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Lecture 22: 
Hidden Markov Models 

 
Chapter 11 
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Dinucleotide Frequency 
• Consider all 2-mers in a sequence 

{AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT} 

• Given 4 nucleotides: 
each with probability of occurrence is ~ ¼.  
Thus, one would expect that the probability of 
occurrence of any given dinucleotide is ~  1/16. 

• However, the frequencies of dinucleotides in 
DNA sequences vary widely. 

• In particular, CG is typically underepresented 
(frequency of CG is typically < 1/16) 
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Example 
• From a 291829 base sequence 

 
 
 
 
 
 
 

• Expected value 0.0625 
• CG is 7 times smaller than expected 

AA 0.120214646984 GA 0.056108392614 
AC 0.055409350713 GC 0.037792809463 
AG 0.068848773935 GG 0.043357731266 
AT 0.083425853585 GT 0.046828954041 
CA 0.074369148950 TA 0.077206436668 
CC 0.044927148868 TC 0.056207766218 
CG 0.008179475581 TG 0.063698479926 
CT 0.066857875186 TT 0.096567155996 
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Why so few CGs? 
• CG is the least frequent dinucleotide because C in 

CG is easily methylated. And, methylated Cs are 
easily mutated into Ts. 

• However, methylation is suppressed around 
genes and transcription factor regions 

• So, CG appears at relatively higher frequency in 
these important areas 

• These localized areas of higher CG frequency are 
called CG-islands 

• Finding the CG islands within a genome is among 
the most reliable gene finding approaches 
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CG Island Analogy 

• The CG islands problem can be modeled by a toy 
problem named “The Fair Bet Casino” 

• The outcome of the game is determined by coin 
flips with two possible outcomes: Heads or Tails 

• However, there are two different coins 
– A Fair coin: Heads and Tails  

with same probability ½. 
– The Biased coin:  

Heads with prob. ¾,  
Tails with prob. ¼. 
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The “Fair Bet Casino” (cont’d) 

 
• Thus, we define the probabilities: 

– P(H|Fair) = P(T|Fair) = ½ 
– P(H|Bias) = ¾, P(T|Bias) = ¼ 
– The crooked dealer doesn’t want  

to get caught switching between  
coins, so he does so infrequently 

– Changes between Fair and Biased  
coins with probability  10% 
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The Fair Bet Casino Problem 

• Input: A sequence x = x1x2x3…xn of coin tosses 
made by some combination of the two possible 
coins (F or B). 

  
• Output: A sequence π = π1 π2 π3… πn, with each 

πi being either F or B indicating that xi is the 
result of tossing the Fair or Biased coin 
respectively. 
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Problem… 

Fair Bet Casino 
Problem 
Any observed 
outcome of coin 
tosses could have 
been generated by 
either coin, or any 
combination. 

But, all outcomes are not 
equally likely. What coin 
combination has the 
highest probability of 
generating the observed 
series of tosses? 

Decoding Problem 
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P(x|fair coin) vs. P(x|biased coin) 

• Suppose first, that the dealer never exchanges 
coins.  

• Some definitions: 
–  P(x|Fair): prob. of the dealer generating the 

outcome x using the Fair coin. 
– P(x|Biased):  prob. of the dealer generating 

outcome x using the Biased coin . 
 



11/18/2014 Comp 555 Bioalgorithms (Fall 2014) 10 

P(x|fair coin) vs. P(x|biased coin) 

• P(x|Fair) = P(x1…xn|Fair) = 
 Πi=1,n   p (xi|Fair) = (1/2)n 

 

• P(x|Biased) = P(x1…xn|Biased coin) = 
Πi=1,n   p (xi|Biased) = (3/4)k(1/4)n-k = 3k/4n 

 
– Where k is the number of Heads in x. 
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P(x|fair coin) vs. P(x|biased coin) 

• When is a sequence equally likely to have come 
from the Fair or Biased coin? 

