
1

A DESIGN METHODOLOGY FOR

DATA-PARALLEL APPLICATIONS
†

LARS S. NYLAND1, JAN F. PRINS1,
ALLEN GOLDBERG2,

PETER H. MILLS3

1Department of Computer Science, University of North Carolina, Chapel Hill NC 27599-3175
2Kestrel Institute, 3260 Hillview Ave., Palo Alto, CA 95060

3Dept. of Computer Science, Duke University, Durham, NC 27708

Index Terms (Keywords)

Software Design, High-Level Programming Languages, Parallel algorithms, Prototyping, Software Templates,
Multi-Target Tracking Algorithms.

Abstract
A methodology for the design and development of data parallel applications and components is presented. Data-
parallelism is a well understood form of parallel computation, yet developing simple applications can involve substantial
efforts to express the problem in low-level notations. We describe a process of software development for data-parallel
applications starting from high-level specifications, generating repeated refinements of designs to match different
architectural models and performance constraints, enabling a development activity with cost-benefit analysis. Primary
issues are algorithm choice, correctness and efficiency, followed by data decomposition, load balancing and message-
passing coordination. Development of a data-parallel multitarget tracking application is used as a case study, showing the
progression from high to low-level refinements. We conclude by describing tool support for the process.

1. Introduction

Data-parallelism can be generally defined as a computation applied independently to each of a collection of data,
permitting a degree of parallelism that can scale with the amount of data. By this definition many computationally
intensive problems can be expressed in a data-parallel fashion, but the definition is far more general than the data-
parallel constructs found in typical parallel programming notations. For example, divide and conquer strategies are
data parallel under this definition, but implementation of an efficient parallel divide-and-conquer algorithm such as
quicksort (with full parallelism at each level of the division) is quite challenging using the parallel programming
languages shown in figure 1. Thus the development of a data-parallel application can involve substantial effort to
recast the problem to meet the limitations of the programming notation and target architecture.

From a methodological point of view, the problems faced developing data-parallel applications are:

• Target Architecture. Different target parallel architectures may require substantially different
algorithms to achieve good performance, hence the target architecture has an early and pervasive effect
on application development.

• Multiplicity Of Target Architectures. For the same reasons just cited, the frequent requirement that
an application must operate on a variety of different architectures (parallel or sequential) substantially
complicates the development.

† This work supported in part by Rome Laboratories #F30602-94-C-0037 and by ARPA via ONR #N00014-92-C-0182.

2

• Changes in Problem Specification or Target Architecture(s). Changes in problem specification
and/or target environment must be accommodated in a systematic fashion, because of the large impact
that either causes for parallel applications.

By far the most important reason for developing data-parallel applications is the potential for scalable performance.
Even in the face of the longer development times, a performance improvement of one or two orders of magnitude on
current parallel machines may well be worth the effort. For example, storm-cell prediction at NCSA [2a, 3a] using
256 processors runs 12 times faster than real-time (a 6-hour prediction takes 30 minutes to compute), making the
computation valuable for saving lives, property, time and money. The same code could be run sequentially, but the
results would not be available until after the predicted time had passed, relegating them to academic interest only.
Real-time applications that are not possible with sequential computers, such as real-time video processing, may be
realized with parallel processors. Modern multimedia processors, or multimedia instruction set extensions to
generic processors, typically operate in SIMD fashion and require data parallelism in some form to access their
performance potential.

Data-parallel computations may themselves be components that are composed in parallel. For example, a number of
different data-parallel computations can be arranged into a pipeline to process successive problem instances
concurrently. In this paper we do not address this type of concurrency, although other techniques, such as object-
based concurrency, can be used along with the approach we describe here [1, 1a]. Other reasons for using
concurrency, such as the development of reactive systems or fault-tolerant systems are also better treated using other
techniques [3].

Our design methodology is based on successive refinement yielding a tree-structured collection of data-parallel
designs whose level of development effort varies with the parallel architecture(s) targeted and the required level of
performance. The methodology explicates activities whose time and expense can be regulated via a cost-benefit
analysis. The main features of the methodology are:

• High-Level Design Capture , an executable description of the design that can be evaluated for its
complexity and scalability.

• A Data-Parallel Design Notation, a high-level, architecture-independent, executable notation that
incorporates the fully general definition of data-parallelism.

• Prototyping. Disciplined experimentation with the design at various levels of abstraction to gain
information used to further direct the refinement process.

• Analysis and Refinement of the design based on fundamental considerations of complexity,
communication, locality, and target architecture.

