy ) | | entry epoch > to copy−>epoch )
19 && ( entry epoch & INACTIVE) == 0)
20 to copy = &head−>e n t r i e s [ i ] ;
21
22 /∗ Se l e c t the s l o t to a l l o c a t e in t h i s p r e f e r en c e :
23 ∗ 1 An i nv a l i d s l o t from our prev ious attempt .
24 ∗ 2 An i nv a l i d s l o t from a committed wr i t e r .
25 ∗ 3 The o l d e s t va l i d s l o t . ∗/
26 i f ( ( ( entry epoch & INACTIVE) != 0)
27 | | ( entry epoch <= cached read epoch ) ) {
28 i f ( a l l o c epo ch != ( current epoch | INACTIVE)
29 && ( ( ! t o a l l o c )
30 | | ( ( entry epoch & INACTIVE) && ( a l l o c epo ch & INACTIVE)==0)
31 | | ( ( ( entry epoch & INACTIVE) | | ( a l l o c epo ch & INACTIVE)==0)
32 && entry epoch < a l l o c epo ch ) ) ){
33 t o a l l o c = &head−>e n t r i e s [ i ] ;
34 a l l o c epo ch = entry epoch ;
35 }
36 count++;
37 }
38 } e l s e i f ( entry epoch == ( current epoch | INACTIVE) ) {
39 i f ( head−>e n t r i e s [ i ] . attempt != current attempt ) {
40 count++;
41 t o a l l o c = &head−>e n t r i e s [ i ] ;
42 a l l o c epo ch = entry epoch ;
43 } e l s e {
44 /∗ This wr i t e attempt has been i nva l i d a t ed ∗/
45 s e t n e ed r e t r y ( ) ; r e turn −1;
46 } e l s e i f ( entry epoch < current epoch ) {
47 /∗ S t a l l f o r prev ious wr i t e r to commit ∗/
48 whi le ( committed epoch < entry epoch ) sp in ;
49 i = 0 ; cont inue ;
50 }} r e turn 0 ; }

Figure 8.10: Pseudo-code for acquire_entry helper function that finds a slot to allocate. This
function checks whether the writer already has a slot and if not, identifies the best slot to allocate
(to_alloc) and which slot to copy (to_copy). Returns 0 on success, -1 on error.
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case where the oldest writer can block is waiting for old readers to complete so that

the writer can reclaim a slot. One slot in any list node will contain the most recently

committed state. Additional slots may contain older versions that might be accessed

by an older reader, which can only be reclaimed when these readers exit. Eventually

all readers older than the committed epoch will exit and the slot can be reclaimed.

A writer allocates a slot in the list node by CAS-ing its epoch value to the

thread’s epoch. If the CAS fails the writer retries the loop, as another writer has

acquired this slot and all assumptions about the state of the node may be stale. If the

writer successfully allocates the slot, the writer initializes the slot from the contents

of the previously committed slot. After initializing entry, the writer logs the epoch

of the slot it copied from; this is used to detect intervening updates during commit.

On a retry, the previously allocated slot will be used. Once the slot is initialized,

the writer will break out of the loop and return a reference to the initialized slot.

8.2.5 Memory barriers

On the x86/64 architecture, the C implementation of the olf algorithm uses atomic

instructions (i.e., instructions with the lock prefix) to update shared epoch counters

and slot epochs. The olf algorithm also requires a single write memory barrier

(sfence instruction). Because the x86 ISA provides total store order (TSO)[AG96]

memory consistency, the need for memory barriers is fairly rare, as are examples

of when and how to use memory barriers other than Dekker’s algorithm [Dij65].

For both completeness, and for a new example, this subsection explains the use of

memory barriers in olf1.

Recall that read_epoch must be less than or equal to the epoch of the oldest

reader. Because read_epoch constrains which list entries can be reclaimed, violating

1The Java implementation of olf uses volatile types for synchronization variables. Volatile
types in Java provide a stronger memory model than TSO. To implement this consistency model,
the JVM on the x86 architecture automatically issues more memory barriers than strictly necessary
for olf.
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1 s t a r t : Thread1 epoch = ⊥
2 read committed epoch (=2)
3
4
5
6
7 wr i t e Thread1 epoch , 2

Thread 1: Beginning read
critical section.

inc committed epoch , 2 (=4)

Thread 2: Committing write
critical section.

