External-memory Dictionaries in the Affine and
PDAM Models

MICHAEL A. BENDER, Stony Brook University

ALEX CONWAY, VMware Research

MARTIN FARACH-COLTO N, Rutgers University

WILLIAM JANNEN, Williams College

YIZHENG JIAQO, The University of North Carolina at Chapel Hill

ROB JOHNSON, VMware Research

ERIC KNORR, Harvard University

SARA MCALLISTER, Carnegie Mellon University

NIRJHAR MUKHERJEE, The University of North Carolina at Chapel Hill
PRASHANT PANDEY, Lawrence Berkeley National Laboratory and University of California Berkeley
DONALD E. PORTER, The University of North Carolina at Chapel Hill
JUN YUAN, Pace University

YANG ZHAN, The University of North Carolina at Chapel Hill

Storage devices have complex performance profiles, including costs to initiate IOs (e.g., seek times in hard
drives), parallelism and bank conflicts (in SSDs), costs to transfer data, and firmware-internal operations.

An earlier version of this article appeared in the Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA) [12].

We gratefully acknowledge support from NSF Grants No. CCF 805476, No. CCF 822388, No. CNS 1408695, No. CNS 1755615,
No. CCF 2106827, No. CCF 2118832, No. CCF 1439084, No. CCF 1725543, No. CSR 1763680, No. CCF 1716252, No. CCF
1617618, No. IIS 1247726, No. CNS 1938709, No. CNS 1938180, and from Sandia National Laboratories, VMware, and a
Netapp Faculty Fellowship.

Authors’ addresses: M. A. Bender, Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-
2424 USA; email: bender@cs.stonybrook.edu; A. Conway and R. Johnson, VMware research, 3425 Hillview Avenue, Palo
Alto CA 94304 USA; emails: {aconway, robjl@vmware.com; M. Farach-Colton, Department of Computer Science, Rutgers
University, Piscataway, NJ 08855 USA; email: martin@farach-colton. com; W. Jannen, Department of Computer Science,
47 Lab Campus Drive, Williams College, Williamstown, MA 01276 USA; email: jannen@cs.williams.edu; Y. Jiao and D. E.
Porter, Department of Computer Science, University of North Carolina at Chapel Hill, Campus Box 3175, Brooks Computer
Science Building, Chapel Hill, NC 27599-3175 USA; emails: yizheng@cs.unc.edu, porter@cs.unc.edu; E. Knorr,School of En-
gineering and Applied Sciences, Harvard University, Science and Engineering Complex, 150 Western Avenue, Boston, MA
02134 USA; email: eric.rknorr@gmail.com; S. McAllister, Computer Science Department, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, PA 15213-3891 USA; email: sjmcalli@cs.cmu.edu; N. Mukherjee, Computer Science Department,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3891 USA; email: nirjharm@gmail.com; P. Pandey,
Lawrence Berkeley National Lab and University of California, Berkeley, 1 Cyclotron Road, Berkeley, CA 94720 USA; email:
ppandey@berkeley.edu; J. Yuan, Seidenberg School of Computer Science and Information Systems, Pace University, One
Pace Plaza, New York, NY 10038-2613 USA; email: jyuan2@pace.edu; Y. Zhan, Brooks Computer Science Building, 201 S.
Columbia Street, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175 USA; email: yzhan@cs.unc.edu.
Updated author affiliation: NIRTHAR MUKHERJEE, Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2329-4949/2021/09-ART15 $15.00

https://doi.org/10.1145/3470635

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3470635

15:2 M. A. Bender et al.

The Disk-access Machine (DAM) model simplifies reality by assuming that storage devices transfer data in
blocks of size B and that all transfers have unit cost. Despite its simplifications, the DAM model is reasonably
accurate. In fact, if B is set to the half-bandwidth point, where the latency and bandwidth of the hardware
are equal, then the DAM approximates the IO cost on any hardware to within a factor of 2.

Furthermore, the DAM model explains the popularity of B-trees in the 1970s and the current popularity
of B®-trees and log-structured merge trees. But it fails to explain why some B-trees use small nodes, whereas
all B®-trees use large nodes. In a DAM, all 10s, and hence all nodes, are the same size.

In this article, we show that the affine and PDAM models, which are small refinements of the DAM
model, yield a surprisingly large improvement in predictability without sacrificing ease of use. We present
benchmarks on a large collection of storage devices showing that the affine and PDAM models give good
approximations of the performance characteristics of hard drives and SSDs, respectively.

We show that the affine model explains node-size choices in B-trees and B?-trees. Furthermore, the models
predict that B-trees are highly sensitive to variations in the node size, whereas B-trees are much less sensitive.
These predictions are born out empirically.

Finally, we show that in both the affine and PDAM models, it pays to organize data structures to exploit
varying IO size. In the affine model, B®-trees can be optimized so that all operations are simultaneously
optimal, even up to lower-order terms. In the PDAM model, B-trees (or B-trees) can be organized so that
both sequential and concurrent workloads are handled efficiently.

We conclude that the DAM model is useful as a first cut when designing or analyzing an algorithm or data
structure but the affine and PDAM models enable the algorithm designer to optimize parameter choices and
fill in design details.

CCS Concepts: « Information systems — Record and block layout; Magnetic disks; Flash memory; »
Theory of computation — Data structures design and analysis;

Additional Key Words and Phrases: External memory, performance models, write optimization

ACM Reference format:

Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jannen, Yizheng Jiao, Rob Johnson, Eric
Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant Pandey, Donald E. Porter, Jun Yuan, and Yang Zhan. 2021.
External-memory Dictionaries in the Affine and PDAM Models. ACM Trans. Parallel Comput. 8, 3, Article 15
(September 2021), 20 pages.

https://doi.org/10.1145/3470635

1 INTRODUCTION

Storage devices have complex performance profiles, including costs to initiate IO (e.g., seek times in
hard drives), parallelism and bank conflicts (in SSDs), costs to transfer data, and firmware-internal
operations.

The Disk-access Machine (DAM) model [2] simplifies reality by assuming that storage devices
transfer data in blocks of size B and that all transfers have unit cost. Despite its simplifications, the
DAM model has been a success [4, 71], in part, because it is easy to use.

The DAM model is also reasonably accurate. If B is set to the hardware’s half-bandwidth size—
that is, the IO size where a request’s average initiation time and data-transfer time are equal—then
the DAM model predicts the IO cost of any algorithm to within a factor of roughly 2 on that
hardware. In other words, if an algorithm replaces all of its IOs with IOs of the half-bandwidth
size, i.e., by padding smaller IOs and breaking larger 1Os into half-bandwidth-sized requests, then
that algorithm’s IO cost increases by a factor of roughly 2.

The DAM model explains some choices that software architects have made. For example, the
DAM model gives an analytical explanation for why B-trees [8, 33] took over in the 1970s and why
Bf-trees [17, 26], log-structured merge trees [15, 53], and external-memory skip lists [10, 19, 61]
are taking over now.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

https://doi.org/10.1145/3470635

External-memory Dictionaries in the Affine and PDAM Models 15:3

But the DAM model has its limits. For example, the DAM model does not explain why B-trees
in many databases and file systems use nodes of size 16 KiB [1, 50, 51, 55, 56], which is well below
the half-bandwidth size on most storage devices, whereas B-trees optimized for range queries use
larger node sizes, typically up to around 1 MB [57, 59]. Nor does it explain why TokuDB’s [69]
B¢-tree uses 4MiB nodes and LevelDB’s [42] LSM-tree uses 2MiB SSTables for all workloads. In a
DAM, all IOs, and hence all nodes, are the same size.

How can an optimization parameter that can vary by over three orders of magnitude have es-
caped algorithmic recognition? The answer is that the DAM model is too blunt an instrument to
capture these design issues.

In this article, we show that the affine [3, 63] and PDAM [2] models, which are small refine-
ments of the DAM model, yield a surprisingly large improvement in predictivity without sacrific-
ing ease of use.

The affine and PDAM models explicitly account for seeks (in spinning disks) and parallelism
(in solid-state storage devices). In the affine model, the cost of an IO of k words is 1 + ak, where
@ < 1is a hardware parameter.! In the PDAM model, an algorithm can perform up to P I0s of
size B in parallel.

Results. We show that the affine and PDAM models improve upon the DAM model in three ways.

