• Reading for next time
 – The Implementation of the Cilk-5 Multithreaded Language
 • sections 1 – 3
Topics

• Nested parallelism in OpenMP and other frameworks
 – nested parallel *loops* in OpenMP (2.0)
 • implementation
 – nested parallel *tasks* in Cilk and OpenMP (3.0)
 • task graph and task scheduling
 • Cilk implementation and performance bounds
 • OpenMP directives and implementation
 – nested *data parallelism* in NESL
 • flattening nested parallelism into vector operations
Nested loop parallelism

- OpenMP annotation of matrix-vector product $R = M^{n \times m} \cdot V^m$

```c
#pragma omp parallel for private(i)
for (i= 0; i < n; i++) {
    R[i] = 0;

#pragma omp parallel for private(j) reduction(+:R[i])
for (j = 0; j < m; j++) {
    R[i] += M[i][j] * V[j];
}
```

- what should nested parallel regions mean?
 - each thread in the outer parallel region becomes the master thread of a team of threads in an instance of the inner parallel region

- how will it be executed?
 - most OpenMP implementations allocate all threads to the outer loop by default
 - `num_threads(p)` specification can be used to control threads per region

- additional consideration
 - Most modern processors have short vector units
 - accelerate the dot product in the inner loop
Nested parallelism: a more challenging problem

- **sparse** matrix-vector product \(R = MV \)
 - sparse \(M \) is represented using two arrays
 - \(A[nz], H[nz] \) arrays of non-zero values and column indices
 - \(S[n+1] \) describes the partitioning of \(A \) and \(H \) into \(n \) rows of \(M \)

```c
#pragma omp parallel for private(i)
for (i = 0; i < n; i++) {
    R[i] = 0;

#pragma omp parallel for private(j) reduction(+:R[i])
for (j = S[i]; j < S[i+1]; j++) {
}
}
```
How should SPMV be executed?

• Parallelize outer loop?
 – requires dynamic load balancing
 • Poor performance possible when
 – n is not much larger than p
 – there is a large variation in number of non-zeros per row

• Parallelize inner loop?
 – poor performance on “short” rows with few non-zeros

• Both loops must be fully parallelized
 – to achieve runtime bounds of the sort promised by Brent’s theorem
 – $W(nz) = O(nz)$
 – $S(nz) = O(lg \, nz)$
Nested parallelism

- In W-T model nested parallelism is unrestricted
 - divide & conquer algorithms
 - parallel quicksort, quickhull
 - Other examples, e.g. histogram problem
 - \((\lg n)\) reductions of size \((n/\lg n)\) run in parallel

- OpenMP work sharing recognizes nested parallelism in nested loops, but only implements certain cases
 - typically only outermost level of parallelism is realized
 - occasional support for orthogonal iteration spaces
 - e.g. \(\{1, \ldots ,n\} \times \{1, \ldots ,m\}\) treated as single iteration space of size \(nm\)
 - but how to divide into \(p\) equal parts?
 - OpenMP 2.0 directives
 - specify allocation of threads to loops
 - e.g. 16 threads total
 - outermost loop: 4 threads
 - nested loop: respective teams of e.g. 3, 5, 4, 4 threads
 - very tedious and dependent on both problem and machine
Nested parallelism

- Towards the Work-Time model:
 - task parallelism
 - a task is some code for execution and some context for data
 - inputs, outputs, private data
 - dynamically generated and terminated at run time
 - tasks are automatically scheduled onto threads for execution
 - language support for tasks
 - Cilk, Cilk Plus (MIT, Intel)
 » C or C++ with tasks (and data-parallel operations in Cilk Plus)
 » runtime scheduler with optimal scheduling strategy
 - OpenMP 3.0
 » C, C++, Fortran with tasks

- nested data parallelism
 - generalization of data parallelism
 - implemented in NESL (NEsted Sequence Language)
 - functional language with sequence construction functions (forall)
 - nested sequence construction corresponds to nested parallelism
 - compile time *flattening transformation* to convert nested sequence operations to simple data-parallel vector operations
Task parallelism: Cilk