This paper is a summary of our work in software design methodologies for data-parallel applications. The design
methodology has been under development for some time, being first proposed in [4] and further refined in [5] where
radar coverage applications were demonstrated. In [6], we briefly sketched the process and outlined the test cases
described more fully in this paper. A comprehensive report is available in [7].

1.1 Overview of the Design Methodology

1.1.1 High-level Expression of Designs

In current practice, parallel architectures typically influence software design early and heavily, and in doing so,
overconstrain it. Since parallel architectures continue to evolve, architecture-specific designs have a limited lifetime.
Alternatively, architecture-independent environments allow the exploration of families of designs without the
constraints imposed by specific architectures. When developed without constraint they can be gradually refined to
classes of architectures (such as shared-memory parallel vector processors or distributed-memory cache-oriented
multiprocessors), and finally be transformed to architecture-specific instances. As architectures change, or as the
relative costs of operations and communication change in architectural implementations, the original higher-level
designs and prototypes will still be useful as a basis for developing new versions.

3

Many computational problems can be naturally expressed using data-parallel computations, but may use
sophisticated algorithms that are subject to improvements and refinements. Thus not only is the target architecture
undergoing change, but so is the algorithm. By starting the design activity at a high level, many variations and
alternative algorithms can be explored, and new algorithms considered. This exploration is not haphazard or
aimless, but directed. The exploration answers questions prescribed in the methodology that guide subsequent
design and development.

The proposed methodology diminishes the dependence on specific parallel architectures, putting emphasis on high-
level design without premature architecture-dependent design decisions. Good algorithm choice and refinement can
obtain much better performance than low-level optimization of a poor algorithm.

1.1.2 Data Parallel Design Notations

Central to our methodology is the high-level, architecture-independent expression of designs in a uniform notation.
We follow the approach of high-level prototyping languages such as SETL. Languages such as this directly support
arbitrary collections of data, in particular nested collections of data such as sets of sets or sequences of sequences.
In the presence of such nested collections, we can define data parallelism in a completely general form: the
application of an arbitrary function to each element of a collection. This yields nested data-parallelism where, for
example, a data-parallel function is applied in parallel to each collection in a sequence of collections. If quicksort is
a data parallel function, then application of quicksort, in parallel, to each of the subproblems obtained by
partitioning the input around a pivot constitutes nested data parallelism. Nested data parallelism arises naturally in
many efficient scientific computing algorithms.

Several existing languages or notations support high-level expressiveness and general data parallelism. These
include languages such as APL, FP [8] and the Bird-Meertens notation that posit a rich algebra of predefined data-
parallel operations. SETL, Nesl [9], Sisal [10], and Proteus [11] and many other programming languages provide a
smaller set of data parallel operations but include a very general data-parallel constructor such as set comprehension.
Generally we favor the approach of the latter category since it more directly expresses specifications. In this paper
we use the Proteus notation (described in section 4.5). A sequence constructor is the sole source of data parallelism
in this notation. It has simple semantics, and can be refined by algebraic methods.

Beyond a certain level of refinement, at the leaves of the tree of designs, we must switch to lower-level notations
with restricted collections. For example, HPF collections are arrays. Lower-level languages also allow explication
of further refinement choices, for example by making communication and processor scheduling explicit.

1.1.3 Prototyping

Our methodology is based on the spiral model of software development with prototyping, a model favored by the
software engineering community [12]. During the risk analysis phase of development, development relies on
concise high-level, executable notations for data parallel problems. In this paper, we use the Proteus notation, but
others that may be suitable are ISETL, MATLAB, Nesl and Sisal. The next phase is migration and integration
(perhaps automatic) to achieve an efficient application that can be tested and deployed. As new requirements or
target architectures are introduced, the development repeats the cycle.

Information discovered in later stages of the design process often leads to revision of previous design choices or
even modification of requirements. Prototyping is an effective means of quickly gathering information early in the
design process thus limiting the impact of changes. The design notation for data parallel computation discussed
above is succinct and executable, making prototyping an attractive methodology.

1.1.4 Design Analysis and Refinement

Explicit engineering design principles guide designers to develop useful, resilient systems. The proposed
methodology insures that designers consider fundamental problem characteristics from the outset, by explicating
design levels and the design issues associated with each level:

4

• Problem Definition and Validation. Problem definition and validation insure that the problem
solved is the problem that needs to be solved, and that the initial description is complete and
consistent. This is best achieved by prototyping a simple solution and running experiments against
the prototype.

• Algorithm Selection and Parallel Complexity Analysis. Alternative algorithmic solutions are
considered and their work and step (parallel) complexities are analyzed.