The affine and PDAM models more accurately estimate IO costs. In Section 4, we present mi-
crobenchmarks on a large collection of storage devices showing that the affine and PDAM models
are good approximations of the performance characteristics of hard drives and SSDs, respectively.
We show that, for example, the PDAM is able to correctly predict the run-time of a parallel random-
read benchmark on SSDs to within an error of never more than 14% across a broad range of devices
and numbers of threads. The DAM model, on the other hand, overestimates the completion time
for large numbers of threads by roughly P, the parallelism of the device, which ranges from 2.9
to 5.5. On hard drives, the affine model predicts the time for I0s of varying sizes to within a 25%
error, whereas, as described above, the DAM model is off by up to a factor of 2.

Researchers have long understood the underlying hardware effects motivating the affine and

PDAM models. Nonetheless, it was a pleasant surprise to see how accurate these models turn out
to be, even though they are simple tweaks of the DAM model.
The affine and PDAM models explain software design choices. In Sections 5 and 6, we rean-
alyze the B-tree and the B®-tree in the affine and PDAM models. The affine model explains why
B-trees typically use nodes that are much smaller than the half-bandwidth size, whereas B*-trees
have nodes that are larger than the half-bandwidth size. Furthermore, the models predict that the
B-tree is highly sensitive to variations in the node size whereas B*-trees are much less sensitive.
These predictions are borne out empirically.

The affine and PDAM models enable better data-structure designs. In a B®-tree, small nodes
optimize point queries and large nodes optimize range queries and insertions. In Section 6, we
show that in the affine model, nodes can be organized with internal structure (such that nodes
have subnodes) so that all operations are simultaneously optimal, up to lower order terms. Since
the DAM model loses a factor of 2, it is blind to such fine-grained optimizations.

The PDAM model allows us to organize nodes in a search tree so that the tree achieves optimal
throughput when the number of concurrent read threads is both large and small. A small number
of read threads favors large nodes, and a large number favors small nodes. In Section 8, we show
how to organize nodes so that part or all of them can be read in parallel, which allows the data
structure to handle both workloads obliviously and optimally.

!n reality, storage systems have a minimum write size, but we ignore this issue, because it rarely makes a difference in the
analysis of data structures and it makes the model cleaner.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

15:4 M. A. Bender et al.

Discussion. Taking a step back, we believe that the affine and PDAM models are important com-
plements to the DAM model. The DAM is useful as a first cut when designing or analyzing an
algorithm or data structure but the affine and PDAM models enable the algorithm designer to
optimize parameter choices and fill in design details.

2 THE PDAM AND AFFINE MODELS

In this section, we present the affine model (most predictive of hard disks) and the PDAM model
(most predictive of SSDs). The DAM model assumes all IOs have the same size and cost, which is
a reasonable approximation for IOs that are large enough. The affine and PDAM models capture
what happens for small and medium IO sizes.

2.1 Disk Access Machine (DAM) Model

The DAM model [2] assumes a two-level cache hierarchy with a cache of M words, where the
cache is subdivided into M/B blocks; a slower storage device transfers data to and from cache in
these B-sized blocks. The model applies to any two adjacent levels of a cache hierarchy, such as
RAM versus disk or L3 versus RAM. Performance in the DAM model is measured by counting the
number of block transfers performed during an algorithm’s or data structure’s execution.

Note that B is distinct from the block size of the underlying hardware. B is a tunable parame-
ter that determines the amount of contiguous data transferred per IO: a bigger B means each IO
transfers more data but takes more time.

The DAM model counts IOs but does not assign a cost to each I0. The DAM model’s simplicity
is a strength in terms of usability but a weakness in terms of predictability. On HDDs, it does not
model the faster speeds of sequential IO versus random IO. On SSDs, it does not model internal
device parallelism or the incremental cost of larger 1Os.

These inaccuracies limit the effectiveness of the DAM model for optimizing data structures. As
we will show, there are asymptotic consequences for these performance approximations.

For example, in the DAM model, the optimal node size for an index such as a B-tree, B*-tree, or
buffered repository tree is B [17, 27, 33]. There is no advantage to growing smaller than B, since B
is the smallest granularity at which data is transferred in the data structure. But using nodes larger
than B also does not help.

Could the DAM be right? Maybe the right solution is to pick the best B as an extra-model
optimization, and from then on use B in all data-structure design. Alas no. The best IO size is
workload and data-structure dependent [17, 20].

2.2 SSDs and the PDAM Model

The PDAM model improves SSD performance analysis over the DAM model by accounting for the
IO parallelism. In its original presentation [2], the external-memory model included one more pa-
rameter, P, to represent the number of blocks that can be transferred concurrently. This parameter
was originally proposed to model the parallelism available in RAID arrays (arrays of cooperating
disks that masquerade as a single logical unit). Although there exist parallel and multicore IO mod-
els [5, 6, 24, 32, 72, 73], almost all theoretical work on external memory is parameterized by M, N,
B, and not P, which means that implicitly P = 1.

We argue for reviving P to model the parallelism of SSDs, including fast NVMe SSD devices.
(NVMe, which stands for non-volatile memory express, is an interface specification for connecting
non-volatile memory devices over the PCI express bus; NVMe SSDs typically have faster, higher-
end components.)

Internally, SSDs store data on units of NAND flash, which the device controller may access in
parallel. To manage the complexities of the internal hardware, SSD controllers implement a flash

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

External-memory Dictionaries in the Affine and PDAM Models 15:5

translation layer (FTL) that (among its many responsibilities) receives 10 requests from the OS
and transparently maps those requests to physical locations on the SSD’s NAND flash chips. The
FTL performs IOs at page granularity, typically 512 B-16 KB. Multiple NAND flash pages form a
single write-erase block, and multiple write-erase blocks are grouped together into banks, which
can be independently accessed in parallel. The FTL typically manages multiple flash chips, granting
even more parallelism [38, 43]. This internal parallelism is why applications must maintain deep
IO request queues to get full bandwidth out of an SSD [30, 41].

Definition 1 (PDAM Model). In each time step, the device can serve up to P IOs, each of size
B. If the application does not present P IOs to the device in a time step, then the unused slots are
wasted. Within a time step, the device can serve any combination of reads and writes. Performance
is measured in terms of time steps, not the total number of IOs.

Thus, in the PDAM model a sequential scan of N items, which uses O(N/B) IOs, can be per-
formed in O(N/(PB)) time steps.

For the purposes of this article, IOs are concurrent-read-exclusive-write (CREW) [74] (i.e.,
if there is a write to location x in a time step, then there are no other concurrent reads or writes
to x.)

2.3 Hard Disks and the Affine Model

When a hard drive performs an IO, the read/write head first seeks, which has a setup time of s
seconds, and once the disk head is in place, it reads data locally off the platter at bandwidth of ¢
seconds/byte, which corresponds to a transfer rate.

Parameters s and ¢ are approximate, and vary based on disk geometry; the setup time can vary
by an order of magnitude. For example, a track-to-track seek may be ~1 ms, while a full platter
seek is ~10 ms. Nonetheless, it is remarkably predictive to view these as fixed [63].

Definition 2 (Affine Model). 10s can have any size. An IO of size x costs 1 + ax, where the 1
represents the normalized setup cost and & < 1 is the normalized transfer cost.

Thus, after normalizing, « = t/s for a hard disk.
The following lemma gives reductions between the affine and DAM models, even when IOs in
the DAM model need to be block-aligned.

LEMMA 1. An affine algorithm with affine cost C can be transformed into a DAM algorithm with
DAM cost at most 4C, where blocks have size B = 1/a. If the affine algorithm has a RAM of size M,
then the DAM algorithm has a RAM of size M + 2/a.

A DAM algorithm with DAM cost C and blocks of size B = 1/a can be transformed into an affine
algorithm with affine cost 2C. If the DAM algorithm has a RAM of size M, then the affine algorithm
also has a RAM of size M.

Proor. We first give the affine-to-DAM transformation. The idea is to round up any read or
write IO of size x into blocks of size 1/a. Whatever data is stored in memory in the affine algorithm
is also stored in the DAM algorithm. Because IOs are rounded up to aligned blocks, an IO of size x
in the affine algorithm may be rounded up to a block-aligned chunk of memory of size x + 2/« in
the DAM model. For an IO that is a read, this means that data of size nearly 2/« may be read into
memory and then immediately discarded. For an IO that is a write, this means that data of size
nearly 2/ may need to be read into memory before the aligned blocks can be written atomically.

We now consider IOs of size x. We separately address the cases of (1) x < 1/a and (2) x > 1/a.

(1) When x < 1/a, an IO costs at least 1 in the affine model, and requires at most two blocks to
be transferred. However, if these two blocks are writes, then up to two blocks may first also need

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

15:6 M. A. Bender et al.

to be read so that blocks can be written back atomically. Thus, an affine cost of between 1 and 2
may trigger a DAM cost of at most 4.

