COMP 790-033 - Parallel Computing

Lecture 2
August 24, 2022

The PRAM model and its complexity measures

• Reading for next class (Wed Aug 31): PRAM handout secns 3.6, 4.1
First class summary

- In this course we study how to speed up large computational problems using parallel computing
 - in theory and in practice

- We study various parallel programming models
 - Initially we consider a theoretical model, the Parallel Random Access Machine (PRAM)
 - study algorithms and their asymptotic complexity
 - Subsequently we focus on practical models and their implementation on current hardware
 - shared memory multiprocessors, accelerators, and distributed memory clusters
 - examine execution model, hardware operation, programming constructs, performance analysis
 - illustrate principles using various case studies
Topics today

• PRAM model
 – execution model
 – programming model

• Work-Time model
 – programming model
 – complexity metrics
 – Brent’s theorem: translation to PRAM programs

• Parallel prefix algorithm
 – derivation
 – applications
PRAM model of parallel computation

- **PRAM** = Parallel Random Access Machine
 - p processors
 - shared memory
 - each processor has a unique identity $1 \leq i \leq p$
- **synchronous** PRAM model
 - Single Instruction, Multiple Data (SIMD)
 - each processor may be active (✓) or inactive (✗)
 - each instruction is executed by active processors only
 - each instruction completes in unit time
PRAM program

- PRAM program
 - sequential program
 - expressions involving processor id i have a unique value in each processor
 - i can be used as an array index
 \[X[i] := 10 \times i \]
 - conditionals specify active processors
 \[
 \text{if} \ \text{odd}(i) \ \text{then} \\
 \quad X[i] := X[i] + X[i+1] \\
 \text{endif}
 \]
 \[
 \text{if} \ i \leq 2 \ \text{then} \\
 \quad X[i] := 1 \\
 \text{else} \\
 \quad X[i] := -1 \\
 \text{endif}
 \]
Concurrent memory access - Read

- Concurrent reads (CR)
 - all readers of a given location see the same value
 \[X[i] := y \]
 \[X[i] := B\left\lfloor \frac{i}{2} \right\rfloor \]
 value of \(y \) read concurrently by all \(p \) processors
 the first \(p/2 \) elements of \(B \) are read concurrently by two processors

- Eliminating bounded-degree concurrent reads
 - replace \(X[i] := B\left\lfloor \frac{i}{2} \right\rfloor \) with

    ```
    if odd(i) then
      X[i] := B\left\lfloor \frac{i}{2} \right\rfloor
    endif
    if even(i) then
      X[i] := B\left\lfloor \frac{i}{2} \right\rfloor
    endif
    ```

 concurrent read is eliminated but number of steps is doubled

Ex. \(p = 6 \)

\[x \]
\[B \]

\[1 \quad 1 \quad 2 \quad 2 \quad 3 \quad 3 \]

\[1 \quad 2 \quad 3 \]
Concurrent memory access - Write

- Concurrent writes (CW)
 - final value depends on the arbitration policy among writes to the same destination:
 - **Arbitrary CW**
 - nondeterministic choice among values written
 - **Common CW**
 - processors that write a value to the same destination must write the same value, else error
 - **Priority CW**
 - value written by processor with lowest processor id
 - **Combining Write**
 - all values combined using a specified associative operation (e.g. “+”)

- **Example** ($p = 6$)

 $y := X[i]$

 $B[\lceil i/2 \rceil] := X[i]$
Concurrent writes:

- Let $B[1:p]$ be an array of boolean values and define $c = B_1 \lor B_2 \lor \ldots \lor B_p$
 - use p processors and concurrent writes to compute c in a constant number of steps
 a) with combining CW
 b) with a CW policy other than combining CW (which?)
Concurrent memory access

• PRAM variants
 – EREW, CREW, ERCW, CRCW
 – differ in performance, not expressive power
 • EREW < CREW < CRCW
 – loosely reflect difficulty of model implementation

• The following are considered EREW
 – references to
 • processor id i
 • number of processors p
 • problem size n

