PRAM algorithm design techniques

- Reading for next class (Thu Aug 30): PRAM handout secns 3.6, 4.1
- Written assignment 1 is posted, due Tue Sep 11
Topics

• PRAM Algorithm design techniques
 – pointer jumping
 – algorithm cascading
 – parallel divide and conquer
Design Technique: Pointer Jumping

- Fast parallel processing of linked data structures
 - linked lists
 - Membership, reduction and prefix sum of linked lists
 - graphs (adjacency lists, edge lists)
 - connected components
 - minimum spanning trees
Example: Finding the roots of a forest

• Input
 \[G = (V, E) \] a forest of directed trees

• Output
 \[s[1:n] \] where for each vertex \(j \),
 \(s[j] \) is the root of the tree containing \(j \)

• Representation of \(G \)
 – in a directed tree
 • the root has no parent
 • every other vertex has a unique parent
 – \(V = \{1, \ldots, n\} \)
 – \(E \) is defined by \(s: V \rightarrow V \)
 • \(s(u) = v \) if \(v \) is parent of \(u \) in \(G \)
 • \(s(r) = r \) if \(r \) is a root in \(G \)
 • \(s \) is represented using an array \(s[1:n] \)
Following a list in parallel: Pointer jumping

- Let \((n, s[1..n])\) be the representation of directed forest \(G\)
- Pointer jumping operation
 - every vertex directs its edge to its grandparent in parallel
 - also called *pointer doubling*

\[
\text{forall } i \text{ in } 1:n \text{ do } \\
\quad s[i] := s[s[i]] \\
\text{enddo}
\]
Analysis of pointer jumping

• pointer jumping halves distance to the root in s
 – let d be the distance in s from vertex u to the root
 – after pointer jumping distance in s from u to root is $\lfloor d/2 \rfloor$

• $S(n) =$

• $W(n) =$

• PRAM model

forall i in 1:n do
 $s[i] := s[s[i]]$
endo

\[
\begin{Bmatrix}
\end{Bmatrix}
\]
after 1 doubling

after 2 doublings

Initial Forest

Pointer jumping in a forest

All vertices point to the root of their tree
Finding roots of a forest

- Pointer jumping reaches a fixed point when forest has max height ≤ 1
 - vertex i is distance 1 or less from root when $s[i] = s[s[i]]$

- Forest height $\leq 1 \implies s[i] = \text{root of tree containing } i$

```
forall i in 1:n do
    while    s[i] != s[s[i]] do
      s[i] := s[s[i]]
    end do
enddo
```
Problem: find distance to root in directed forest

- Construct an algorithm for the following problem
 - Let \((n, s[1..n])\) be directed forest \(G\)
 - For each vertex \(1 \leq i \leq n\), set \(d[i]\) to be the distance from \(i\) to the root of its tree

- Invariant: let \(d[i]\) be the distance in \(G\) from \(i\) to \(s[i]\)
 - establish initially
 - maintain property with each pointer doubling
 - termination implies result

- Complexity
 \(W(n) = \)
 \(S(n) = \)

```plaintext
forall i in 1:n do
    d[i] := (s[i]== i)? 0 : 1
end do
for i := 1 to (lg n) do
    forall i in 1:n do
        forall i in 1:n do
            d[i] := d[i] + d[s[i]]
        s[i] := s[s[i]]
    end do
end do
```
Design Technique: Algorithm Cascading

• Technique for improving work efficiency of an algorithm
 – suppose we have
 • work-inefficient but fast parallel algorithm A
 • work-efficient but slow algorithm B (typically sequential)
 – combine ("cascade") A and B to get best of both

 "Speeding up by slowing down"
Example: histogram values in a sequence

- **Input**
 - Sequence \(L[1..n] \) with integer values in the range \(1..k \), where \(k = \log n \)

- **Output**
 - \(R[1..k] \) with \(R[i] = \) # occurrences of \(i \) in \(L[1..n] \)

Sequential algorithm

\[
R[1:k] := 0 \\
\text{for } i := 1 \text{ to } n \text{ do} \\
\quad R[L[i]] := R[L[i]] + 1 \\
\text{end do}
\]

\[T_s(n) = \]
Parallel Algorithm: First try

\[
C_{i,j} = \begin{cases}
1, & \text{if } L_i = j \\
0, & \text{otherwise}
\end{cases} \\
R_j = \sum_{i=1}^{n} C_{i,j} \\
L = \begin{bmatrix} 3 & 1 & 1 & 3 & 2 & 3 & 1 & 3
\end{bmatrix} \\
\]

integer C[1:n,1:k]
forall i in 1:n, j in 1:k do
 \[C[i,j] := \text{(L[i]==j) ? 1 : 0} \]
end do
forall j in 1:k do
 \[R[k] := \text{REDUCE}(C[1:n,j], +) \]
end do