(2) When x > 1/a, an 10 of size x transfers 1 + [ax] < ax + 2 blocks in the DAM model. For
IOs that are writes, there are an additional two blocks that may need to be read in. Thus, when the
original affine cost is 1 + ax, the DAM cost is at most ax + 4.

The DAM-to-affine transformation is more direct. Every IO in the DAM algorithm has size 1/a.
The same IO of size 1/« has an affine cost of 2. O

Thus, if losing a constant factor on all operations is satisfactory, then the DAM is good enough.
What may be surprising is how many asymptotic design effects show up when optimizing to
avoid losing this last constant factor. A factor of 2 is a lot for an external-memory dictionary. For
example, even smaller factors were pivotal for a subset of authors of this article when we were
building and marketing TokuDB [69]. Additionally, losing a factor of 2 on large sequential write
performance was a serious setback on making BetrFS a general-purpose file system [34, 47, 76-78].

3 BACKGROUND ON B-TREES AND B*-TREES

A dictionary data structure maintains a set of key-value pairs and supports inserts, deletes,
point queries, and range queries. Here we review some common external-memory dictionaries.
B-trees. The classic dictionary for external storage is the B-tree [8, 33]. A B-tree is a balanced
search tree with fat nodes of size B, so that a node can have ©(B) pivot keys and ©(B) children. All
leaves have the same depth, and key-value pairs are stored in the leaves. The height of a B-tree is
O(logg,; N), where N is the number of elements in the tree. There are many algorithmic choices
for B-tree rebalancing. One simple mechanism is the following. Split any node that has greater
than B elements and merge any node that has fewer than B/4 elements with a sibling.

The following theorem gives the performance of a B-tree with a warm cache, that is, when the
top part of the tree is stored not only on disk but also is also cached in RAM:

LEMMA 2 (FOLKLORE). In a B-tree with size-B nodes and N elements, point queries, inserts, and
deletes take O(logg,,(N/M)) IOs. A range query scanning { elements takes O([£/B1) IOs plus the
point-query cost. The amortized IOs spent modifying the tree per insert/delete is O(1/B).

Proor. The B-tree can cache up to M/B of its nodes in RAM. Say that the top log_,(M/B)+o0(1)
levels of the tree are cached. Then accessing any node in this top part of the tree has zero IO cost.
The result is that a point query, which follows a path from the root of the tree to a leaf, makes
logg,;(N) —logg, (M) £ o(1) IOs.

A range query is just a point query plus a scan of the leaves. Since ¢ elements are stored in
O([¢/B]) leaves, the IO cost for the leaf scan is an additional O([¢/B]) IOs.

An insert or delete is a point query plus the cost to merge and split tree nodes. At most O(1)
nodes are merged/split per level, and so the bound follows.

In fact, the amortized rebalance cost is a low-order term. As we explain, in any sequence of
O(N) inserts/deletes there are O(N/B) node splits/merges. In particular, after a leaf triggers a split
or merge, there are Q(B) inserts/deletes before it can trigger another split/merge. A parent of a leaf
therefore needs Q(B?) inserts/deletes into descendants between when it can trigger a modification,
and in general a node at height h needs Q(B"*!) inserts or deletes. Thus, the total number of I0s
is ©(N/B) for an amortized modification cost of @(1/B) IOs. O

The systems community often evaluates data structures in terms of their write amplification,
which we define below [62].

Definition 3. The write amplification is the amortized amount of data written to disk per
update divided by the amount of data actually modified by the update.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

External-memory Dictionaries in the Affine and PDAM Models 15:7

Write amplification is the traditional way of distinguishing between read I0s and write IOs.
Distinguishing between reads and writes makes sense, because with some storage technologies
(e.g., NVMe SSDs) writes are more expensive than reads, and this has algorithmic consequences
[9, 22, 23, 46]. Moreover, even when reads and writes have about the same cost, other aspects of the
system can make writes more expensive. For example, modifications to the data structure may be
logged, and so write IOs in the B-tree may also trigger write IOs from logging and checkpointing.

In the DAM model, the write amplification of a dictionary is just B times the amortized number
of write IOs per insertion.

LEMMA 3. The worst-case write-amplification of a B-tree is ©(B).

Proor. We first give a B-tree workload that achieves a write amplification of Q(B). Let the
number of elements in the B-tree be N = Q(BM). Suppose that random elements are inserted
into the tree. Divide the computation into phases, where, each phase consists of M random inserts.
Thus, in expectation, ©(M) leaves are modified. But only @(M/B) leaves can be cached in memory
at any time. Thus, each phase takes an expected ©(M) I0s, writing @(M) leaves to disk. Since each
leaf has size ©(B), each phase transfers an expected @(MB) data.

We now show that amortized write amplification of a B-tree is O(B). Divide any workload into
phases of O(N) inserts/deletes. By Lemma 2, in every ©(N) inserts/deletes, there may be O(N) IOs,
but there are only O(N/B) node splits and merges. Thus, the amortized IO cost for modifications
to the tree per insert/delete is O(1) for a write amplification of O(B). O

B?-trees. The B®-tree [13, 17, 26, 27, 48] is a write-optimized generalization of the B-tree. (A write-
optimized dictionary (WOD) is a searchable data structure that has (1) substantially better inser-
tion performance than a B-tree and (2) query performance at or near that of a B-tree.)

The B*-tree is used in some write-optimized databases and file systems [34, 39, 47, 47, 49, 58, 67,
68, 76-78]. A more detailed description of the B®-tree is available in the prior literature [17].

As with a B-tree, the B®-tree is a balanced search tree with fat nodes of size B. A B®-tree leaf
looks like a B-tree leaf, storing key-value pairs in key order. A B*-tree internal node has pivot keys
and child pointers, like a B-tree, but it also has space for a buffer. The buffer is part of the node and
is written to disk with the rest of the node when the node is evicted from memory. Modifications
to the dictionary are encoded as messages, such as an insertion or a so-called tombstone message
for deletion. These messages are stored in the buffers in internal nodes, and eventually applied to
the key-value pairs in the leaves. A query must search the entire root-to-leaf path, and logically
apply all relevant messages in all of the buffers.

Buffers are maintained using the flush operation. Whenever a node u’s buffer is full (“over-
flows”), then the tree selects (at least one) child v, and moves all relevant messages from u to v.
Typically v is chosen to be the child with the most pending messages. Flushes may recurse, i.e.,
when a parent flushes, it may cause children and deeper decedents to overflow.

The B*-tree has a tuning parameter ¢ (0 < ¢ < 1) that controls the fanout F ~ B® + 1. Setting
¢ = 1 optimizes for point queries and the B®-tree reduces to a B-tree. Setting ¢ = 0 optimizes
for insertions/deletions, and the B®-tree reduces to a buffered repository tree [27]. Setting ¢ to a
constant in between leads to point-query performance that is within a constant factor of a B-tree,
but insertions/deletions that are asymptotically faster. In practice, F is chosen to be in the range
[10, 20]; for example, in TokuDB, the target value of F is 16.

THEOREM 4 ([17, 26]). In a B®-tree with N elements, size-B nodes, and fanout 1+ B, fore € [0, 1],
(1) insertions and deletions take O(# logge, (N /M)) amortized IOs,
(2) point queries take O(logg._,(N/M)) IOs, and

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

15:8 M. A. Bender et al.

(3) a range query returning { elements takes O([€/B1) IOs plus the cost of a point query,
(4) The write amplification is O(B® logg. (N /M)).

4 MICROBENCHMARKS TO VALIDATE THE AFFINE AND PDAM MODELS

We now experimentally validate the accuracy of the affine model for hard disks and the PDAM
model for SSDs. We show that the models are remarkably accurate, even though they do not ex-
plicitly model most hardware effects.

One of the messages of this section is that, even though the affine and PDAM models are only
tweaks to the DAM model, they have much more predictive power. We can even use them to make
predictions and reason about constants. As we will see in the next section, optimizing the constants
for various operations will cause some design parameters to change asymptotically.

Unless noted otherwise, all experiments in this article were collected on a Dell PowerEdge
T130 with a 3.0 GHz Intel E3-1220 v6 processor, 32 GiB of DDR4 RAM, two 500 GiB TOSHIBA
DT01ACA050 HDDs, and one 250 GiB Samsung 860 EVO SSD. Each experimental SSD was first
preconditioned according to the SNIA Solid State Storage (SSS) Performance Test Specifica-
tion (PTS), version 2.0.1 [66].