 – references to local variables
 \[
 \text{local } h; \quad h := 2*i + 1; \quad X[h] := X[i]
 \]

 – expression evaluation is synchronous, e.g.
 \[
 X[i] := X[i] + X[i+1]
 \]
 is EREW
A PRAM program

- **Simple problem: vector addition**
 - Given V, W vectors of length n
 - Compute $Z = V + W$

- **PRAM program**
 - Constructed to operate with arbitrary
 - Problem size n
 - Number of processors p
 - Work to be performed must explicitly be “scheduled” across processors
 - Time complexity with p procs
 - $T_c(n, p) =$
 - PRAM model?

Input: $V[1:n], W[1:n]$ in shared memory

Output: $Z[1:n]$ in shared memory

```
local integer $h, k$
for $h := 1$ to $\lceil n/p \rceil$ do
  $k := (h-1) \cdot p + i$
  if $k \leq n$ then
    $Z[k] := V[k] + W[k]$
  endif
enddo
```
Work-Time paradigm

- **W-T parallel programming model**
 - high-level PRAM programming model
 - specifies available parallelism
 - no explicit scheduling of parallelism over processors
 - simplifies algorithm presentation and analysis
 - W-T programs can be mechanically translated to PRAM programs

- **W-T program**
 - sequential program
 - `forall` construct
 - specification of available parallelism
 - number of processors is not a parameter of the model!

WT program for vector addition

```
Input: V[1:n], W[1:n]
Output: Z[1:n]

forall i in 1:n do
    Z[i] := V[i] + W[i]
enddo
```
Programming notation for the W-T framework

- **standard sequential programming notation**
 - statements
 - assignment
 - statement composition
 - alternative construct (if ... then ... else …)
 - repetitive construct (for, while)
 - expressions
 - arithmetic and logical functions
 - variable reference
 - (recursive) function and procedure invocation

- **forall statement**
 - specifies statement T may be executed simultaneously for each value of i in D
 - no restriction on T
 - can be a sequence of statements
 - can invoke (recursive) functions
 - can be another (nested) forall statement

forall i in D do
 statement T depending on i
enddo
W-T complexity metrics

• **Work complexity** $W(n)$
 – total number of operations performed (as a function of input size n)

• **Step complexity** $S(n)$
 – number of steps required (as a function of input size n)
 – assuming unbounded parallelism

• Inductively defined over constructs of W-T programming notation
W-T complexity measures: simple example

\[
\text{forall } i \text{ in } 2:n-1 \text{ do } \\
R[i] := (R[i-1] + R[i] + R[i+1])/3
\text{ enddo}
\]

\[
\text{for } h := 1 \text{ to } k \text{ do } \\
\text{forall } i \text{ in } 2:n-1 \text{ do } \\
R[i] := (R[i-1] + R[i] + R[i+1])/3
\text{ enddo}
\text{ enddo}
\]
Work and Step Complexity of the forall construct

• How to define work and time complexity of the forall construct?

P: forall i in D do
 body T depending on i
enddo

– assume we can determine W(T_i) and S(T_i) for each i in D

• W(P) =

• S(P) =
W-T complexity measures: vector summation

- let $n = 2^k$

```plaintext
forall i in 1:n/2 do
    S[i] := S[2i - 1] + S[2i]
enddo
```

```plaintext
for h := 1 to k do
    forall i in 1:n/2^h do
        S[i] := S[2i - 1] + S[2i]
    enddo
enddo
```

$n = 4$, $k = 2$
W-T complexity measures: vector summation

- **Vector summation (sum - reduction)**
 - given $V[1..n]$, $n = 2^k$
 - compute $s = \text{sum}(V[1:n])$
 - optimal sequential time $T(n) = \Theta(n)$

- **Complexity**

<table>
<thead>
<tr>
<th>$W(n)$</th>
<th>$S(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input: $V[1:n]$ vector of integers, $n = 2^k$