1
2
3
4read committed epoch (=4)
5read Thread1 epoch (=⊥)
6wr i t e read epoch 4
7

Thread 3: Writer calling
advance_read_epoch.

Figure 8.11: Reads and writes from three code regions that can form a subtle race condition in
the olf list algorithm. Line numbers indicate ordering in time, parentheses indicate the value of a
variable.

1 do {
2 my thread epoch = committed epoch ;
3 s f e n c e ( ) ;
4 } whi le ( my thread epoch != committed epoch ) ;

Figure 8.12: Modified code for beginning a read critical section that eliminates the race condition
illustrated in Figure 8.11. Note that without the sfence, this code becomes equivalent to the
race-prone code in Figure 8.11.

this invariant can allow a writer to overwrite an entry that an active reader is reading,

leading to incorrect behavior.

Recall that a reader begins a critical section by writing the currently commit-

ted epoch into its thread-local epoch, which can also be scanned by writers to update

read_epoch. Because there is no atomic memory-to-memory move instruction on

the x86, a reader cannot atomically set its epoch to the committed_epoch value,

leading to the race condition illustrated in Figure 8.11. Essentially, between Thread

1 reading committed_epoch and writing the value (2) back to its thread epoch,

Thread 2 can commit a write critical section (incrementing committed_epoch to

4). Then another writer (Thread 3) can try to set the read_epoch value. In

advance_read_epoch(), Thread 3 reads the new value of committed_epoch (4),

and each reader’s epoch (Thread 1 is still inactive, represented by ⊥), writing the

minimum (4) to read_epoch. Thread 1 then writes 2 as its epoch, violating our

invariant (a reader should not have an epoch less than read_epoch).
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A straightforward solution would put the assignment in a loop that retries

the assignment if the value of committed_epoch changes during the move, as shown

in Figure 8.12. Even in a loop, this code is still prone to the same race without the

sfence instruction (write barrier). TSO allows loads to be serviced before a pending

store is retired from a CPU’s store buffer. Thus, the loop condition in Line 4 can be

checked and the loop terminated before the update of the thread’s epoch is globally

visible, making this code isomorphic to the race condition illustrated in Figure 8.11.

Adding the write barrier ensures that the update of the thread’s epoch is globally

visible before checking that committed_epoch has not changed.

8.2.6 Failure recovery

The strict definition of a lock-free (or, non-blocking) algorithm is one that guarantees

forward progress of some thread even in the presence of thread failures. As presented

above, and implemented in the prototype, a thread failure can prevent progress.

Note that in the context of an OS kernel or other low-level software, one may wish

to decouple the scalability benefits of a lock-free algorithm without tolerating thread

failures, as OS kernels are designed to immediately stop upon detecting errors to

minimize the risk of data corruption. This subsection describes simple extensions

that ensure system-wide progress in the presence of failures.

Assuming a mechanism to detect thread failures, one can remove any ob-

struction from a failed reader simply by setting its low (inactive) bit or by removing

it from the list scanned to update read_epoch. To remove a writer, one must

also traverse its undo log, invalidate any slots it has acquired, and then commit its

epoch. Because each of these steps would be implemented with a CAS instruction,

any number of blocked threads can perform them concurrently and safely.
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8.2.7 Design issues

Shared state The olf algorithm is presented with three epoch counters and a

list of threads as global state. In a more complex application with many lists,

one may wish to avoid stalling writers on updates to completely independent lists.

One mitigates this by sharing state with a set of lists, introducing similar coding

complexity to a lock variable, but with different performance characteristics.

Similarly, in the presentation of updating read_epoch, a writer may have to

traverse all threads’ local epochs. Some applications may have specialized threads

and would benefit from restricting the list of threads traversed. Our experience is

that lazily updating read_epoch is an important performance optimization.

Nested critical sections The olf implementation permits read critical sections

to be nested inside of write critical sections. When a write critical section traverses a

list, it allocates slots in each node accessed. Nesting a read critical section allows this

overhead to be elided, at the additional complexity of validating that any list nodes

found in the nested read critical section have not been changed by an earlier writer.