4.1 Validating the PDAM Model

The PDAM model ignores some issues of real SSDs, such as bank conflicts, i.e., when independent
I0s address the same bank and those I0s must be serialized, which can limit the parallelism avail-
able for some sets of IO requests. Despite its simplicity, we verify below that the PDAM model is
consistent with real SSD and NVMe SSD performance.

To test the PDAM model, we ran many rounds of IO read experiments with different numbers
of threads. In each round of the experiment, we spawned p = {1,2,3,4,5,6,7,8,16,32,64} OS
threads that each read 10 GiB of data. We selected 163,840 random block-aligned offsets and read
64KiB starting from each. Thus, there were up to p outstanding IO requests at any time, and the
total data read was p X 10 GiB per round.

The PDAM model predicts that the time to complete the experiment should be the same for
all p < P and should increase linearly in p for all p > P. Equivalently, the PDAM model pre-
dicts that the observed throughput should increase linearly with each additional thread for all
p < P, and then remain flat for p > P. Figure 1 shows the observed throughput in MiB/second dur-
ing each round of IO read experiments. Each SSD exhibits two distinct performance regimes: the
throughput grows linearly until around p = 4-6, depending on the device, and it flattens sharply
thereafter.

We used segmented linear regression to estimate the device parallelism (P) and the through-
put (p) of each thread up until the device parallelism is saturated. Segmented linear regression is
appropriate for fitting data that is known to follow different linear functions in different ranges.
Segmented linear regression outputs the boundaries between the different regions and the parame-
ters of the line of best fit within each region. Table 1 shows the experimentally derived parallelism,
P, and the device saturation, o« Pf, for a variety of flash devices.

To verify the goodness of fit, we report the R? value. An R? value of 1 means that the regression
coefficients perfectly predicted the observed data. Our R? values are all within 4% of 1.

4.2 Validating the Affine Model

In this section, we empirically derive & = t/s for a series of commodity hard disks, and we confirm
that the affine model is highly predictive of hard disk performance.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

External-memory Dictionaries in the Affine and PDAM Models

Table 1. Experimentally Derived PDAM
Values for Real Hardware

Device P «Pp R?
Sandisk Ultra II 5.5 240 0.964
Samsung 860 EVO 4.5 530 0.989
Samsung 970 EVO 54 900 0.971
Samsung 980 Pro 5.6 2,300 0.963

We used segmented linear regression to calculate P.
After P threads, throughput remains nearly constant

atoc Pf.

S 250

&

4

=

£ 200

Q

<

je10)

5

<

£ 150

148 16 32 64
Number of Threads (p)
(a) Sandisk Ultra II
y

1,000

Q
k4
=
= 800
=

B
£ 600

oh

E;

S

B 400

®
200
148 16 32 64
Number of Threads (p)

(c) Samsung 970 EVO

15:9

]
500
400
300
°
148 16 32 64
Number of Threads (p)
(b) Samsung 860 EVO
A
2,000
1,000
A
148 16 32 64
Number of Threads (p)

(d) Samsung 980 Pro

Fig. 1. Random-read throughput as a function of the number of threads (p).

For our experiments, we chose an IO size, I, and issued 64 I-sized reads to block-aligned offsets
chosen randomly within the device’s full LBA range. We repeated this experiment for a variety of
IO sizes, with I ranging from 1 disk block up to 16 MiB. Table 2 shows the experimentally derived
values for each HDD. To verify the goodness of fit, we report the R? value. R? values are all within
0.1% of 1, and we conclude that the affine model is an excellent fit for hard disks.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

15:10 M. A. Bender et al.

Table 2. Experimentally Derived a Values for Commodity HDDs

Disk Year s (s) t(s/4K) a R?

250 GB Seagate 2006 0.015 0.000033 0.0022 0.9997
1 TB Hitachi 2009 0.013 0.000041 0.0031 0.9999
1 TB WD Black 2011 0.012 0.000035 0.0029 0.9997
2 TB Seagate 2012 0.018 0.000021 0.0012 0.9994
6 TB WD Red 2018 0.016 0.000026 0.0017 0.9972

We issued 64 random block-aligned reads with IO sizes ranging from 1 disk
block to 16 MiB. We conducted linear regression to get the setup cost s and
bandwidth cost ¢. We calculated « by #/s.

Table 3. A Sensitivity Analysis of Node Sizes for B¢-trees and B-trees

Insertion/Deletion Query
B-trees 0 (11:;‘5 log %) 0 (11;?1? log %)
Bé-tree (F = VB) © (\/g'l—“mflslog %) 9(1;;2\1? log %)
Bé-tree 0 (Féll:gg) log %) €] (—FJr}f_"gzg}“B log %)

The cost of B-tree update operations grows nearly linearly as a function of

B—specifically llgg“}f . B¢ Fé;llzgg :

-trees should optimize for inserts, deletes,

2 . . .
and updates and 2E£&F2aB £, queries. The cost for inserts and queries
Flog F
increases more slowly in B®-trees than in B-trees as the node size increases.

5 B-TREE NODES IN THE AFFINE MODEL

In this section, we use the affine model to analyze the effect of changing the size of B-tree nodes.
In the next section, we will perform the analysis for B*-trees.

5.1 Large Nodes Optimize Lookups, Updates, and Range Queries

The following lemma follows immediately from the definition of a B-tree and the definition of the
affine model.

LEMMA 5. The affine 10 cost of a lookup, insert, or delete in a B-tree with sized-B nodes is

(1+ aB)logg, (N/M)(1+0(1)). The affine IO cost of a range query returning { items is O(1+¢/B)(1+
aB) plus the cost of the query.

ProoF. A B-tree node has size B and the cost to perform an IO of size B is 1 + «AsB. The height
of the B-tree is logg, , (N)(1+ 0(1)), since the target fanout is B, and the fanout can vary by at most
a constant factor. The top ©(logg, ; M) levels can be cached so that accesses to nodes within the
levels are free. Thus, the search cost follows from the structure of the tree.

As described in Lemma 2, during the course of N inserts/deletes, there are O(N/B) node splits
or merges. Thus, the tree-rebalance cost during inserts/deletes is a lower-order term, and so the
insert/delete cost is the same as the search cost.

A range query returning ¢ items fits in ©([£/B]) leaves and each block access costs 1 + «B. O

COROLLARY 6. In the affine IO model, search, insert/delete, and range queries are asymptotically
optimized when B = ©(1/a).

ProoOF. Setting the node size to B = 1/a matches the half-bandwidth size.]

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

External-memory Dictionaries in the Affine and PDAM Models 15:11

Corollary 6 seems definitive, because it says that there is a parameter setting such that both
point queries and range queries run within a constant factor of optimal. It is not.

It may be surprising that the half-bandwidth size is not what people usually use to optimize
a B-tree. In particular, B-trees in many databases and file systems use nodes of size 16KiB [1, 50,
51, 55, 56], which is too small to amortize the setup cost. As a result, range queries run slowly,
underutilizing disk bandwidth [34, 35, 65]. In contrast, B-trees in databases that are more focused
on analytical workloads use larger block sizes, typically up to around 1 MB [57, 59], to optimize
for range queries.

B-tree nodes are often small. The rest of this section gives analytical explanations for why
B-tree nodes are generally smaller than the half-bandwidth size.

Our first explanation is simply that even small constant factors can matter.

The following corollary shows that in the affine model, when we optimize for point queries,
inserts, and deletes, then the B-tree node size is smaller than indicated in Corollary 6—that is,
B = o(1/a). For these smaller node sizes, range queries run asymptotically suboptimally. In con-
trast, if range queries must run at near disk bandwidth, then point queries, inserts, and deletes are
necessarily suboptimal in the worst case.

CoROLLARY 7. Point queries, inserts, and deletes are optimized when the node size is
O(1/(aIn(1/a))). For this node size, range queries on the B-tree are asymptotically suboptimall.

Proor. From Lemma 5, finding the optimal node size for point queries means finding the mini-
mum of the function

1+ ax
xX)= ——.
f& In(x + 1)
Taking the derivative, we obtain
a 1 1+ax

f'x) =

In(x + 1) B In(x +1) 1+x '
Setting f’(x) = 0, the previous equation simplifies to
1+ ax =aln(x + 1)(1 + x).

Given that @ < x < 1, we obtain x Inx = ©(1/«), which means that x = ©(1/(«a In(1/))). Second
derivatives confirm that we have a minimum.

We now adapt the information-theoretic lower bound on the cost of searching to the affine
model. Consider a successor/predecessor query for an element x that is not stored in the B-tree.
(The argument is essentially the same when x is present.) There are N + 1 possible answers to the
query. This means that it takes at least Ig(N + 1) bits to specify the answer to a query.