Output: $s = \text{sum}(V[1:n])$

P1:
```plaintext
forall i in 1:n do
    B[i] := V[i]
enddo
```

P2:
```plaintext
for h := 1 to k do
    forall i in 1:n/2^h do
    enddo
enddo
```

P3:
```plaintext
s := B[1]
```

PRAM model needed?
Brent’s theorem and $T_c(n,p)$

- Brent’s theorem schedules a W-T program for a p-processor PRAM
 - idea
 - simulate each parallel step in W-T program using p processors
 - the work $W_i(n)$ to be performed in step i can be completed using p processors in time
 \[
 \left\lfloor \frac{W_i(n)}{p} \right\rfloor
 \]
 - bound concurrent runtime $T_c(n,p)$ of resultant PRAM program
 - by summing over all $S(n)$ steps

\[
T_c(n, p) = \sum_{i=1}^{S(n)} \left\lfloor \frac{W_i(n)}{p} \right\rfloor \leq \sum_{i=1}^{S(n)} \left(\left\lfloor \frac{W_i(n)}{p} \right\rfloor + 1 \right) \leq \sum_{i=1}^{S(n)} \frac{W_i(n)}{p} + S(n) = \left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)
\]

\[
\left\lfloor \frac{W(n)}{p} \right\rfloor = \left\lfloor \sum_{i=1}^{S(n)} \frac{W_i(n)}{p} \right\rfloor \leq \sum_{i=1}^{S(n)} \left\lfloor \frac{W_i(n)}{p} \right\rfloor = T_c(n, p)
\]
W-T vector summation algorithm

Input: \(V[1:n] \) vector of integers, \(n = 2^k \)
Output: \(s = \text{sum}(V[1:n]) \)

P1: \(\text{forall } i \in 1:n \) do
 \(B[i] := V[i] \)
enddo

P2: for \(h := 1 \) to \(k \) do
 \(\text{forall } i \in 1:n/2^h \) do
 enddo
enddo

P3: \(s := B[1] \)

PRAM vector summation algorithm

Input: \(V[1:n] \) vector of integers, \(n = 2^k \)
Output: \(s = \text{sum}(V[1:n]) \)
\(p > 0 \) processor PRAM; processor index \(i \)

local integer \(j, r; \)

P1: for \(j := 1 \) to \(\left\lceil n/p \right\rceil \) do
 \(r := (j-1) \cdot p + i \)
 if \(r \leq n \) then \(B[r] := V[r] \) endif
enddo

P2: for \(h := 1 \) to \(k \) do
 \(\text{forall } i \in 1:n/2^h \) do
 enddo
enddo

P3: if \(i \leq 1 \) then \(s := B[1] \) endif
Performance of translated W-T program

- Count steps needed to perform the additions
 - Brent’s theorem predicts
 \[T_c(n, p) = O\left(\left\lfloor \frac{n-1}{p} \right\rfloor + \lg n \right) \]
 - counts for various \(p \)
 \[
 \begin{array}{cc}
 p & T_c(n, p) \\
 p = 1 & (n-1)/p \\
 p > n & \lg n \\
 p = 3, n = 2^k, k \text{ even} & \approx \left\lfloor (n-1)/p \right\rfloor + \frac{1}{2} \lg n
 \end{array}
 \]
- Upper bound is tight (for this program)
- translation retains EREW model

PRAM vector summation algorithm

\[\text{Input: } V[1:n] \text{ vector of integers, } n = 2^k \]
\[\text{Output: } s = \text{sum}(V[1:n]) \]
\[p > 0 \text{ processor PRAM; processor index } i \]

local integer \(j, r; \)

P1: \(\text{for } j := 1 \text{ to } \left\lceil \frac{n}{p} \right\rceil \text{ do} \)
 \(r := (j-1) \cdot p + i \)
 \(\text{if } r \leq n \text{ then } B[r] := V[r] \text{ endif} \)
 enddo