PRAM
W(n) =
S(n) =
model
Cascading the histogram algorithm

- partition \(L \) into \(m \) “chunks” of size \((\log n)\)
 - \(k = \log n \) (assume \(k \) divides \(n \))
 - \(m = \frac{n}{k} = \frac{n}{\log n} \)

- compute mini-histogram sequentially within a chunk
 \[
 S_{\text{chunk}} = \quad W_{\text{chunk}} = \]

- compute all \(m \) mini-histograms in parallel
 \[
 S_{\text{all}} = S_{\text{chunk}}
 W_{\text{all}} = m \cdot W_{\text{chunk}}
 \]

- combine histograms by summing
 \[
 S_{\text{combine}} = \quad W_{\text{combine}} = \]

```plaintext
integer C[1:m,1:k]
forall i in 1:m, j in 1:k do
  C[i,j] := 0
end do
forall i in 1:m do
  for j := 1 to k do
    C[i, L[(i-1)k+j]] += 1
  end do
end do
forall j in 1:k do
  R[k] := REDUCE(C[1:m,j], +)
end do

W(n) =
S(n) =
PRAM model?
```
Parallel Divide and Conquer

• To solve problem instance P using parallel divide-and-conquer
 – divide P into subproblems (possibly in parallel)
 – apply D&C recursively to each subproblem in parallel
 – combine subsolutions to produce solution (possibly in parallel)

• Example: sorting
 – mergesort
 • combining
 – subproblems: left/right half of array
 – sort each subproblem
 – merge results
 – quicksort
 • partitioning
 – subproblems: values less than pivot, values greater than or equal to pivot
 – sort each subproblem
 – concatenate results
Parallel Mergesort (parallel divide and conquer)

- Assume parallel EREW $\text{merge}(A, B)$ for $|A| = |B| = O(n)$ with

 \[
 W_{\text{merge}}(n) = O(n) \\
 S_{\text{merge}}(n) = O(\log n)
 \]

```plaintext
mergesort(V[1:n]) =
if n \leq 1 then S[1:n] := V[1:n]
else
  m := n/2
  {
    R[1:m] = mergesort V[1:m]
    ||
    R[m+1:n] = mergesort V[m+1:n]
  }
  S[1:n] := merge( R[1:m], R[m+1:n] )
endif
return S[1:n]
```
Parallel Mergesort (forall)

- Assume parallel EREW $\text{merge}(A, B)$ for $|A| = |B| = O(n)$ with
 \[W_{\text{merge}}(n) = O(n) \]
 \[S_{\text{merge}}(n) = O(\log n) \]

\[
\text{mergesort}(V[1:n]) = \\
\text{if } n \leq 1 \text{ then } S[1:n] := V[1:n] \\
\text{else} \\
 m := n/2 \\
 \text{forall } i \text{ in } 0:1 \text{ do} \\
 \hspace{1em} R[i*m+1 : (i+1)*m] = \text{mergesort}(V[i*m+1 : (i+1)*m]) \\
 \text{end do} \\
 S[1:n] := \text{merge}(R[1:m], R[m+1:2*m]) \\
\text{endif} \\
\text{return } S[1:n]
\]

\[S_{\text{mergesort}}(n) = \]
\[W_{\text{mergesort}}(n) = \]
Parallel Quicksort

- Assume parallel EREW \(\text{partition}(A,p) \) for \(|A| = O(n)\) with
 \[
 W_{\text{partition}}(n) = O(n) \\
 S_{\text{partition}}(n) = O(\lg n)
 \]

Quicksort

\[
\text{quicksort}(V[1:n]) = \\
\text{if } n \leq 1 \text{ then } S[1:n] := V[1:n] \\
\text{else} \\
\quad p := V[\text{random}(1:n)] \\
\quad R[1:n], m := \text{partition } (V[1:n], p) \\
\quad h[0:2] := [0, m, n] \\
\quad \text{for all } i \in 0:1 \text{ do} \\
\quad \quad S[h(i)+1 : h(i+1)] = \text{quicksort } R[h(i)+1 : h(i+1)] \\
\quad \text{end do} \\
\text{end if} \\
\text{return } S[1:n]
\]

\[
S_{\text{quicksort}}(n) = \\
W_{\text{quicksort}}(n) =
\]
Planar Convex Hull Problem