An IO of size B contains at most B pivots, and therefore there are at most B + 1 possible outcomes

from comparing the target element to the pivots. Therefore, we can learn at most 1g(B + 1) bits
Ig(N+1)

from doing an IO of size B, so that the resulting search needs B+ = Igg, (N + 1) I0s.
Since the cost of such an IO is 1 + @B, the IO cost per bit learned is lgl;&;ﬁ). Minimizing this cost
means finding the maximum of the function Igl(ii;BI), as before. O

As Corollary 7 indicates, the optimal node size x is not large enough to amortize the setup
cost. This means that as B-trees age, their nodes get spread out across the disk, and range-query
performance degrades. This is borne out in practice [34, 35, 37, 65].

A second reason that B-trees often use small nodes has to do with write amplification, which
is large in a B-tree; see Lemma 3. Since the B-tree write amplification is linear in the node size,

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

15:12 M. A. Bender et al.

there is downward pressure towards small B-tree nodes. A third reason is that big nodes pollute
the cache, making the cache less effective.

As mentioned above, database practice has lead to a dichotomy in B-tree uses: Online Transac-
tion Processing (OLTP) databases favor point queries and insertions; Online Analytical Processing
(OLAP) databases favor range quieres. As predicted by the analysis in this section, OLTP databases
use small leaves and OLAP databases use large leaves.

We believe that the distinction between OLAP and OLTP databases is not driven by user need
but by the inability of B-trees to keep up with high insertion rates [36], despite optimizations
[7, 11, 16, 18, 21, 28, 29, 44, 45, 52, 54, 64, 70, 75].

We next turn to the B®-tree, which can index data at rates that are orders of magnitude faster
than the B-tree.

6 B°-TREE NODES IN THE AFFINE MODEL

In this section, we use the affine model to analyze B*-trees. We first perform a naive analysis of
the B®-tree [17, 26] in the affine model, assuming that IOs only read entire nodes—effectively the
natural generalization of the DAM model analysis.

The analysis reveals that B¢-trees are more robust to node-size choices than B-trees. In the affine
model, once the node size B becomes sufficiently large, transfer costs grow linearly in B. For a B*-
tree with & = 1/2, the transfer costs (and write amplification) of inserts grow proportionally to VB.
This means B?-trees can use much larger nodes than B-trees, and that they are much less sensitive
to the choice of node size.

However, the transfer costs of queries in a B®-tree still grow linearly in B, which means that,
in the affine model and with a standard B-tree, designers face a trade-off between optimizing for
insertions versus optimizing for queries.

We describe three optimizations to the B*-tree that eliminate this trade-off.

This result is particularly exciting because, in the DAM model, there is a tight tradeoff between
reads and writes [26]. In the DAM model, a B®-tree (for 0 < ¢ < 1) performs inserts a factor of
£B'7¢ faster than a B-tree, but point queries run a factor of 1/¢ times slower. While this is already a
good tradeoff, the DAM model actually underestimates the performance advantages of the B*-tree;
the B®-tree has performance advantages that cannot be understood in the DAM model.

We first give the affine IO performance of the B*-tree:

LEmMA 8. Consider a Bf -tree with nodes of size B, where the fanout at any nonroot node is within
a constant factor of the target fanout F. Then the amortized insertion cost is

O ((§ + aF) logp(N/M)).

The affine IO cost of a query is
O ((1+ aB)logp (N/M)) .
The affine IO cost of a range query returning € items is O(1 + £/B)(1 + aB) plus the cost of the query.

Proor. We first analyze the query cost. When we perform a query in a B®-tree, we follow a
root-to-leaf path. We need to search for the element in each buffer along the path, as well as in the
target leaf. The cost to read an entire node is 1 + aB.

We next analyze the amortized insertion/deletion cost. The affine IO cost to flush the ©(B) mes-
sages in one node one level of the tree is @(F + aFB). This is because there are ©(F) 10s (for the
node and all children). The total amount of data being flushed to the leaves is ©(B), but the total
amount of data being transferred from the I0s is ©(FB), since nodes that are modified may need
to be completely rewritten. Thus, the amortized affine IO cost to flush an element down one level
of the tree is ©(F/B + aF). The amortized flushing cost follows from the height of the tree.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

External-memory Dictionaries in the Affine and PDAM Models 15:13

The impact of tree rebalancing turns out to be a lower-order effect. If the leaves are maintained
between half full and full, then in total, there are only O(N /B) modifications to the B*-tree’s pointer
structure in @(N) updates. Thus, the amortized affine IO contribution due to rebalances is O(a +
1/B), which is a low-order term. O

We now describe three affine-model optimizations of the B¢-tree. These optimizations use
variable-sized IOs to improve the query cost of the B-tree without harming its insertion cost,
and will enable us to get our robustness and B-tree dominance theorems.

THEOREM 9. There exists a B®-tree with nodes of size B and target fanout F with the following
bounds. The amortized insertion cost is

0 ((& + aF) log(N/M).
The affine IO cost of a query is at most
(1+ a% + aF)logg (N/M) (1 + 1/log F).
The affine IO cost of a range query returning € items is O((1+¢/B)(1 + aB)) plus the cost of the query.
Proor. We make three algorithmic decisions to obtain the target performance bounds.

(1) We specify an internal organization of the nodes, and in particular, how the buffers of the
nodes are organized.

(2) We store the pivots of a node outside of that node—specifically in the node’s parent.

(3) We use a rebalancing scheme in which the nonroot fanouts stay within (1 + o(1))F.

Our objective is to have a node organization that enables large IOs for insertions/deletions and
small IOs for queries—and only one per level.

We first describe the internal node/buffer structure. We organize the nodes/buffer so that all
of the elements destined for a particular child are stored contiguously. We maintain the invariant
that no more than B/F elements in a node can be destined for a particular child, so the cost to read
all these elements is only 1 + @B/F.

Each node u has a set of pivots. However, we do not store node u’s pivots in u, but rather in u’s
parent. The pivots for u are stored next to the buffer that stores elements destined for u. When
F= O(\/E), storing a nodes pivots in its parent increases node sizes by at most a constant factor.

Finally, we describe the rebalancing scheme. Define the weight of a node to be the number of
leaves in the node’s subtree. We maintain the following weight-balanced invariant. Each nonroot
node u at height h satisfies

F".(1-1/logF) < weight(u) < F" - (1 + 1/log F).

The root just maintains the upper bound on the weight, but not the lower bound.

Whenever a node u gets out of balance, e.g., u’s weight grows too large or small, then we rebuild
the subtree rooted at u’s parent from scratch, thus maintaining the balancing invariant.

We next bound the minimum and maximum fanout that a node can have. Consider a node u
and parent node v of height h and h + 1, respectively. Then, since weight(v) < F**1(1 + 1/log F)
and weight(u) > F"(1 — 1/log F), the maximum number of children that v can have is

1+1/log F\ _ F
F- (1—1/10gF) = F+O(logF)'
By a similar reasoning, if v is a nonroot node, then the minimum fanout that v can have is F —
F
O(log F)

As in Lemma 8, the amortized affine IO cost to flush an element down one level of the tree is
O(F/B + aF), and so the amortized insert/delete cost follows from the height of the tree.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

15:14 M. A. Bender et al.

The amortized rebalance cost is determined as follows. The IO cost to rebuild the subtree rooted
at u’s parent v is O(weight(v)) = O(F - weight(u)), since nodes have size ©(1/«) and the cost
to access any node is O(1). The number of leaves that are added or removed before v needs to be
rebuilt again is Q(weight(u)/log F). There are Q(1/«) inserts or deletes into a leaf before a new leaf
gets split or merged. Thus, the number of inserts/deletes into u’s subtree between inserts/deletes
is Q(a weight(u)/log F). Consequently, the amortized cost to rebuild, per element insert/delete is
O(a log F), which is a low-order cost.

The search bounds are determined as follows. Because the pivot keys of a node u are stored
in u’s parent, we only need to perform one IO per node, and each IO only needs to read one set
of pivots followed by one buffer—not the entire node. Thus, the IO cost per node for searching is
1+ aB/F + aF, and the search cost follows directly. m]

Theorem 9 can be viewed as a sensitivity analysis for the node size B, establishing that B®-trees
are less sensitive to variations in the node size than B-trees. This is particularly easy to see when
we take F = VB.

CoROLLARY 10. When B > 1/a, the B-tree query cost increases nearly linearly in B, whereas the
B'/2-tree (F = ©(VB)) increases nearly linearly in V/B.

We now give a more refined sensitivity analysis, optimizing B, given F and a.