- Cilk fibonacci program
 - Cilk = C + \{cilk, spawn, sync\}
 - cilk declares a procedure to be executable as a task
 - spawn starts a cilk task that executes concurrently with creator
 - sync waits for all tasks spawned in current procedure to complete

```c

cilk int fib (int n)
{
    if (n < 2) return n;
    else
    {
        int x, y;
        x = spawn fib(n-1);
        y = spawn fib(n-2);
        sync;
        return (x+y);
    }
}
```

Task dependence graph
CILK runtime task scheduler

- Task dependence graph unfolds dynamically
 - typically far more tasks ready to run than threads available
 - potential blow-up in space

- Scheduling strategy
 - each thread maintains a local double-ended queue of tasks ready to run
 - shallow and deep ends refer to relative positions of tasks in dependence graph
 - if queue is nonempty
 - execute ready task at the *deepest level* in the queue
 - corresponds to sequential execution order, generally friendly to memory hierarchy
 - if queue is empty
 - steal a task at *shallowest level* of the queue in some *randomly chosen* other thread

![Task queues diagram]

ready task queues: P1, P2, P3
shallow end: fib(4), fib(3), fib(2), fib(1)
deep end: fib(0)
Cilk execution properties

• Task execution order is parallel depth-first
 – serial order at each processor
 – good fit for parallel memory hierarchy
 – space bound: \(\text{Space}_p(n) = \text{Space}_1(n) + pS(n) \)

• Global execution time follows bounds determined by Brent’s theorem
 – \(T_p(n,p) = O\left(\frac{W(n)}{p} + S(n) \right) \)

• Efficiency
 – work-first principle (busy processors keep working)
 • minimizes interference with useful progress
 – work-stealing principle
 • idle processors steal tasks towards high end of current DAG
 – these tasks are expected to unfold into larger portions of the complete DAG
Sparse matrix-vector product in Cilk++

• Does this solve our problem?

```cpp
double A[nz], V[n], R[n];
int H[nz], S[n+1];

void sparse_matvec() {
    for (int i = 0; i < n; i++) {
        R[i] = cilk_spawn dot_product(S[i], S[i+1]);
    }
    cilk_synch;
}

double dot_product(int j1, int j2) {
    cilk::reducer_opadd<double> sum;
    for (int j = j1; j < j2; j++) {
        cilk_spawn sum += A[j] * V[H[j]];
    }
    cilk_synch;
    return sum.get_value();
}
```
Task creation in loops with Cilk++

- `cilk_for` creates a set of tasks using recursive division of the iteration space

```cpp
double A[nz], V[n], R[n];
int H[nz], S[n+1];

void sparse_matvec() {
    cilk_for (int i = 0; i < n; i++) {
        R[i] = dot_product(S[i], S[i+1]);
    }
}

double dot_product(int j1, int j2) {
    cilk::reducer_opadd<double> sum;
    cilk_for (int j = j1; j < j2; j++) {
        sum += A[j] * V[H[j]];
    }
    return sum.get_value();
}
```
Divide and conquer algorithms with Cilk

\[
\text{cilk void mergesort(int A[], int n) } \{ \\
\text{ if (n <= 1) } \\
\text{ return } \\
\text{ else } \{ \\
\text{ spawn mergesort(&A[0], n/2); } \\
\text{ spawn mergesort(&A[n/2], n/2); } \\
\text{ } \} \\
\text{ sync; } \\
\text{ merge(&A[0], n/2, &A[n/2], n/2); } \\
\text{ } \} \\
\]

\[W(n) = \]

\[S(n) = \]

Why well-suited to the memory hierarchy?
Mergesort Example with Tasks

Using two threads:

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks
Mergesort Example with Tasks

Thread 0
Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
A better parallel sort using Cilk

cilk void sort(int A[], int n) {
 if (n < 100)
 sort sequentially
 else {
 spawn sort(&A[0], n/2);
 spawn sort(&A[n/2], n/2);
 }
 sync;
 merge(&A[0], n/2, &A[n/2], n/2);
}

cilk void merge(int A[], int na, int B[], int nb) {
 if (na < 100 || nb < 100)
 merge sequentially
 else {
 int m = binary_search(B, A[na/2]);
 spawn merge(A, na/2, B, m);
 spawn merge(&A[na/2], na/2, &B[m], nb - m);
 }
 sync;
}
OpenMP 3.0 includes tasks