  P(x|Fair) = P(x|Biased) 
1/2n = 3k/4n  

2n = 3k 
n = k log23  

• when          k = n / log23      (k ~ 0.63 n) 
• So when the number of heads is greater than 63% 

the dealer most likely used the biased coin 
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Log-odds Ratio 
• We can define the log-odds ratio as follows: 
 
 log2(P(x|Fair) / P(x|Biased)) = 
   = Σk

i=1 log2(p(xi|Fair) / p(xi|Biased))  
  = n – k log23 

 
• The log-odds ratio is a means for deciding which of two 

alternative hypotheses is most likely 
• “Zero-crossing” measure; if the log-odds ratio > 0 then 

the numerator is more likely, if it is < 0 then the 
denominator is more likely, they are equally likely if the 
log-odds ratio = 0 
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Computing Log-odds Ratio in Sliding Windows 

x1 x2 x3 x4 x5 x6 x7 x8 … xn 

Consider a sliding window of the outcome sequence.  
Find the log-odds for this short window. 

Log-odds value 
0 

Fair coin most likely Biased coin most likely 

Disadvantages: 
- the length of CG-island (appropriate window size) is not 
  known in advance 
- different window sizes may classify the same position 
  differently 
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Key Elements of this Problem 
• There is an unknown, hidden, state for each 

observation (Was the coin the Fair or Biased?) 
• Outcomes are modeled probabilistically: 

– P(H|Fair) = P(T|Fair) = ½ 
– P(H|Bias) = ¾, P(T|Bias) = ¼ 

• Transitions between states are modeled 
probabilistically: 
– P(πi = Biased | πi-1 = Biased) = aBB = 0.9 
– P(πi = Biased | πi-1 = Fair) = aFB = 0.1 
– P(πi = Fair | πi-1 = Biased) = aBF = 0.1 
– P(πi = Fair | πi-1 = Fair) = aFF = 0.9 
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Hidden Markov Model (HMM) 

• A generalization of this class of problem 
• Can be viewed as an abstract machine with k hidden states 

that emits symbols from an alphabet Σ. 
• Each state has its own probability distribution, and the 

machine switches between states according to this 
probability distribution. 

• While in a certain state, the machine makes 2 decisions: 
– What state should I move to next? 
– What symbol - from the alphabet Σ - should I emit? 
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Why “Hidden”? 
• Observers can see the emitted symbols of an 

HMM but have no ability to know which state the 
HMM is currently in. 

• Thus, the goal is to infer the most likely hidden 
states of an HMM based on the given sequence of 
emitted symbols. 
 HHHTHTHHTTTTHTHTHTHHHTHTHTHT 

BBBFFFFFFFFFFFFFFFFBBBFFFFFF? 
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HMM Parameters 
Σ: set of emission characters. 
  Ex.: Σ = {0, 1} for coin tossing  

   (0 for Tails and 1 Heads) 
                  Σ = {1, 2, 3, 4, 5, 6} for dice tossing 
 
Q: set of hidden states, emitting symbols from Σ. 
            Q = {F,B} for coin tossing 
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HMM Parameters (cont’d) 

A = (akl): a |Q| x |Q| matrix of probability of 
changing from state k to state l. Transition matrix 

               aFF = 0.9     aFB = 0.1 
             aBF = 0.1     aBB = 0.9 

 
E = (ek(b)): a |Q| x |Σ| matrix of probability of 

emitting symbol b while being in state k. 
Emission matrix 

                eF(0) = ½     eF(1) = ½  
             eB(0) = ¼     eB(1) = ¾  
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HMM for Fair Bet Casino 
• The Fair Bet Casino in HMM terms: 
 Σ = {0, 1} (0 for Tails and 1 Heads) 
 Q = {F,B} – F for Fair & B for Biased coin. 
• Transition Probabilities A, Emission Probabilities E 

 
 A Fair Biased 

Fair 0.9 0.1 

Biased 0.1 0.9 

E Tails(0) Heads(1) 

Fair ½  ½  
Biased 
 ¼  ¾  
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HMM for Fair Bet Casino (cont’d) 

 

 

 

 

 

 