COROLLARY 11. When B = Q(F?) and B = o(F /), there exists B -trees where the affine IO cost to
read each node is 1+ o(1), and the search cost is (1 + o(1)) log (N /M).

Proor. For a search, the 10 cost per node is
1+ aB/F +aF =1+ 0(1).

This means that the search cost is (1 + o(1)) log (N /M). O

We can now optimize the fanout and node size in Corollary 11. In particular, say that F = VB.
Then it is sufficient that B < o(1/a?).

What is interesting about this analysis is that an optimized B®-tree node size can be nearly the
square of the optimal node size for a B-tree for reasonable parameter choices. In contrast, in the
DAM model, B-trees and B®-trees always have the same size, which is the block-transfer size. Small
subconstant changes in IO cost can have asymptotic consequences in the data structure design.

This analysis helps explain why the TokuDB B*-tree has a relatively large node size (~4 MB),
but it also has sub-nodes (“basement nodes”), which can be paged in and out independently on
searches. It explains the contrast with B-trees, which have much smaller nodes. It is appealing
how much asymptotic structure you see just from optimizing the constants and how predictive it
is of real data-structure designs.

Finally, we show that in the affine model, we can make a B®-tree whose search cost is optimal
up to low-order terms—see Corollary 7 for an affine optimized B-tree—but whose insert cost is
O(log(1/@)) times faster than the insert cost of the optimal B-tree.

COROLLARY 12. There exists a B¢-tree with fanout F = ©(1/alog(1/a)) and node size B = F?
whose query cost is optimal in the affine model up to low-order terms over all comparison-based
external-memory dictionaries. The B®-tree’s query cost matches the B-tree up to low-order terms, but
its amortized insert cost is a factor of ©(log(1/a)) times faster.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

External-memory Dictionaries in the Affine and PDAM Models 15:15

80
—=— BerkeleyDB Query s
—e— BerkeleyDB Insert

70| | — BerkeleyDB Affine

Milliseconds per Operation

4KiB 16KiB 64KiB 256KiB 1MiB
BerkeleyDB Node Size

Fig. 2. Microseconds per query/insert with increasing node size for BerkeleyDB. The fitted line (black) has
an alpha of 1.58357435 x 10~%% and a root-mean square (RMS) of 8.4.

7 EMPIRICAL VALIDATION OF B-TREE AND B*-TREE NODE SIZE

We measured the impact of node size on the average run time for random queries and random
inserts on HDDs. We used BerkeleyDB [56] as a typical B-tree and TokuDB [67] as a typical B*-
tree. We first inserted 16 GiB of key-value pairs into the database. Then, we performed random
inserts and random queries to about a thousandth of the total number of keys in the database. We
turned off compression in TokuDB to obtain a fairer comparison, and we limited the memory to 4
GiB to ensure that most of the database contents were outside of RAM.

Figure 2 presents the BerkeleyDB query and insert performance on HDDs. We see that insert and
query costs grow once nodes exceed 64 KiB, which is larger than the default node size. After the
optimal node size for inserts—64 KiB—the insert and query costs start increasing roughly linearly
with the node size, as predicted.

Figure 3 gives performance numbers for TokuDB, which are consistent with Table 3 where
F = V/B. The optimal node size is around 512 KiB for queries and 4 MiB for inserts. In both cases,
the next few larger node sizes decrease performance, but only slightly compared to the BerkeleyDB
results.

8 PDAM DICTIONARIES

We now give some observations on how the PDAM model can inform external-memory dictionary
design.

Consider the problem of designing a B-tree for a database that serves a dynamically varying
number of clients. We want to exploit the storage device’s parallelism, regardless of how many
clients are currently performing queries.

If we have P clients, then the optimal strategy is to build our B-tree with nodes of size B and
let each client perform one IO per time step. If the database contains N items, then each client
requires O(logz N) time steps to complete a query (Technically ©(logg,; N), but we use O(logg N)

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

15:16 M. A. Bender et al.

120 12
—m— TokuDB Query
—— TokuDB Query Affine

100 —e— TokuDB Insert 10
—— TokuDB Insert Affine

Millisecond per Operation (Query)
Millisecond per Operation (Insert)

64KiB 256KiB 1MiB 4MiB

TokuDB Node Size

Fig. 3. Number of microseconds per query/insert with increasing node size for TokuDB. The fitted lines have
an alpha value of 1.58357435 x 1073 and the RMS is 18.7.

in this section to keep the math clean). We can answer P queries every ©(loggz N) time-steps, for
an amortized throughput of @(P/logy N) queries per time-step.

Now suppose that we have a single client performing queries. Since walking the tree from root
to leaf is inherently sequential, a B-tree with nodes of size B is unable to use device parallelism.
The client completes one query each ©(logg N) time steps, and all device parallelism goes to waste.
Now the B-tree performs better with nodes of size PB. The client loads one node per time step, for
a total of ©(logpz N) time-steps per query, which is a significant speed-up when P = «w(B).

In summary, to optimize performance, we want nodes of size B when we have many clients, and
nodes of size PB when we have only one client. But B-trees have a fixed node size.

The point is that the amount of IO that can be devoted to a query is not predictable. Dilem-
mas like this are common in external-memory dictionary design, e.g., when dealing with system
prefetching [20, 31].

One way to resolve the dilemma uses ideas from cache-oblivious data-structures [14, 40]. Cache-
oblivious data structures are universal data structures in that they are optimal for all memory-
hierarchy parameterizations. Most cache-oblivious dictionaries are based on the van Emde Boas
layout [14, 60].

In the B-tree example, we use nodes of size PB, but organize each node in a van Emde Boas lay-
out. Now suppose there are k < P clients. Each client is given P/k IOs per time slot. Thus, a client
can traverse a single node in ©(logpy . PB) time steps, and hence traverses the entire root-to-leaf
path in O(logpg ;. N) time steps. When k = 1, this matches the optimal single-threaded B-tree
design described above. When k = P, this matches the optimal multi-threaded client through-
put given above. Furthermore, this design gracefully adapts when the number of clients varies
over time.

LEMMA 13. In the PDAM model, a B-tree with N elements and nodes of size PB has query through-
put Q(m) for any k < P concurrent query threads.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

External-memory Dictionaries in the Affine and PDAM Models 15:17

This strategy also fits well into current caching and prefetching system designs. In each time
step, clients issue IOs for single blocks. Once the system has collected all the IO requests, if there
are any unused IO slots in that time step, then it expands the requests to perform read-ahead. So,
in our B-tree example with a single client, there is only one IO request (for the first block in a
node), and the system expands that to P blocks, effectively loading the entire node into cache. As
the client accesses the additional blocks of the same B-tree node during its walk of the van Emde
Boas layout, the blocks are in cache and incur no additional IO. If, however, there are two clients,
then the system sees two one-block IO requests, which it will expand into two runs of P/2 blocks
each.

This basic strategy extends to other cache-oblivious data structures; see e.g., [15, 25] for write-
optimized examples. The PDAM explains how these structures can always make maximal use of
device parallelism, even as the number of concurrent threads changes dynamically.

9 CONCLUSION

As the analyses in this article illustrate, seemingly small changes in the DAM model have substan-
tial design and performance implications. The more accurate computational models that we have
considered are more predictive of running times and software practice. We posit that these models
are an essential tool for algorithmists seeking to design new algorithms for I0-bound workloads.
The simplicity of the DAM model is a strength but also has let important design considerations
slip through the cracks for decades.

REFERENCES

[1] mkfs.btrfs. [n.d.]. Manual page. Retrieved from https://btrfs.wikikernel.org/index.php/Manpage/mkfs.btrfs.

[2] Alok Aggarwal and Jeffrey Scott Vitter. 1988. The input/output complexity of sorting and related problems. Commun.
ACM 31, 9 (Sept. 1988), 1116-1127. https://doi.org/10.1145/48529.48535

[3] Matthew Andrews, Michael A. Bender, and Lisa Zhang. 2002. New algorithms for disk scheduling. Algorithmica 32, 2
(2002), 277-301. https://doi.org/10.1007/s00453-001-0071-1

[4] Lars Arge. 2002. External-memory geometric data structures. In Proceedings of the EEF Summer School on Massive
Data Sets.

[5] Lars Arge, Michael T. Goodrich, Michael Nelson, and Nodari Sitchinava. 2008. Fundamental parallel algorithms for
private-cache chip multiprocessors. In Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and
Architectures (SPAA’08). 197-206. https://doi.org/10.1145/1378533.1378573

[6] Lars Arge, Michael T. Goodrich, and Nodari Sitchinava. 2010. Parallel external-memory graph algorithms. In Pro-
ceedings of the 24th IEEE International Symposium on Parallel and Distributed Processing (IPDPS’10). IEEE, 1-11.
https://doi.org/10.1109/IPDPS.2010.5470440

[7] Microsoft Azure. 2016. How to Use Batching to Improve SQL Database Application Performance. Retrieved from
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-use-batching-to-improve-performance.