P2: \(\text{for } h := 1 \text{ to } k \text{ do} \)
 \(\text{for } j := 1 \text{ to } \left\lceil \frac{n}{2^h}/p \right\rceil \text{ do} \)
 \(r := (j-1) \cdot p + i \)
 \(\text{if } r \leq n/2^h \text{ then } B[r] := B[2r-1] + B[2r] \text{ endif} \)
 enddo
 enddo

P3: \(\text{if } i \leq 1 \text{ then } s := B[1] \text{ endif} \)
Parallel prefix-sum

- **Prefix sum**
 - Input
 - Sequence X of $n = 2^k$ elements, binary associative operator +
 - Output
 - Sequence S of $n = 2^k$ elements, with $S_i = x_1 + ... + x_i$
 - Example:
 - $X = [1, 4, 3, 5, 6, 7, 0, 1]$
 - $S = [1, 5, 8, 13, 19, 26, 26, 27]$
 - $T_S(n) = \Theta(n)$

- **Uses of prefix sum**
 - efficient parallel implementation of sequential “scan” through consecutive actions
 - ex: Given series of bank transactions $T[1:n]$, with $T[i]$ positive or negative, and $T[1]$ the opening deposit > 0
 - Was the account ever overdrawn?
 - explicit or implicit component of many parallel algorithms
Prefix sum algorithm

- **Recursive solution**
 - X_i stands for $X[i]$ and X_{ij} stands for $X[i]+X[i+1]+\ldots+X[j]$

- **W-T complexity**
 - $W(n) = W\left(\frac{n}{2}\right) + O(n)$, $W(1) = O(1) \Rightarrow ?$
 - $S(n) = S\left(\frac{n}{2}\right) + O(1)$, $S(1) = O(1) \Rightarrow ?$
Parallel prefix sum algorithm – WT model

Input: $X[1..n]$ vector of integers
Output: $S[1..n]$

```plaintext
par_prefix_sum( X[1..n] ) =
var Y[1..n/2], Z[1..n/2], S[1..n];
S[1] := X[1];
if n > 1 then
  forall 1 ≤ i ≤ n/2 do
    Y[i] := X[2i-1] + X[2i]
  enddo
Z[1..n/2] := par_prefix_sum(Y[1..n/2]);
forall 2 ≤ i ≤ n do
  if even(i) then
    S[i] := Z[i/2]
  else
    S[i] := Z[(i-1)/2] + X[i]
  endif
enddo
endif
return S[1..n]
```

Input: $X[1..n]$ vector of integers
Output: $S[1..n]$
Balanced trees in arrays

- **Balanced Tree Ascend / Descend**
 - Key idea
 - view input data as balanced binary tree
 - sweep tree up and/or down
 - “Tree” not a data structure but a control structure (e.g., recursion)

- **Example**
 - vector summation

![Diagram of balanced tree in arrays]

1 2 3 4 5 6 7 8

1 3 3 7 5 11 7 26

1 3 3 10 5 11 7 36
In-place prefix sum

- $S(n)$
- $W(n)$
- Space
- PRAM model
In-place prefix-sum algorithm – WT model

Input: $X[1..n]$ vector of values, $n = 2^k$

Output: $S[1..n]$ vector of prefix sums

```
parallel_prefix_sum( X[1..n] ) =
  forall i in 1:n do
    S[i] := X[i]
  enddo
  for h = 1 to k do
    forall i in 1:n/2^h do
    enddo
  enddo
  for h = k downto 1 do
    forall i in 2:n/2^{h-1} do
      if odd(i) then
        S[2^{h-1}i] := S[2^{h-1}i - 2^{h-1}] + S[2^{h-1}i]
      endif
    enddo
  enddo
```
Scan-based primitives

- Scan operations (parallel prefix operations) can be used to implement many useful primitives
 - Suppose we are given SCAN to compute prefix sum of integer sequences

 \[
 \text{seq<int> SCAN(seq<int>)}
 \]
 - Step complexity is \(\Theta(\lg n) \)
 - Work complexity is \(\Theta(n) \)
 - PRAM model is EREW