Note that in a garbage collected language or in C with a quiescence-based memory

reclamation scheme (as used in the Linux kernel and all C microbenchmarks used

to evaluate the list), list nodes will will not be freed until the writer has released its

references to the node. In our experience, searching a list in a read critical section

nested within a write critical section is a valuable optimization.

Debugging An interesting property of programming with a concurrent, versioned

data structure is that concurrency errors are often easier to debug. In debugging the

typical concurrency error on a traditional data structure, it is hard to reconstruct

the state at the instant something went wrong. In olf, the needed state is likely

to persist, as each list node stores up to the last four modifications. Moreover,

a common failure mode of earlier versions of the olf implementation was for all
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threads to hang at commit or trying to allocate a slot. This fail-stop mode combined

with the old versions greatly simplified the task of reconstructing error behavior.

8.3 Correctness sketch

This section presents proof sketches for the correctness of the olf list algorithm.

To show correctness, readers must see a consistent view of the data structure and

writers must be properly serialized. For liveness, we argue that readers can always

make progress and that the oldest writer can always make progress. By induction,

all writers will eventually complete and system-wide progress is assured. These

properties are upheld by the data structure invariants described in Section 8.2.1.

Readers see a consistent view of lists. In order for readers to see a consistent

view of a data structure, 1) readers must ignore slots containing “later” updates to

the data structure and 2) writers may not overwrite an earlier slot that a reader still

requires. The read_entry function gives a fairly clear guarantee that readers will

ignore slots marked with later epochs.

Section 8.2.4 discusses the conditions under which a slot may be overwritten.

Essentially, the pseudo-code of Figure 8.9 includes logic that tracks the most recent

slot older than or equal to read_epoch. This slot may not be overwritten, nor can

any valid slots with an epoch after or equal to read_epoch. Given the invariant dis-

cussed in Section 8.2.5 that read_epoch ≤ {e|e is the epoch of any active reader},

the most recently written list slot less than or equal to any given reader’s epoch will

be available at each list node.

Note that epochs in the prototype implementation are represented with 64-

bit integers. There is a theoretical possibility, unlikely in practice, that a particularly

old slot could persist across two wrap-arounds of the global epoch counter. Assuming

an extremely efficient machine were able to process one trillion write critical sections
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per second (cf. current CPUs process at most 4 billion instructions per second), a

double wrap-around would occur after 5.8× 1011 years.

Writers are serialized. The design of the olf list algorithm commits each writer

in epoch order. A later writer that completes its critical region will spin until its

immediate predecessor completes. This simplifies our reasoning about serializability,

in that we only need to show that each allocated list slot is initialized from the

version immediately preceding it (i.e., no lost updates). This is ensured by logging

the epoch from which a slot was initialized, and verifying during commit that no

slots are present with an epoch between the logged and current epoch.

System-wide progress. The olf list algorithm ensures system-wide progress

in the absence of failures. Section 8.2.6 describes simple modifications that allow

correct threads to recover from another thread’s failure.

The only condition in which a reader can be obstructed by another thread

is when setting its epoch initially, as it can spin until committed_epoch stabilizes

long enough to set its thread-local epoch (Figure 8.11). Starvation is theoretically

possible as the algorithm is presented, if enough threads could commit writes fast

enough to always be changing committed_epoch before a reader can initialize its

epoch. This can be prevented by “upgrading” a reader to a writer after a bounded

number of retries. In practice, the work required to commit an epoch is always going

to be substantially larger than the work required to initialize a reader epoch, so we

expect the risk of read starvation without write upgrades to be vanishingly small.

For writers, we show that the oldest writer can always make progress, and, by

induction, all writers will eventually commit. This demonstrates both system-wide

progress and fairness to each writer. A writer is only obstructed by waiting for older

writers to commit before committing itself, or during acquire_entry() if it cannot

allocate a slot. Because a writer will not allocate a slot unless there is another
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available slot for the oldest writer, speculative writers will not block the oldest

writer indefinitely in acquire_entry. Old readers can prevent the oldest writer

from acquiring a slot, but only if there are at least two committed slots that cannot

be reclaimed. Since all readers eventually complete and new readers initialize their

epoch to the committed_epoch, the oldest writer will eventually reclaim one of the

committed slots and make progress. Because every writer will eventually become the

oldest uncommitted writer, the algorithm assures progress for all writers. Because

the algorithm assures that readers can always make progress and that the oldest

writer will make progress, the olf list algorithm ensures system-wide progress.

