
System transactions synchronize
access to system resources

•  Simple API: sys_xbegin, sys_xend, sys_xabort

• Transaction wraps a group of system calls

o Results isolated from system until commit

o Interfering operations automatically serialized

• Atomic and isolated access to local resources

o Support for files, memory allocation, process creation, etc.
o Network, graphics, etc. left for future work

• Previous systems hit implementation challenges, compromised isolation

Operating System Transactions
Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and Emmett Witchel

The University of Texas at Austin
{porterde, osh, rossbach, abenn1, witchel}@cs.utexas.edu

The POSIX API is not designed for concurrency

An OS Concurrency Crisis Useful Applications
Transactional Software Install

• With no code changes to installer:

o A failed install is rolled back

o If the system crashes, reboot to entire install or none

o Concurrent applications see consistent libraries, config files

Lightweight Database Alternative

• Rename insufficient for middle ground, databases are overkill

• Case study: OpenLDAP directory server:

o Replaced BDB backend with TxOS + flat files

Implementation Overview
TxOS: System transactions in Linux 2.6.22.6

• How are old and new versions of data tracked?

o Previous systems used in-place updates, undo log

• Issues with priority inversion waiting for long aborts

• TxOS operates on private copies of objects

o Avoids priority inversion; keeps data structures consistent

o Split objects into header and data component

• Commit updates with a single pointer swap per object

• How are updates isolated?

o Previous systems use two-phase locking (2PL)

• 2PL is deadlock prone; can’t order lock acquisition

o TxOS updates private copies, eliminating deadlock

• Locks only held to make copies and commit

Example API Race Condition

 Victim Attacker
 if(access(’foo’)) {
 symlink(’secret’,’foo’);
 fd=open(’foo’);
 ...
 }

•  No deterministic solution without changing API

• 600+ hits in National Vulnerability DB for “symlink attack”

• Solved deterministically with transactions:

Time-of-check-to-time-of-use (TOCTTOU) Attacks
•  Attacker exploits race condition to trick a setuid program

•  Changes a symbolic link between check and use

• Shift from time-sharing uniprocessor machines to multi-core

o 12 core AMD chip due in January 2010

• OS state may change between any two system calls

• API race conditions are problematic for complex operations

o Distill to single system call in simple cases (e.g. rename())

o Some operations cannot be distilled to a single system call

• Proliferation of ad hoc solutions to race conditions

o New file system extensions: openat, CLOSE_ON_EXEC

o New signal handling API: sigaction, pselect, etc.

• Developers need transactions to ensure consistency from OS

Developers Need Transactions

 Victim Attacker
 symlink(’secret’,’foo’);

 sys_xbegin();
 if(access(’foo’)) {

 fd=open(’foo’);
 ...
 }
 sys_xend();

 symlink(’secret’,’foo’);

sys_xbegin();
dpkg –i openssh;
sys_xend();

10% overhead	

sys_xbegin();
make install svn;
sys_xend();

70% overhead	

Complexity	

rename() Database Sys Tx
 Editor Directory service CRM 	

Reasonable Overheads
• Overhead of using transactions ranges from 1-2.4x

o 1.7-20x speedups for write-intensive workloads

• Non-transactional Linux compile: <2% overhead

• Individual, non-transactional system calls: 42% mean overhead

o Can be reduced to 14% with better compilation support
1st Access:	

Annotate header, 	

Private data copy	

0x775
1000

Data	

0x775
1000

0x755
1000

0x775
1000

0x755
1000

0x775
1000

Header	

Modify private copy	

Commit with 	

pointer swap,	

Clear annotation	

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Search Single

Search Subtree

Add

Del

TxOS throughput normalized to BDB

Private	