[8] Rudolf Bayer and Edward M. McCreight. 1972. Organization and maintenance of large ordered indexes. Acta Info.
1, 3 (Feb. 1972), 173-189. https://doi.org/10.1145/1734663.1734671

[9] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian
Shun. 2016. Parallel algorithms for asymmetric read-write costs. In Proceedings of the 28th ACM on Symposium on
Parallelism in Algorithms and Architectures (SPAA’16). 145-156. https://doi.org/10.1145/2935764.2935767

[10] Michael A. Bender, Jon Berry, Rob Johnson, Thomas M. Kroeger, Samuel McCauley, Cynthia A. Phillips, Bertrand
Simon, Shikha Singh, and David Zage. 2016. Anti-persistence on persistent storage: History-independent sparse tables
and dictionaries. In Proceedings of the 35th ACM Symposium on Principles of Database Systems (PODS’16). 289-302.
Michael A. Bender, Jake Christensen, Alex Conway, Martin Farach-Colton, Rob Johnson, and Meng-Tsung Tsai. 2019.
Optimal ball recycling. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19).
2527-2546. https://doi.org/10.1137/1.9781611975482.155

Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jannen, Yizheng Jiao, Rob Johnson, Eric Knorr, Sara
McAllister, Nirjhar Mukherjee, Prashant Pandey, Donald E. Porter, Jun Yuan, and Yang Zhan. 2019. Small refinements
to the DAM can have big consequences for data-structure design. In Proceedings of the 31st ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’19). 265-274.

[11

—

[12

—

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/s00453-001-0071-1
https://doi.org/10.1145/1378533.1378573
https://doi.org/10.1109/IPDPS.2010.5470440
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-use-batching-to-improve-performance
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/2935764.2935767
https://doi.org/10.1137/1.9781611975482.155

15:18 M. A. Bender et al.

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]
[34]

Michael A. Bender, Rathish Das, Rob Johnson, Martin Farach-Colton, and William Kuszmaul. 2020. Flushing without
Cascades. In Proceedings of the 31th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20). 650-669.
Michael A. Bender, Erik Demaine, and Martin Farach-Colton. 2005. Cache-Oblivious B-Trees. Journal on Computing
35, 2 (2005), 341-358.

Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani Nel-
son. 2007. Cache-oblivious streaming B-trees. In Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA’07). 81-92. https://doi.org/10.1145/1248377.1248393

Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley, and Shikha Singh. 2018.
Bloom filters, adaptivity, and the dictionary problem. In Proceedings to the IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS’18). 182-193.

Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter, Jun
Yuan, and Yang Zhan. 2015. An introduction to B*-trees and write-optimization. :login; Mag. 40, 5 (Oct. 2015), 22-28.
Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul, Dzejla Medjedovic,
Pablo Montes, Pradeep Shetty, Richard P. Spillane, and Erez Zadok. 2012. Don’t thrash: How to cache your hash on
flash. Proc. Very Large Data Bases Endow. 5, 11 (2012), 1627-1637.

Michael A. Bender, Martin Farach-Colton, Rob Johnson, Simon Mauras, Tyler Mayer, Cynthia A. Phillips, and
Helen Xu. 2017. Write-optimized skip lists. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS’17). 69-78. https://doi.org/10.1145/3034786.3056117

Michael A. Bender, Martin Farach-Colton, and Bradley Kuszmaul. 2006. Cache-oblivious string B-trees. In Proceedings
of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’06). 233-242.
Michael A. Bender, Martin Farach-Colton, and William Kuszmaul. 2019. Achieving optimal backlog in multi-processor
cup games. In Proceedings of the 51st Annual ACM Symposium on the Theory of Computing (STOC’19).

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. 2016. Efficient algorithms with
asymmetric read and write costs. In Proceedings of the 24th Annual European Symposium on Algorithms (ESA’16).
14:1-14:18. https://doi.org/10.4230/LIPIcs.ESA.2016.0

Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. 2018. The parallel persistent memory
model. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA’18). 247-258.
https://doi.org/10.1145/3210377.3210381

Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms.
In Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’10), Fried-
helm Meyer auf der Heide and Cynthia A. Phillips (Eds.). ACM, 189-199. https://doi.org/10.1145/1810479.1810519
Gerth S. Brodal, Erik D. Demaine, Jeremy T. Fineman, John Iacono, Stefan Langerman, and J. Ian Munro. 2010. Cache-
oblivious dynamic dictionaries with update/query tradeoffs. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’10). 1448-1456.

Gerth S. Brodal and Rolf Fagerberg. 2003. Lower bounds for external-memory dictionaries. In Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03). 546—554.

Adam L. Buchsbaum, Michael H. Goldwasser, Suresh Venkatasubramanian, and Jeffery Westbrook. 2000. On external-
memory graph traversal. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’00).
859-860.

Mark Callaghan. 2011. Something Awesome in InnoDB—The Insert Buffer. Retrieved from https://www.facebook.com/
notes/mysql-at-facebook/something-awesome-in-innodb- the-insert-buffer/492969385932/.

Mustafa Canim, Christian A. Lang, George A. Mihaila, and Kenneth A. Ross. 2010. Buffered Bloom filters on solid
state storage. In Proceedings of the International Workshop on Accelerating Data Management Systems Using Modern
Processor and Storage Architectures (ADMS’10).

Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal parallelism of flash memory-based solid-state drives. Trans.
Stor. 12, 3, Article 13 (May 2016), 39 pages. https://doi.org/10.1145/2818376

Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. 2002. Fractal prefetching B*-Trees: Optimizing
both cache and disk performance. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
157-168.

Rezaul Alam Chowdhury, Vijaya Ramachandran, Francesco Silvestri, and Brandon Blakeley. 2013. Oblivious algo-
rithms for multicores and networks of processors. J. Parallel Distrib. Comput. 73, 7 (2013), 911-925. https://doi.org/10.
1016/j.jpdc.2013.04.008

Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (June 1979), 121-137.

Alexander Conway, Ainesh Bakshi, Yizheng Jiao, William Jannen, Yang Zhan, Jun Yuan, Michael A. Bender, Rob
Johnson, Bradley C. Kuszmaul, Donald E. Porter, and Martin Farach-Colton. 2017. File systems fated for senescence?
Nonsense, says science! In Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17). 45-58.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/3034786.3056117
https://doi.org/10.4230/LIPIcs.ESA.2016.0
https://doi.org/10.1145/3210377.3210381
https://doi.org/10.1145/1810479.1810519
https://www.facebook.com/notes/mysql-at-facebook/something-awesome-in-innodb-the-insert-buffer/492969385932/
https://doi.org/10.1145/2818376
https://doi.org/10.1016/j.jpdc.2013.04.008

External-memory Dictionaries in the Affine and PDAM Models 15:19

(35]

(36]

(37]

(38]
(39]
(40]
(41]
(42]
(43]
(44]
(45]

[46]

(47]

Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan, Michael A. Bender, William Jannen, Rob Johnson, Bradley C.
Kuszmaul, Donald E. Porter, Jun Yuan, and Martin Farach-Colton. 2017. How to fragment your file system. login: 42,
2 (2017). Retrieved from https://www.usenix.org/publications/login/summer2017/conway.

Alexander Conway, Martin Farach-Colton, and Philip Shilane. 2018. Optimal hashing in external memory. In Pro-
ceedings of the 45th International Colloquium on Automata, Languages and Programming (ICALP’18). 39:1-39:14.
https://doi.org/10.4230/LIPIcs ICALP.2018.39

Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Bender, William Jannen, Rob Johnson, Donald E. Porter, and Martin
Farach-Colton. 2019. Filesystem aging: It’s more usage than fullness. In Proceedings of the 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage’19).

Peter Desnoyers. 2013. What systems researchers need to know about NAND flash. In Proceedings of the 5th USENLX
Workshop on Hot Topics in Storage and File Systems (HotStorage’13).

John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. 2012. The TokuFS streaming file
system. In Proceedings of the 4th USENIX Conference on Hot Topics in Storage and File Systems (HotStorage’12). 14.
Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 2012. Cache-oblivious algorithms.
ACM Trans. Algor. 8,1 (2012), 4.