 

 

HMM model for the Fair Bet Casino Problem 

F B 

T H T H 

9/10 9/10 

1/10 

1/10 1/2 1/2 1/4 3/4 
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Hidden Paths 
• A path π = π1… πn in the HMM is defined as a sequence of 

hidden states. 
• Consider path π = FFFBBBBBFFF and  

      sequence x = 01011101001 
 

x          =            0     1     0    1     1      1    0      1    0     0     1 

π      =        F   F   F   B   B   B   B   B   F   F   F 
    P(xi|πi)            ½   ½    ½    ¾   ¾    ¾    ¼   ¾    ½   ½   ½  

P(πi-1  πi)        ½   9/10    9/10      
1/10      

9/10      
9/10      

9/10     
9/10    

1/10      
9/10     

9/10  

Transition probability from state π i-1 to state π i 

Probability that xi was emitted from state π i 
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P(x|π) Calculation 
• P(x|π): Probability that sequence x was 

generated by the path π: 
                                      n  
 P(x|π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1) 
                                           i=1 

             = a π0, π1 ·  Π e πi (xi) · a πi, πi+1 
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Decoding Problem 
• Goal: Find an optimal hidden path of state 

transitions given a set of observations. 

• Input: Sequence of observations x = x1…xn 
generated by an HMM M(Σ, Q, A, E) 

• Output: A path that maximizes P(x|π) over all 
possible paths π. 
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Building Manhattan for Decoding Problem 
• In 1967 Andrew Viterbi developed a dynamic 

programming algorithm to solve the Decoding 
Problem. 
– Organized as a graph of possible hidden state 

transitions 
– Viewed as a “manhattan grid” 

• Every choice of π = π1… πn corresponds to a path 
in the graph. 

• The only valid direction in the graph is eastward. 
• This graph has |Q|2(n-1) edges. 
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Directed Acyclic Graph for Decoding Problem  

4 hidden 
states 

6 output observations 

Path with 
greatest 
probability 
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Decoding Problem vs. Alignment Problem 

Valid directions in the 
alignment problem. 

Valid directions in the 
decoding problem. 
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Viterbi Decoding of Fair-Bet Casino 
• Each vertex represents a possible state at a given 

position in the output sequence 
• The observed sequence conditions the likelihood of each 

state 
• Dynamic programming reduces search space to:  

|Q|+transition_edges×(n-1) = 2+4×5 from naïve 26 
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Decoding Problem 

• The Decoding Problem is reduced to finding a 
longest path in the directed acyclic graph (DAG) 

 

• Notes: the length of the path in this problem is 
defined as the product of its edges’ weights, not 
their sum. (But, using the log of the weights 
makes it a sum again!) 
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Decoding Problem (cont’d) 

• Every path in the graph has the probability 
P(x|π). 

 

• The Viterbi algorithm finds the path that 
maximizes P(x|π) among all possible paths. 

 

• The Viterbi algorithm runs in O(n|Q|2) time. 
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Decoding Problem: weights of edges 

w 

         

                    ??? 

(k, i) (l, i+1) 
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Decoding Problem: weights of edges 
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Decoding Problem: weights of edges 

w 

         The weight  w = el(xi+1). ak 

Solve for the path of highest probability 

(k, i) (l, i+1) 

                           
       i-th term = e πi (xi) . a πi, πi+1 = el(xi+1). akl   for  πi =k, πi+1=l 
 
                                           

 

Observation: a  prefix is also an optimal path 

Where have we seen this before? 
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Dynamic Program’s Recursion 

  
sl,i+1 = maxk Є Q {sk,i · weight of edge between (k,i) and (l,i+1)} 
 
           =  maxk Є Q { sk,i ·  akl · el (xi+1) } 
 
           = el (xi+1) · maxk Є Q {sk,i· akl} 
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Decoding Problem (cont’d) 