• Performance and Hardware Constraints. Environmental factors and performance are considered.
This includes problem size, timing and performance requirements, and if relevant, a prescribed target
architecture. The purpose of this analysis is to obtain confidence that the performance goals can be met
within the specified constraints based on the algorithmic analysis performed in the previous step.

• Analysis for Parallel Architectures. Computation/communication ratios are calculated, data locality,
sensitivity of the algorithm to input values, and other factors that determine the best architectural
choice are studied.

• Design Refinement. Based on the problem and environmental characteristics determined in the
preceding stages, designs are refined to reflect data and/or process distribution, and perhaps
communication architecture. Refinement may be performed manually or as technology matures with
increasing automated assistance.

• Instantiate on a Machine Architecture. In some (increasingly unusual) cases, a “design” might
require constructing a low-level implementation of a critical component whose performance is
dependent on low-level architectural detail. For example, a design in which the data flow based
communication is mapped closely to the communication topology, so that all communication is to an
adjacent processor and tightly synchronized might be prototyped to this level.

1.2 Taxonomy of Parallel Architectures

Four parallel architecture classes are defined— two shared memory classes and two distributed memory classes. The
target architecture will have an influence on many aspects of the design, thus it is important to categorize for later
consideration.

1.2.1 Shared Memory Parallel Architectures

Shared-memory multi-computers present a global address space. On a machine with uniform memory access
(UMA), all references take approximately the same amount of time to read or write, regardless of address or location
provided they are issued “in bulk”, e.g. as vector operations or through multithreading. The Cray Parallel Vector
Processors, the NEC SX-4 and the Tera computer are examples of UMA computers. The additional hardware
required to create this capability is one of the larger costs in buying a computer from Cray.

It is far less expensive to build a shared-memory parallel computer where the memory access time varies according
to the physical location of the memory. This defines the concept of non-uniform memory access (NUMA), where
there can be multiple levels of memory (cache, local memory, cluster memory, non-cluster memory) accessible to
the program. Examples of such computers are the SGI Origin 2000, Sun UE10000 and the HP V-Class servers.
The non-uniform nature of memory access complicates program development.

1.2.2 Distributed Memory Parallel Architectures

Distributed memory architectures are explicit about local and remote memory. Local memory can be accessed in a
normal manner, while remote memory values must be exchanged with messages. There are large-grain and small-
grain distributed memory machines.

Large-grain message-passing (MP) MIMD computers are often built by connecting conventional processors with a
fast (or existing) communications network. The IBM SP-2 is an example, using IBM RS/6000 processors with a
network to support data transfers between any pair of processors. The communications network topology is often

5

abstracted away, avoiding such issues of mapping processes to specific processors (for minimal delay). These
machines typically have the high overall computational power, since they are use large numbers of the fastest
processors available. However, it can be difficult to utilize to their full potential, since data transfers must not only
be arranged in lieu of computation, but sending messages (including synchronization messages) tends to have high
overhead and latency. Thus, good performance requires large transfers (to minimize the latency and overhead),
prefetching, and/or minimal communication and synchronization. The general nature of MP machines allows the
use of a standard message-passing interface, such as those provided be MPI and PVM [13, 14].

Small-grain message passing refers to the closer integration of the communications network with the processors to
provide low-latency message passing by absorbing protocols into hardware. Typically this permits one-sided
communication that allows one processor to efficiently read or write remote memory without involving the remote
processor. The Cray T3E is a commercial MIMD system with this capability.

1.2.3 Architectural Conclusions

UMA shared-memory architectures offer the simplest development model, along with high performance, but
typically at great hardware expense. NUMA shared-memory architectures are less costly in exchange for a slightly
more complicated programming model and reduced performance. MP-MIMD architectures offer the highest
performance with a widely applicable model of programming, enough to develop architecture-independent programs,
but often have difficulty achieving their peak performance and use a more complicated programming model. This
model spans a wide variety of architectures, so MP applications can be run easily on many machines. SIMD
architectures (and the more recent multimedia processors), while presenting the most specific programming model,
can achieve excellent performance on an important class of problems, and thus have their place in parallel
computing.

Machines from all four architectural classes have their merits and drawbacks, with respect to ease of programming,
performance, and expense; no single architecture dominates the others. The proposed development methodology is
sensitive to and driven by these different architectural classes.