Pedram Ghodsnia, Ivan T. Bowman, and Anisoara Nica. 2014. Parallel I/O aware query optimization. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 349-360. https://doi.org/10.1145/2588555.2595635
Google, Inc. [n.d.]. LevelDB: A Fast and Lightweight Key/value Database Library By Google. Retrieved from https:
//github.com/google/leveldb.

Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. The unwritten contract
of solid state drives. In Proceedings of the 12th European Conference on Computer Systems (EuroSys’17). 127-144.

IBM. 2017. Buffered Inserts in Partitioned Database Environments. Retrieved from https://www.ibm.com/support/
knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0061906.html.

IBM Informix. [n.d.]. Understanding SQL Insert Cursors. Retrieved from https://www.ibm.com/support/
knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl InsertCursors_002.htm.

Riko Jacob and Nodari Sitchinava. 2017. Lower bounds in the asymmetric external-memory model. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’17). 247-254. https://doi.org/10.1145/
3087556.3087583

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant Pandey,
Phaneendra Reddy, Leif Walsh, Michael A. Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and
Donald E. Porter. 2015. BetrFS: A right-optimized write-optimized file system. In Proceedings of the 13th USENLX
Conference on File and Storage Technologies (FAST’15). 301-315.

Chris Jermaine, Anindya Datta, and Edward Omiecinski. 1999. A novel index supporting high volume data warehouse
insertion. In Proceedings of 25th International Conference on Very Large Data Bases (VLDB’99). 235-246. Retrieved from
http://www.vldb.org/conf/1999/P23.pdf.

Bradley C. Kuszmaul. 2009. How fractal trees work. In Proceedings of the OpenSQL Camp.

Amanda McPherson. [n.d.]. A Conversation with Chris Mason on Btrfs: The Next Generation File System for Linux.
Retrieved from https://www.linuxfoundation.org/blog/2009/06/a-conversation-with-chris-mason-on-btrfs/.

MySQL 5.7 Reference Manual. [n.d.]. Chapter 15 The InnoDB Storage Engine. Retrieved from http://dev.mysql.com/
doc/refman/5.7/en/innodb-storage-engine html.

NuDB. 2016. NuDB: A Fast Key/value Insert-only Database for SSD Drives in C++11. Retrieved from https://github.
com/vinniefalco/NuDB.

Patrick O’'Neil, Edward Cheng, Dieter Gawlic, and Elizabeth O’Neil. 1996. The log-structured merge-tree (LSM-tree).
Acta Info. 33, 4 (1996), 351-385. https://doi.org/10.1007/s002360050048

Oracle. 2017. Tuning the Database Buffer Cache. Retrieved from https://docs.oracle.com/database/121/TGDBA/tune_
buffer_cache.htm.

Oracle Corporation. [n.d.]. MySQL 5.5 Reference Manual. Retrieved from https://dev.mysql.com/doc/refman/5.5/en/
innodb-file-space.html.

Oracle Corporation. 2015. Oracle BerkeleyDB Reference Guide. Retrieved from http://sepp.oetiker.ch/subversion-1.5.
4-rp/ref/am_conf/pagesize.html.

Oracle Corporation. 2016. Setting Up Your Data Warehouse System. Retrieved from https://docs.oracle.com/cd/
B28359_01/server.111/b28314/tdpdw_system.htm.

Anastasios Papagiannis, Giorgos Saloustros, Pilar Gonzalez-Férez, and Angelos Bilas. 2016. Tucana: Design and imple-
mentation of a fast and efficient scale-up key-value store. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC’16). 537-550.

[59] John Paul. [n.d.]. Teradata Thoughts. Retrieved from http://teradata-thoughts.blogspot.com/2013/10/teradata-13-vs-

teradata-14_20.html.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

https://www.usenix.org/publications/login/summer2017/conway
https://doi.org/10.4230/LIPIcs.ICALP.2018.39
https://doi.org/10.1145/2588555.2595635
https://github.com/google/leveldb
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0061906.html
https://www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl_InsertCursors_002.htm
https://doi.org/10.1145/3087556.3087583
http://www.vldb.org/conf/1999/P23.pdf
https://www.linuxfoundation.org/blog/2009/06/a-conversation-with-chris-mason-on-btrfs/
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://github.com/vinniefalco/NuDB
https://doi.org/10.1007/s002360050048
https://docs.oracle.com/database/121/TGDBA/tune_buffer_cache.htm
https://dev.mysql.com/doc/refman/5.5/en/innodb-file-space.html
http://sepp.oetiker.ch/subversion-1.5.4-rp/ref/am_conf/pagesize.html
https://docs.oracle.com/cd/B28359_01/server.111/b28314/tdpdw_system.htm
http://teradata-thoughts.blogspot.com/2013/10/teradata-13-vs-teradata-14_20.html

15:20 M. A. Bender et al.

[60] Harald Prokop. 1999. Cache-Oblivious Algorithms. Master’s thesis. Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology.

[61] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017. PebblesDB: Building key-value stores
using fragmented log-structured merge trees. In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP’17). 497-514. https://doi.org/10.1145/3132747.3132765

[62] Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system.
ACM Trans. Comput. Syst. 10, 1 (Feb. 1992), 26-52. https://doi.org/10.1145/146941.146943

[63] C.Ruemmler and J. Wilkes. 1994. An introduction to disk drive modeling. IEEE Computer 27, 3 (1994), 17-29.

[64] SAP. 2017. RLV Data Store for Write-Optimized Storage. Retrieved from http://help-legacy.sap.com/saphelp_iq1611_
ignfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm.

[65] Keith A. Smith and Margo L Seltzer. 1997. File system aging—Increasing the relevance of file system benchmarks. In
Measurement and Modeling of Computer Systems. 203-213.

[66] SNIA. 2018. Solid State Storage (SSS) Performance Test Specification (PTS). Retrieved from https://www.snia.org/sites/
default/files/technical _work/PTS/SSS_PTS_2.0.1.pdf.

[67] TokuDB. [n.d.]. https://github.com/percona/PerconaFT, Last Accessed Sep. 24 2018..

[68] Tokutek, Inc. [n.d.]. TokuMX—MongoDB Performance Engine. Retrieved from https://www.percona.com/software/
mongo-database/percona-tokumx.

[69] Tokutek, Inc. 2013. TokuDB: MySQL Performance, MariaDB Performance. Retrieved from http://www.tokutek.com/
products/tokudb-for-mysql/.

[70] Vertica. 2017. WOS (Write Optimized Store). Retrieved from https://my.vertica.com/docs/7.1.x/HTML/Content/
Authoring/Glossary/WOSWriteOptimizedStore.htm.

[71] Jeftrey Scott Vitter. 2001. External-memory algorithms and data structures: Dealing with massive data. ACM Comput.
Surveys 33, 2 (2001), 209-271.

[72] Jeftrey Scott Vitter and Elizabeth A. M. Shriver. 1994. Algorithms for parallel memory, I: Two-level memories. Algo-
rithmica 12, 2-3 (1994), 110-147.

[73] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. 1994. Algorithms for parallel memory, II: Hierarchical multilevel
memories. Algorithmica 12, 2-3 (1994), 148-169.

[74] James Christopher Wyllie. 1979. The Complexity of Parallel Computations. Ph.D. Dissertation. Ithaca, NY. AAI8004008.

[75] Jimmy Xiang. 2012. Apache HBase Write Path. Retrieved from http://blog.cloudera.com/blog/2012/06/hbase-write-
path/.

[76] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala, Kanchan Chandnani, Pooja Deo, Zardosht
Kasheff, Leif Walsh, Michael A. Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. 2016. Optimizing every operation in a write-optimized file system. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST’16). 1-14.

[77] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala, Kanchan Chandnani, Pooja Deo, Zardosht
Kasheff, Leif Walsh, Michael A. Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. 2017. Writes wrought right, and other adventures in file system optimization. Trans. Stor. 13, 1 (2017), 3:1-3:26.

[78] Yang Zhan, Alexander Conway, Yizheng Jiao, Eric Knorr, Michael A. Bender, Martin Farach-Colton, William Jannen,
Rob Johnson, Donald E. Porter, and Jun Yuan. 2018. The full path to full-path indexing. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies (FAST’18). 123-138.

Received January 2020; revised October 2020; accepted February 2021

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.

https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/146941.146943
http://help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm
https://www.snia.org/sites/default/files/technical_work/PTS/SSS_PTS_2.0.1.pdf
https://github.com/percona/PerconaFT
https://www.percona.com/software/mongo-database/percona-tokumx
http://www.tokutek.com/products/tokudb-for-mysql/
https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/Glossary/WOSWriteOptimizedStore.htm
http://blog.cloudera.com/blog/2012/06/hbase-write-path/

