Operating System Transactions

Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and Emmett Witchel pmmmmremrs
Y The University of Texas at Austin TEXAS

{porterde, osh, rossbach, abennl, witchel}(@cs.utexas.edu

OS Concurrency Cr Developers Need Transactions Useful Applications

AT AUSTIN

The POSIX API is not designed for concurrency System transactions synchronize Transactional Software Install
+Shift from time-sharing uniprocessor machines to multi-core access to system resources sys_xbegin () ; sys_xbegin () ;
. . i X dpkg —-i openssh; make install svn;
012 core AMD chip due in January 2010 * Simple API: sys_xbegin, sys_xend, sys_xabort sys_xend() ; sys_xend () ;
*OS state may change between any two system calls *Transaction wraps a group of system calls
. . . 10% overhead 70% overhead
*API race conditions are problematic for complex operations oResults isolated from system until commit
oDistill to single system call in simple cases (e.g. rename ()) olnterfering operations automatically serialized «With no code changes to installer:
oSome operations cannot be distilled to a single system call «Atomic and isolated access to local resources oA failed install is rolled back
*Proliferation of ad hoc solutions to race conditions oSupport for files, memory allocation, process creation, etc. olf the system crashes, reboot to entire install or none
oNew file system extensions: openat, CLOSE_ON_EXEC oNetwork, graphics, etc. left for future work

oConcurrent applications see consistent libraries, config files
oNew signal handling API: sigaction, pselect, etc. *Previous systems hit implementation challenges, compromised isolation

*Developers need transactions to ensure consistency from OS Implementation Overview Lightweight Database Alternative

oge g 3 5 Editor Directory service CRM
TxOS: System tr: t L 2.6.22.6
Eiample AbL Race Condition =05 System fransactions it

.. . . 1, A7
Time-of-check-to-time-of-use (TOCTTOU) Attacks How are old and new versions of data tracked? e———
oPrevious systems used in-place updates, undo log

* Attacker exploits race condition to trick a setuid program
« Changes a symbolic link between check and use *Issues with priority inversion waiting for long aborts

*TxOS operates on private copies of objects

Victim Attacker i +
if(access (' foo’)) | oAvoids priority inversion; keeps data structures consistent eligpliwesl EIIE) e ikl il BOR s it il

*Rename insufficient for middle ground, databases are overkill

*Case study: OpenLDAP directory server:

link (’ AT . . . TxOS throughput normalized to BDB

symlink(’secret’,’foo’); oSplit objects into header and data component o

fd=open (' foo’) ; o
*Commit updates with a single pointer swap per object ad [[]

\
! \
\

T

*How are updates isolated? Search Subtree

* No deterministic solution without changing API))
oPrevious systems use two-phase locking (2PL) Search Single

*600+ hits in National Vulnerability DB for “symlink attack”

*2PL is deadlock prone; can’t order lock acquisition 0 05 1 15 2 25 3 35 4 45

*Solved deterministically with transactions:

oTxOS updates private copies, eliminating deadlock —
Victim Attacker sLocks only held to make copies and commit Reasonable Overheads

symlink (’secret’,’foo’);

a)

.
>

*Overhead of using transactions ranges from 1-2.4x

sys_xbegin() ; 8 Header
if (access (' foo’)) { i ite-i i
fd=open (* foo’) ; Private Dl 01.7-20x speedups for write-intensive workloads
) s @ @ *Non-transactional Linux compile: <2% overhead
sys_xend() ; Individual, non-transactional system calls: 42% mean overhead

15t Access: Commit with

Modif ivat o 9 S
A'{"O‘ate header, YA pointer swap, oCan be reduced to 14% with better compilation support
Private data copy Clear annotation

symlink (' secret’,’foo’);