8.4 Evaluation

We evaluate the performance of C and Java implementations of olf. We first

measure its performance in a microbenchmark developed by Hart et al. [HMBW07]

and describe case studies using olf in Java applications. We then describe the

application of olf to the Linux kernel’s dcache and measure the kernel’s scalability.

All data are the average of 3 or more tests.

8.4.1 Microbenchmark performance

We compare the performance of the olf algorithm to the Harris-Michael algo-

rithm and to locking a list. We use a C microbenchmark developed by Hart et

al. [HMBW07] to test the performance of a list implementation under various mixes

of read and write operations. For the Harris-Michael algorithm in C, we compare

against two reclamation schemes, hazard pointer-based reclamation [Mic04a] and

quiescence-based reclamation (similar to RCU’s reclamation). We also ported the

benchmark to Java, and wrote two locked list classes: one that uses the synchronized

keyword and one that uses a spinlock. For the locking baseline, we only use a coarse-

grained lock that protects the single list. We use the implementation of the Harris-
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C Read-only 10% Write

Threads 1 2 4 8 16 1 2 4 8 16

Spinlock 159 672 2776 15686 37909 163 898 3328 18887 46212

olf 360 362 362 360 362 694 776 867 1240 3333

HM (hzrd ptrs) 893 897 895 894 895 889 923 959 1050 1381

HM (quiescence) 142 149 146 145 147 156 208 208 494 1000

Java Read-only 10% Write

Threads 1 2 4 8 16 1 2 4 8 16

Spinlock 163 569 2526 10108 20452 118 492 3529 13304 34957

synchronized 161 780 2072 4088 7372 114 622 2225 2899 7289

olf 835 1063 1059 970 903 1376 1605 2455 2355 3263

ConcSkpLstSet 266 279 339 602 1067 301 389 532 958 1827

C 100% Write

Threads 1 2 4 8 16

Spinlock 185 1763 7158 27682 66297

olf 971 1720 2493 4749 20448

HM (hzrd ptrs) 878 1219 1531 2298 3721

HM (quiescence) 213 538 867 1780 3484

Java 100% Write

Threads 1 2 4 8 16

Spinlock 133 1191 10510 24850 41937

synchronized 129 1306 2854 5397 9192

olf 2029 3941 5358 7981 21816

ConcSkpLstSet 419 1171 2010 4313 10099

Table 8.4: Comparison of locked and lock-free list implementations in C and Java. Workload scales
input size with additional threads. Numbers are average execution time of an operation times the
number of CPUs in ns (lower is better). Numbers are provided for a read-only workload, a 10%
read workload, and a write-only workload. HM is the Harris-Michael algorithm; in C both hazard
pointers and quiescence-based reclamation are compared.

Michael algorithm from the Java Concurrency Package’s ConcurrentSkipListSet.

In order to fairly compare the implementations, we reduced the skiplist code to a

simple list. These measurements were taken on a 16-core SuperMicro SuperServer,

with four 4-core Intel Xeon X7350 chips running at 2.93 GHz and 48 GB of RAM.

Table 8.4 lists the performance of each list implementation traversing a 100-

node list. Columns compare read-only, 90% read/10% write, and write-only work-

loads at thread counts between 1 and 16. Each cell is the average execution time

of an operation times the number of CPUs (i.e., the same value across CPU counts

indicates perfect scaling).
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In general, the Java implementation is less tuned than the C implementa-

tion, which manifests primarily in the read-only and 10% write numbers. Another

anomaly in the numbers is that the synchronized list performed particularly well

under high write contention (even outperforming Harris-Michael), whereas the Java

and C spinlocks degrade performance similarly. We suspect that this is due to a back-

off heuristic that puts threads to sleep under high contention. This microbenchmark

only calculates aggregate throughput and does not require all threads to perform

equal numbers of requests; this backoff heuristic may yield numbers that are hard

to achieve when migration of work between threads is constrained.

olf dominates the performance of spinlocks and typically performs com-

parably to or somewhat worse than Harris-Michael. On read-only workloads, the

performance of all lock-free algorithms is insensitive to CPU count, and olf even

outperforms Harris-Michael with hazard pointers in C. A key observation of Hart

et al. is that the overheads of a lock-free list algorithm are dominated by atomic

operations and barriers; because quiescence involves fewer atomic operations and

barriers than hazard pointers it will generally have lower overheads. In the read-

only case, the quiescence outperforms the olf algorithm by roughly 200ns and the

olf algorithm outperforms hazard pointers by roughly 500ns.