• Initialization: 
– astart,k = 1/|Q| 
– sk,0 = 0 for k ≠ begin 

 
• Let π* be the optimal path. Then, 
   
  P(x|π*) = maxk Є Q {sk,n . ak,end} 
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Viterbi for Fair Bet Casino 
• Solves all subproblems implied by emitted 

subsequence 
• How likely is the best path? 
• What is it?  
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Viterbi Algorithm 
• Rather than addition Viterbi uses multiplication 
• Converts edge weights to logs, and then it is 

back to addition, which has another advantage 
• The value of the product can become extremely 

small, which leads to underflow. 
• Logs avoid underflow.  
  
  sk,i+1= log el(xi+1) + max k Є Q {sk,i  + log(akl)} 
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Forward-Backward Problem 
 

Given: a sequence of coin  
tosses generated by an HMM. 

 
 
 
Goal: find the most probable coin that the dealer 
was using at a particular time. 
 

 

P(π i = k x) = P(x,π i = k)
P(x) Sum of probability of all paths 

Sum of probabilities of all paths in state k at i 



Illustrating the difference 
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x = THHH     p 
    FFFF (0.0228) 
    BFFF (0.0013) 
    FBFF (0.0004) 
    BBFF (0.0019) 
    FFBF (0.0004) 
    BFBF (0.0000) 
    FBBF (0.0006) 
    BBBF (0.0028) 
    FFFB (0.0038) 
    BFFB (0.0002) 
    FBFB (0.0001) 
    BBFB (0.0003) 
    FFBB (0.0057) 
    BFBB (0.0003) 
    FBBB (0.0085) 
    BBBB (0.0384) 
   P(x) = 0.0877 

x = THHH    p 
    FFFF (0.0228) 
    FFBF (0.0004) 
    FFFB (0.0038) 
    FFBB (0.0057) 
    BFFF (0.0013) 
    BFBF (0.0000) 
    BFFB (0.0002) 
    BFBB (0.0003) 
P(π2=F|x) = 0.0345/0.0877 = 0.3936 
    FBFF (0.0004) 
    FBBF (0.0006) 
    FBFB (0.0001) 
    FBBB (0.0085) 
    BBFF (0.0019) 
    BBBF (0.0028) 
    BBFB (0.0003) 
    BBBB (0.0384) 
P(π2=B|x) = 0.0532/0.0877 = 0.6064 

Viterbi solution, the 
most likely sequence 
states. 

Not a lot 
worse than 
the best 
solution 

The forward-backward 
algorithm tells us how 
likely we were using the 
biased coin at the 
second flip. 

High probability 
output x =THHH 
 (0.0877 > (1/2)4 ) 



• Defined fk,i (forward probability) as the 
probability of emitting the prefix x1…xi and 
reaching the state π = k. 

• The recurrence for the forward algorithm is: 
    

 
 

 

• Same as Viterbi recurrence except using 
summation instead of maximum 
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Forward Algorithm 

Probability of  
emitting xi at 
step i 

Probability of 
transitioning from 
state l at time i-1  
to state k at time i 
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Backward Algorithm 
• However, forward probability is not the only 

factor affecting P(πi = k|x). 

 

• The sequence of transitions and emissions that 
the HMM undergoes between πi and πi+1 also 
affect P(πi = k|x). 
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Backward Algorithm (cont’d) 

• Backward probability bk,i ≡ the probability of being 
in state πi = k and emitting the suffix xi+1…xn. 

• The backward algorithm’s recurrence: 
 
 
    This sums the probabilities of paths that 

start from state k at time i and reach the 
end state.  The recurrence extends the 
paths backwards, starting from the end 
state. 
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Forward-Backward Algorithm 

• The probability that the dealer used a biased 
coin at any moment i is as follows: 
 

 

 
                                          P(x, πi = k)       fk(i) . bk(i) 
                P(πi = k|x) = _______________ = ______________ 

                                                P(x)                 P(x) 



What can we do so far 
Given HMM H=M(Σ, Q, A, E) and observed 
sequence x=x1…xn we can now 
• Use the Viterbi decoding algorithm to find the 

hidden path π= π1 … πn that maximizes P(x|π) 
– Chooses the single best path 

 
• Use the forward-backward algorithm to find the 

probability M was in state k at time i 
– Finds individual likelihoods for each state 
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HMM Parameter Estimation 
• So far, we have assumed that the transition and 

emission probabilities are known. 
 