• Input
 – $S = \{(x_i, y_i)\}$ set of n points in the plane
 – assume x_i distinct, y_i distinct, and no three points co-linear

• Output
 – tour of smallest convex polygon containing all points of S

• Complexity
 – $T^*_s(n) = \Theta(n \log n)$
Two Parallel Algorithms for Planar Convex Hull

- two divide and conquer algorithms
 - combining approach
 - partitioning approach

- combining algorithm (like mergesort)
 - assume input points presented in order of increasing x coordinate
 - can be obtained using $O(n \log n)$ work, $O(\log^2 n)$ step sorting algorithm
 - optimal worst case performance

- partitioning algorithm (like quicksort)
 - no assumptions about order of input points
 - suboptimal worst case performance
 - very good expected case performance
D&C algorithm via combining

1. Divide S into US, LS by line $P_1 – P_n$
2. Compute Upper Convex Path and Lower Convex Path using D&C algorithm
3. Combine UCP, LCP to construct convex hull
Construction of upper convex path

Divide

Recur

Combine (1): find upper common tangent

Combine (2): create upper convex path
Analysis (Combining algorithm)

- **Upper/Lower Convex path**
 - Find common tangent (UCT/LCT)
 - binary search of convex paths to find tangent points [Overmars & van Leeuwen]
 - Sequential: $S(n) = W(n) = O(\lg n)$
 - Connect paths
 - CREW: $S(n) = O(1)$, $W(n) = O(n)$
 - EREW: $S(n) = O(\lg n)$, $W(n) = O(n)$

- **Convex Hull**
 - $S(n) = S(n/2) + O(\lg n)$
 - $S(n) = O(\lg^2 n)$
 - $W(n) = 2W(n/2) + O(n)$
 - $W(n) = O(n \lg n)$
 - Work-efficient, since $T_S(n) = \Theta(n \lg n)$
D&C algorithm via partitioning

1. Divide S into US, LS by line P_i-P_j where P_i, P_j have extremal x coordinates
2. Compute Upper Convex Path and Lower Convex Path using D&C algorithm
3. Combine UCP, LCP to construct convex hull
Construction of upper convex path

Locate point at max distance from $P_i - P_j$

Discard interior points and partition remaining points

Recur: find upper convex paths

Combine upper convex paths
Analysis (Partitioning algorithm)

- **Upper/Lower Convex path for n points above baseline**
 - Find point at maximum distance from baseline
 - \(S(n) = O(\lg n) \), \(W(n) = O(n) \)
 - Partition
 - \(S(n) = O(\lg n) \), \(W(n) = O(n) \)
 - Combine
 - \(S(n) = O(\lg n) \), \(W(n) = O(n) \)

- **Convex Hull**
 - Find extremal points for initial baseline
 - \(S(n) = O(\lg n) \), \(W(n) = O(n) \)
 - Construct UCP, LCP
 - \(S(n) = \max(S(n_1), S(n_2)) + O(\lg n) \)
 - \(W(n) = W(n_1) + W(n_2) + O(n) \)
 - \(n_1 + n_2 \leq n \)
 - Combine paths
 - \(S(n)=O(1), W(n) = O(n) \)
Analysis of parallel partitioning algorithm

• Analysis
 – Expected partition, no points eliminated
 • \(S(n) = S(n/2) + O(\log n) \)
 - \(S(n) = O(\log^2 n) \)
 • \(W(n) = 2W(n/2) + O(n) \)
 - \(W(n) = O(n \log n) \)

 – Worst-case partition, no points eliminated
 • \(S(n) = S(n - 1) + O(\log n) \)
 - \(S(n) = O(n \log n) \)
 • \(W(n) = W(1) + W(n - 1) + O(n) \)
 - \(W(n) = O(n^2) \)

 – Expected partition, random points in the unit square
 - \(S(n) = O(\log n (\log \log n)) \)
 - \(W(n) = O(n \log \log n) \)
Reminder: asymptotic growth for recurrence relations

- Recurrence form

\[H(n) = aH\left(\frac{n}{b}\right) + f(n) \quad \text{where} \quad a \geq 1, \ b > 1 \]

\[H(1) = O(1) \]

- Solution

\[H(n) = \Theta\left(a^k\right) + \Theta\left(\sum_{i=0}^{k-1} a^i f\left(\frac{n}{b^i}\right)\right) \]

where \[k = \log_b n \]