On write-heavy workloads, olf generally performs worse than either ver-

sion of the Harris-Michael algorithm as CPU counts increase, although performance

degrades for all algorithms as more threads are added. The olf algorithm substan-

tially outperforms spinlocks, however. At 16 threads in C, the 100% writer and the

10% writer olf implementations outperform spinlocks by roughly a factor of 3.2×

and 13.7× respectively.

Note that the comparison with Harris-Michael disadvantages the olf algo-

rithm, which incurs higher overheads in order to provide features that the Harris-

Michael algorithm does not. Thus, Figure 8.13 shows an additional microbench-
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Figure 8.13: List move microbenchmark, which scales input size with threads. Y-axis is execution
time in logscale, lower is better. Note that previous lock-free algorithms cannot provide atomic
move between lists, so only spinlocks and olf are compared.

mark that measures the performance of moving elements between two lists, both

protected by spinlocks and olf. Previous lock-free algorithms cannot safely execute

this microbenchmark. As in the other benchmarks, the olf algorithm substantially

outperforms spinlocks at high CPU counts, showing a factor of 6.3× improvement

at 16 CPUs. In summary, the olf algorithm allows better scalability than spinlocks

in situations where locking is currently the only option programmers have.

8.4.2 Java application studies

In order to assess the macro-level performance and usability of olf, we ported the

xalan and tomcat benchmarks from the DaCapo suite [BGH+06], replacing synchro-

nized lists with olf. In both cases, the lists were not on the critical path, and the

change yielded no discernible performance difference. We highlight, however, that

in both applications, we were able to change on the order of ten lines of application

code to adopt olf. The primary changes were to remove synchronized keywords

and change a few class names. This indicates that olf can be easily adopted as

a drop-in replacement for a standard list-based collection library with no adverse

effect on macro-level performance.
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8.4.3 Application to Linux

We modified Linux kernel version 2.6.34 for this case study. All experiments in this

subsection were performed on a server with two quad-core Intel X5355 processors

(total of 8 cores) running at 2.66 GHz with 8 GB of memory. Experiments were

performed using an ext2 file system on a 10,000 RPM SATA disk. We selected ext2

because synchronous writes to a journaling file system (e.g., ext3) tend to make

workloads I/O bound and obscure the scalability of the file system data structures.

The server is running a 64-bit build of Ubuntu 10.04.

The key goal of this work is to make lock-free lists practical in an OS kernel.

As a case study, we replaced the lists in the Linux dcache with olf lists. The

dcache caches portions of the file system directory tree in memory, using dentry

structures to represent file names. Directory entries, or dentries, in this cache are

on four different lists:

1. A least-recently used list for memory reclamation

2. An alias list to track the names of hard links to a file’s inode

3. A subdirectory list, associated with the dentry of the parent directory, for

traversing the hierarchical directory tree

4. A hash list, for fast lookup of a path name.

Because there are so many traversal paths through these lists, adding fine-grained

locking is very difficult; thus the coarse-grained dcache_lock has proved difficult to

excise [Cor09].

The reliance on a coarse grained lock to protect lists harms Linux scalability.

Figure 8.14 shows a simple microbenchmark that creates and deletes 500,000 hard

links to files in different directories. This microbenchmark stresses the scalability of

the dcache specifically, as most file system benchmarks are typically I/O bound. At

4 threads or higher, performance degrades; profiling confirms that this is contention

for the dcache_lock.
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Figure 8.14: Link creation and deletion microbenchmark, showing execution time of 500,000
link/unlink operations divided across a number of threads. Lower is better.

By replacing dcache_lock-protected lists with olf, we improve the scalabil-

ity of the Linux kernel. olf lists introduce higher single-threaded overheads, but

tracks the performance of unmodified Linux at 2 CPUs and higher within .1 sec-

onds or less. olf outperforms Linux at 6+ CPUs, by a factor of 3× at 8 CPUs.