• However, in most HMM applications, these 
probabilities are not known.  Can we discover 
them? 
– this is parameter estimation 
– much harder than state estimation 
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HMM Parameter Estimation (cont’d) 

• Let Θ be a vector containing all of the unknown 
transition and emission probabilities (A and E).   

• Given training sequences x = x1,…,xm, let P(x|Θ)  
be the maximum probability of x given the 
assignment of parameters Θ. 

• Our goal is to find  
                               m 

   maxΘ Π P(xi|Θ) 
                               j=1 
  

 i.e. find A and E that maximize the probability of 
the training sequences 



A Parameter Estimation Approach 
• If hidden states were known, we could use our training data to 

estimate parameters.  For the observed sequences x, let Akl be the 
number of transitions from state k to l, and let Ek(b) be the number of 
times b is emitted in state k, then we can estimate 
 
 

 
• But we don’t know the hidden state sequences -- we only know the 

observed output streams x 
• Approach: make an intelligent guess of π, use the equations above to 

estimate parameters, then run Viterbi to estimate the hidden state.   
Re-estimate the parameters and repeat until the state assignments or 
parameter values converge (Baum-Welch) 

• Such iterative approaches are called Expectation Maximization (EM) 
methods of parameter estimation 
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akl = Akl

Akq
q∈Q
∑

ek (b) = Ek (b)
Ek (σ )

σ∈∑
∑
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Profile Alignment using HMMs 

• Distant species of functionally related sequences 
may have weak pairwise similarities with 
individual known species, and thus fail 
individual pairwise significance tests.  

• However, they may have weak similarities with 
many known species.   

• The goal is to consider all similarities once using 
multiple alignment 

• Related sequences are often better represented 
by a consensus profile than any multiple 
alignment. 
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Consensus Profile Representation 

Aligned DNA sequences can be represented by  a  
4· n profile matrix reflecting the frequencies  
of nucleotides in every aligned position. 

Protein families can be represented by a 20· n  
profile representing frequencies of amino acids. 



HMM Alignment 
• One method of performing sequence 

comparisons to a consensus profile is to use a 
HMM 

• Emission probabilities, ei(a), from the profile 
• Transition probabilities from our score matrix δij. 
• Explicitly model insertions and deletions as 

separate states at each position  
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Profile HMM 

A profile HMM 
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States of Profile HMM 

• Match states    M1…Mn (plus begin/end states)  
• Insertion states I0I1…In 
• Deletion states D1…Dn 

 
• Assumption: 
   eIj(a) = p(a) 
 where p(a) is the frequency of the occurrence of the 

symbol a in all the sequences. 
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Transition Probabilities in Profile HMM 

• log(aMI)+log(aIM) = gap initiation penalty 
 
• log(aII) = gap extension penalty 
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Profile HMM Alignment 
• Define vM

j (i) as the logarithmic likelihood score 
of the best path for matching x1..xi to profile 
HMM ending with xi emitted by the state Mj. 
 

• vI
j(i) and vD

j(i) are defined similarly. 
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Profile HMM Alignment: Dynamic Programming 

 
 
                                                           vM

j-1(i-1) + log(aMj-1,Mj ) 
vM

j(i) = log (eMj(xi)/p(xi)) + max       vI
j-1(i-1) + log(aIj-1,Mj ) 

                                                           vD
j-1(i-1) + log(aDj-1,Mj ) 

 
 
  
                                                         vM

j(i-1) + log(aMj, Ij) 
vI

j(i) = log (eIj(xi)/p(xi)) + max        vI
j(i-1) + log(aIj, Ij) 

                                                         vD
j(i-1) + log(aDj, Ij) 
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Paths in Edit Graph and Profile HMM 

A path through an edit graph and the corresponding 
path through a profile HMM 
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