- Tasks consist of statements or code blocks
 - basic constructs are **task** and **taskwait**

- Works in C, C++, Fortran, supported by many compilers

```c
int fib(int n){
  int x, y;

  if (n < 2)
    return n;
  else {
    #pragma omp task
    x = fib(n-1);
    #pragma omp task
    y = fib(n-2);

    #pragma omp taskwait
    return (x+y);
  }
}
```
Scheduling OpenMP Tasks: the Basic Rules

• In general, a task may begin execution on any thread in the team
 – OpenMP does not prescribe a task scheduling strategy
 • generally uses “help first” strategy to create more ready tasks
 – queue the spawned task, and keep going on the parent
 – leads to breadth first evaluation order
 • if(<cond>) forces task execution execution when <cond> evaluates to true

 – Tied tasks are started on an arbitrary thread and then run to completion in that thread. They can be suspended only at a task spawn or when waiting on a lock.

 – Untied tasks can suspend at any point and may resume on any thread in the team (permits pre-emption – not generally safe)

 – barriers in OpenMP require completion of all outstanding tasks generated by the team of threads encountering the barrier
Scope of variables

- Variables can be shared, threadprivate, or (task) private
 - Shared variables can be accessed concurrently by all tasks
 - Threadprivate variables can be accessed safely within a thread by tied tasks
 - Private variables can only be accessed by the owning task

- Examples where threadprivate variables help
 - Fast summation
 - Dynamic memory allocation
Task parallelism - summary

- **Cilk**
 - only on Intel systems (but being phased out)
 - work-first scheduling, generally good for locality
 - cilk_for helps parallelize loops more effectively

- **Open-MP**
 - scheduling strategy is not prescribed, generally help-first,
 - not quite as cache-friendly as work-first
 - locality aware schedulers try to schedule tasks on the socket where they were spawned
 - helps increase last-level cache locality

- **General**
 - task parallelism is well suited to divide & conquer algorithms and irregular parallelism
 - but has higher overheads than pure loop-level parallelization
 - generally insensitive to variation in processor speeds
 - can effectively use hyperthreads and is oblivious to OS interruptions
Nested data parallelism

- Dependence graph reveals available parallelism
 - nodes: computations
 - edges: dependencies
 - dynamic unfolding of graph in execution
 - nested data-parallel loops yield series/parallel graphs

```
FORALL (i = 1, 4)
  WHERE C(i) DO
    FORALL (j = 1, i) DO
      G(i, j)
    END FORALL
  ELSEWHERE
    H(i)
  END WHERE
END FORALL
```
Flatting execution strategy

- Each node in the spawn tree is part of a data-parallel operation
 - *flattening* transforms program to a sequence of simple data-parallel operations
 - data-parallel operations have low computational intensity so require pipelined parallel memory systems for performance
 - each data-parallel operation is optimally executed using all processors

\[
\text{FORALL } (i = 1,4) \\
\quad \text{WHERE } C(i) \text{ DO} \\
\qquad \text{FORALL } (j = 1, i) \text{ DO} \\
\qquad \qquad G(i,j) \\
\qquad \text{END FORALL} \\
\quad \text{ELSEWHERE} \\
\quad \quad H(i) \\
\quad \text{END WHERE} \\
\text{END FORALL}
\]
NESL: Sparse matrix-vector product

\[R = MV \] where \(V, R \in \mathbb{R}^n \) and \(M \in \mathbb{R}^{n \times n} \) and \(M \) has \(nz \) nonzeros

- Nested sequence representation of \(M \)
 - Each row is represented by a sequence of pairs
 - (non-zero value \(a \), column index \(h \))
 - \(M \) is a sequence of \(m \) row representations

- Nested parallel algorithm (NESL)

```plaintext
MatVect(M, V) =
[R in M:
    sum([(a, h) in R: a * V[h]] )
]
```