- The next three examples have the same complexity as SCAN
COPY (or DISTRIBUTE)

```c
seq<int> COPY(int v, int n) {

    seq<int> V[1:n];
    V[1] = v;
    forall i in 2 : n do
        V[i] := 0;
    enddo
    return SCAN(V);
}
```

v = 5
n = 7
V = 5 0 0 0 0 0 0
Res = 5 5 5 5 5 5 5 5
seq<int> ENUMERATE(seq<bool> Flag) {
 seq<int> V[1:#Flag];
 forall i in 1 : #Flag do
 V[i] := Flag[i] ? 1 : 0;
 enddo
 return SCAN(V);
}

Flag = T T F T F F F T
V = 1 1 0 1 0 0 0 1
Res = 1 2 2 3 3 3 3 4
seq<T> PACK(seq<T> A, seq<bool> Flag) {

seq<T> R[1:#A];
P := ENUMERATE(Flag);
forall i in 1 : #Flag do
 if Flag[i] then R[P[i]] := A[i] endif;
enddo
return R[1:P[#Flag]];
}

A = ! @ # $ % ^ &
Flag = T T F T F F F T
P = 1 2 2 3 3 3 3 4
R = ! @ $ &
Radix Sort

Auxiliary: FL[1:n], FH[1:n], BL[1:n], BH[1:n]

for h := 0 to b-1 do
 forall i in 1:n do
 FL[i] := (A[i] bit h) == 0
 FH[i] := (A[i] bit h) != 0
 enddo
 BL := PACK(A,FL)
 BH := PACK(A,FH)
 m := #BL
 forall i in 1:n do
 A[i] := if (i ≤ m) then BL[i] else BH[i-m]endif
 enddo
enddo

S(n) =
W(n) =
Complexity measures for W-T algorithms

- Asymptotic time complexity measures
 - (optimal) sequential time complexity $T_s(n)$
 - parallel time complexity $T_c(n,p)$

- Speedup
 - definition
 $$SP(n, p) = \frac{T_s(n)}{T_c(n, p)}$$
 - limitation
 $$SP(n, p) = \frac{T_s(n)}{T_c(n, p)} \leq \frac{T_s(n)}{W(n)/p} = \frac{pT_s(n)}{W(n)} = O(p)$$

- Average available parallelism
 - definition
 $$AAP(n) = \frac{W(n)}{S(n)}$$
Objectives in the design of W-T algorithms

- **Goal 1:** construct work efficient algorithms
 - a W-T algorithm is work efficient if \(W(n) = \Theta(T_s(n)) \)

 - work-inefficient parallel algorithms have limited appeal on a PRAM with a fixed number of processors \(p \)

\[
\lim_{n \to \infty} SP(n, p) \leq \lim_{n \to \infty} \frac{p T_s(n)}{W(n)} = p \lim_{n \to \infty} \frac{T_s(n)}{W(n)} = 0
\]
Objectives in the design of W-T algorithms

• Goal 2: minimize step complexity
 – get optimal speedup using $AAP(n) = \frac{T_s(n)}{S(n)}$ processors

\[SP(n, AAP(n)) = \Theta\left(\frac{T_s(n)}{T_c(n, AAP(n))}\right) = \Omega\left(\frac{T_s(n)}{\frac{T_s(n)}{AAP(n)} + S(n)}\right) \]
\[= \Omega\left(\frac{T_s(n)}{S(n) + S(n)}\right) = \Omega(AAP(n)) \]

– when $S(n)$ is decreased, $AAP(n)$ is increased
 • with fixed problem size
 – can use more processors to get greater speedup
 • with fixed number of processors
 – reach optimal speedup at smaller problem size
W-T model advantages

• Widely developed body of techniques

• Ignores scheduling, communication and synchronization
 – “easiest” parallel programming

• Source-level complexity metrics
 – Work and step complexity
 – related to running time via Brent’s theorem

• Good place to start
 – many “real-world” algorithms can be derived starting from W-T algorithms