With additional tuning effort, the single threaded overhead can likely be reduced.

This experiment demonstrates that olf lists provide a more scalable alternative to

coarse-grained locking in the Linux kernel—currently coarse grained locking is the

only option available to developers.

8.5 Related Work

Valois [Val95] is credited with the first practical lock-free design for a singly-linked

list. Valois uses a single compare-and-swap (CAS) instruction to atomically insert

or remove a node. This design requires at least one additional auxiliary node for

each data-carrying list node; auxiliary nodes are used to detect inconsistencies that

arise from concurrent modifications.

Harris [Har01] describes a simpler approach that eliminates the need for

auxiliary nodes. Harris’s key insight is that a deletion in a singly-linked list is safe if
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both the previous next pointer and the one to be modified are unchanged. Because

two pointers cannot be checked with a single CAS instruction, Harris provides a two

phase deletion algorithm that uses two CAS instructions, first logically deleting the

node and then physically deleting it.

Michael [Mic02] refined Harris’s algorithm to eliminate reliance on reference

counting garbage collection, making it compatible with several lock-free memory

management methods, including hazard pointers [Mic04a]. The resulting algorithm,

commonly called the Harris-Michael algorithm, is used in the Java Concurrency

Package [HS08]. It was further refined by Fomitchev and Ruppert [FR04] to provide

a better worst-case amortized cost of operations on the list.

Michael [Mic04b] also describes a lock free memory allocator that is compat-

ible with the Harris-Michael algorithm in user-level applications. Like the Hoard

allocator [BMBW00] and other user-space memory allocators, it relies on allocation

of large regions of memory from the OS via system calls like mmap, which themselves

generally block and use locks. Petrank et al. [PMS09] provide a formal framework

that allows designers of user-level, lock-free algorithms to reason about lock-freedom

of applications separately from system services and to demonstrate that their algo-

rithm will be lock-free on the condition that the underlying system is as well

Read-copy update [McK04] (RCU) is a technique used in the Linux kernel

that eliminates locking for read-only critical regions by carefully modifying pointers

in a manner similar to the Harris-Michael algorithm. RCU lists inherit many of

the same limitations as Harris-Michael, including the inability to atomically move

nodes from one list to another. In addition, writers are mutually excluded with

locks; unlike lock-free algorithms, the only performance scalability benefit is for

read-mostly data structures.

Hart et al. [HMBW07] compare the performance of hazard pointers, the

quiescence-based memory reclamation used in RCU, and other lockless memory
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reclamation techniques. In most cases the frequency of atomic instructions and

memory fences are the dominant performance cost. Quiescence and epoch-based

schemes require the fewest atomic instructions and generally perform better, pro-

vided they occur sufficiently often to avoid memory exhaustion. The algorithm

described in this chapter uses epoch-based reclamation [Fra04] for slots in an em-

bedded list node; unlike previous uses, epochs in olf dictate when a slot in a data

structure can be reused, not when the entire data structure can be freed. The al-

gorithm described in this chapter also requires more atomic instructions than RCU

in order to permit more write parallelism, which yields higher single-threaded over-

heads.

Herlihy et al. [HLM02] present an abstract version of the memory manage-

ment problem for dynamic, lock-free data structures. Similar to Harris’s observation

about logical versus physical deletion, they present a solution that defers physical

deletion until all references to a logically deleted object are released. The olf

algorithm solves a highly constrained variant of the problem; rather than freeing

dynamically-allocated nodes, olf carefully recycles statically-allocated slots within

list nodes.

Hohmuth and Härtig [HH01] explore non-blocking synchronization in the

context of a microkernel, with a focus on wait-free locking. The only linked lists

used in the microkernel are per-CPU, obviating the need for locks or lock-free lists.

It is hard to compare the performance scalability of this system with a modern OS

kernel like Linux, as their prototype does not support multiprocessing.

Universal constructions. The earliest algorithms for lock-free linked lists were

Herlihy’s universal constructions [Her91, Her93]; a number of universal construc-

tions for lists and other data structures have followed in the literature. In general,

these constructions can turn any sequential algorithm into a parallel algorithm with

certain properties, such as wait-freedom [CER10]. These constructions are useful for
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reasoning about asymptotic behavior and writing proofs, but the generality often

comes at a substantial performance cost when compared to performance-tuned list

algorithms. Universal constructions are rarely adopted in practical concurrent code

bases.