\(M = \)
\[
[(1,1.0), (3,0.4), (4,0.55)],
[(2,1.0), (9,0.15), (187,0.18)],
\ldots
[(3850,0.2), (4165,1.0)]
\]

a sparse matrix
Flattening

- **Compile-time elimination of nested data parallelism**
 - **Flattening theorem**
 - Let F be a set of basic data parallel operations on sequences
 - Let L(F) be a nested data-parallel programming language over F
 - For any program P in L(F), flattening yields a program P’ in L(F + F’) such that
 - P and P’ compute the same function
 - P’ contains no nested data-parallel constructs
 - no additional work is introduced and no available parallelism is lost, i.e.
 \[W_{P'}(n) = O(W_P(n)) \text{ and } S_{P'}(n) = O(S_P(n)) \]
 - **Example primitives F and F’**
 \[V = [1, 2, 3] \quad W = \begin{bmatrix} [1] & [1, 2] & [1, 2, 3] \end{bmatrix} \]

<table>
<thead>
<tr>
<th>F: (\alpha \rightarrow \beta)</th>
<th>F': (\text{Seq}(\alpha) \rightarrow \text{Seq}(\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetic opns</td>
<td>vector arithmetic opns</td>
</tr>
<tr>
<td>e.g. plus(1,1) = 2</td>
<td>2 e.g. plus'(V,V) = [2, 4, 6]</td>
</tr>
<tr>
<td>sum(V) = 6</td>
<td>sum'(W) = [1, 3, 6]</td>
</tr>
<tr>
<td>size(V) = 3</td>
<td>size'(W) = [1, 2, 3]</td>
</tr>
<tr>
<td>range(3) = [1, 2, 3]</td>
<td>range'(V) = [1], [1, 2], [1, 2, 3]</td>
</tr>
<tr>
<td>index(V,3) = 3</td>
<td>index'(W,V) = [1, 2, 3]</td>
</tr>
<tr>
<td>dist(1,3) = [1,1,1]</td>
<td>dist'(V,V) = [1], [2,2], [3,3]</td>
</tr>
</tbody>
</table>
Flattening sparse matrix – vector product

\[
R = \text{Segmented}_\text{Sum}(A \ast V(H), S)
\]

#pragma omp parallel do
DO \(i = 0, n-1\)

 \(R(i) = 0\)

 #pragma omp parallel do reduction(+:R(i))
 DO \(j = S(i), S(i+1)-1\)

 \(R(i) = R(i) + A(j) \ast V(H(j))\)
 ENDDO
ENDDO

#pragma omp parallel do
DO \(j = 0, nz-1\)

 \(T(j) = A(j) \ast V(H(j))\)
END DO
CALL Segmented_Sum(T,nz,S,R,n)
Parallel Implementation of primitives F'

- **Goal**
 - precise load balance
 - insensitive to
 - number of subproblems
 - size of subproblems

- **Example**
 - $\text{sum'} :: \text{Seq(Seq}(\alpha)) \rightarrow \text{Seq}(\alpha)$
 - uses
 - sequential segmented sum of size n/p
 - single parallel segmented sum scan of size p
Flattening: Segmented primitives

Segmented Sum vs Nested Sum
NCSC Cray T916-4 (1 proc.)
N = 500,000

Summation rate (MFLOPS)

Average Segment Size

- T90 Segmented Sum
- SX-4 Segmented Sum
- T90 Nested Sum
- SX-4 Nested Sum
Flattening: NAS Conjugate Gradient benchmark

- Benchmark: find principal eigenvalue of random sparse linear system using power method
 - repeated use of conjugate gradient method
 - class B benchmark, N = 75,000, average # nz per row = 140, 96% of the work is in sparse matrix – vector product
Comparing execution strategies

- **Nested task parallelism**
 - few restrictions on program form
 - tasks must be “coarsened” to amortize scheduling overhead
 - load balanced up to granularity of tasks
 - provably good time and space bounds for strict programs
 - can maintain locality (depends on scheduling strategy)

- **Nested data parallelism**
 - restricted to data parallel programs (subset of all programs)
 - execution is sequence of vector operations
 - easily load-balanced
 - but low computational intensity
 - no run-time scheduler required
 - provably good time bounds, but space bounds are harder