DCAS-based algorithms. The Motorola 68k architecture provided a double

word compare-and-swap (DCAS) instruction, which allowed any two words of mem-

ory to be atomically compared and swapped. Several research operating systems

in the early 90s used this instruction to implement lock-free data structures, in-

cluding linked lists [GC96, MP92]. Although quite useful for implementing lock-

free algorithms, the DCAS instruction had performance issues and implementation

challenges, and thus has not been adopted by any modern instruction set architec-

ture. Best-effort hardware transactional memory might revive these algorithms if it

achieves ubiquity in commodity systems [AMD09]. Current, practical systems that

wish to reduce coarse-grained locking on lists must use algorithms that require only

a single-word CAS instruction, or an equivalent.

8.6 Summary

Developers of concurrent applications currently face an unsavory choice between

functionality and performance scalability when selecting list algorithms. The olf

list algorithm eliminates this unsavory choice by providing functionality previously

available only with locking (e.g., arbitrary composition of list operations and no

reliance on dynamic memory reclamation), but with performance closer to the cur-

rent state of the art in lock-free lists, except under very high write contention. This

chapter demonstrates that this algorithm can be used as a drop-in, and functionally

enhanced replacement for list-based classes in Java, as well as adopted in the Linux

kernel to improve kernel scalability.
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Our hypothesis is that this approach to versioning nodes without locks can

be generalized to other data structures, such as trees and arbitrary graphs, which we

plan to explore in future work. This work carefully explains and evaluates the appli-

cation of versioned nodes to linked lists—a simple data structure that nonetheless

has frustrated the scalability of real-world applications.

139



Chapter 9

Conclusion

Developers face an ongoing struggle to write correct, concurrent programs. This

struggle has been exacerbated by the increased prevalence of multi-core hardware.

Not only must developers adopt threads or other error-prone concurrency techniques

to improve application performance on successive generations of hardware, but even

single-threaded programs must manage concurrency at the system-level. This thesis

makes powerful abstractions for managing concurrency practical in modern systems

and software.

First, this thesis shows that system transactions are a practical abstraction

for a modern OS to provide to application developers. Application developers need

system transactions to manage system-level concurrency and address problems for

which current solutions are either ad hoc or non-existent. To make system transac-

tions practical, this thesis introduces novel operating system kernel implementation

techniques that make system transactions efficient and minimize the effort required

to extend transaction support to additional resources, such as adding transactions to

a given file system implementation. These implementation techniques avoid many

of the issues in previous transactional operating systems, such as deadlock in the

OS kernel, while maintaining a very simple and backwards-compatible API.
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This thesis also contributes a new lock-free linked list algorithm, olf, that fa-

cilitates writing concurrent applications. Unlike previous lock-free algorithms, olf

can increase the concurrency of an operating system kernel, benefitting all appli-

cations. Previous lock-free list algorithms sacrifice functionality for performance;

losing, for instance, the ability to atomically move an element from one list to an-

other. olf lists restore this missing functionality without reintroducing locks. olf

lists also eliminate dependence on dynamic memory reclamation, making them suit-

able for use in an OS kernel. The olf algorithm performs substantially better than

spinlocks in most cases, and can be used in applications for which spinlocks are

currently the only acceptable option.

The thesis demonstrates the practicality of these abstractions by implement-

ing them in mature, highly-deployed software. The TxOS prototype extends the

Linux kernel with system transactions and modifies real-world applications, such as

OpenLDAP and the Debian package manager, to use system transactions. Simi-

larly, we improve the scalability of the Linux kernel’s directory cache with olf lists.

While the implementation techniques described in this thesis are relatively mature,

the standards for adoption are quite high in developer communities for software such

as the Linux kernel. Future work will focus on addressing the remaining barriers to

adoption: lowering the performance overheads and demonstrating the value of these

abstractions in additional applications. The abstractions developed in this thesis

are important additions to the concurrent programmer’s toolbox, better equipping

him or her to write the concurrent applications of tomorrow.
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