1.3 Demonstration Problem

To demonstrate the methodology described here, we explore the development of multitarget tracking (MTT)
algorithms. The problem is described, a set of algorithms is examined, and a list of questions is formulated about
the differing implementations. With questions in hand, high-level development begins determining the answers to
the questions. As answers are found, particularly promising implementations are transformed from the high-level
model to more architecture-specific implementations. Most of the difficult work has been done at the high level,
leaving only the machine specific details to be negotiated at the low level. The result of this exploration is not only
a family of MTT implementations, but also a demonstration of architecture-independent parallel software
development. Additional results are characterizations of the different algorithms explored; for instance, memory
use, processor mapping and execution time can be predicted, given some characteristics of the input data and the
underlying computer architecture. The information and the implementations developed demonstrate that the
methodology to achieve long-term parallel solutions is worth the time and effort required for the exploration that
takes place.

1.4 Tools and System Support

The proposed methodology can benefit from additional automated support, and tools that would aid the process are
proposed in section 5. Some tools, such as debuggers, performance and analyzers are useful to any methodology,
while others, such as refinement, and high-level analysis tools are specific to the methodology proposed.

6

2. Design Methodology

The methodology of software development that is being proposed is one that involves prototyping at several
different design levels to discover the characteristics of different solutions to a problem. Efficiency of
implementation is important (good coding and optimization), but much more important is the efficiency of the
solution (good algorithm, good parallelization), and so it is important to first find an efficient solution. The
efficiency of some algorithms can be judged on paper, prior to implementation, but the performance of most
complex algorithms is difficult to analyze and must be done by measuring characteristics of implementations when
run on a variety of “typical” data sets. As a simple example, consider the unexpected conclusion in the
implementation of the joint probability data association (JPDA) algorithm [15, 16] that an efficient mapping to a
hypercube is not the primary performance driver due to serialization of message transmissions. This result was not
evident to the authors from the description of the algorithm, the question had to be asked, the experiment
performed, and measurements taken before the conclusion could be drawn. Of primary importance in the proposed
design methodology, then, is the explication of a set of design issues to be addressed, and data to be gathered
through prototyping exercises.

Figure 1 describes the proposed refinement paths into the parallel architectures described earlier. While the
emphasis is on high-level, architecture-independent concerns, the issues are addressed in stages, and some design
issues may only arise in certain contexts (e.g., data locality is not an issue in a uniform shared memory model).

Next, each stage is described in more detail and questions to be considered at each point within the methodology are
enumerated.

2.1 Problem Definition and Validation

As a first step, a description of the problem and validation of the problem against functional requirements is sought.
The contextual assumption, based on the fact that the focus is on data-parallel problems, is that the problem is a
computationally intensive, algorithmically rich problem, but one of limited scope. The resulting component will
be perhaps thousands of lines of code, certainly not millions. Thus, the driving problem is not to organize a

SPEC

design

notation

nested DP
algorithm

flat DP
algorithm

SPMD
algorithm

SPMD/C SIMD

target programming
model

C+
Vector Ops

UMA
OpenMP

HPF/F90
loop-level
parallelism

UMA
NUMA

OpenMP
SIMD

C+
Threads

UMA
NUMA

C/Fortran
w/message-passing

UMA
NUMA

MP

simd
C, C++
Fortran

SIMDapplicable parallel
architectures

Figure 1. The process of data-parallel design starts with the selection of a good algorithm initially expressed in a
high-level nested data-parallel paradigm. Further architecture-independent exploration continues with perhaps a
flat data-parallel model, or migration to a SPMD model (multiple processes performing roughly the same
operations). More performance can be obtained with migration to architecture-specific development models.

7

complex system with subtle interactions, but to focus on obtaining high-performance for a succinctly described
problem.

“Does the description of the algorithm to be implemented provide enough information to produce the expected
results?” While this may seem like an obvious question to ask, many published algorithms have subtle flaws, or
depend on knowledge not currently at hand. The MTT algorithms depend on Kalman filters for predicting the
locations of targets, but knowledge of Kalman filters may not be common and is rather complex itself. There is
often this sort of background knowledge required in the development of complex algorithms. In addition, it is not
uncommon to find errors in the descriptions of algorithms. And finally, there are subtleties of the algorithm that
may not have been fully examined by the authors, thus, despite the best hopes, there tend to be failures when the
algorithm is stressed. Deciding how to repair an algorithmic error is often quite difficult. Again, the best
mechanism for answering this question is to prototype.

2.2 Algorithm Selection and Parallel Complexity Analysis

Solutions to complex problems are often expressed as highly algorithmic, mathematically sophisticated
descriptions. This makes the high-level analysis proposed here both necessary and feasible. Necessary because
these algorithms are often very computationally intensive and hence subject to parallelization and optimization.
Feasible because they are often succinctly specified at a high level. This enables asymptotic analysis, prototyping,
and exploration of algorithm variants. Indeed, the mathematical richness of the problems allows many alternative
algorithmic solutions with widely differing complexity, accuracy, communication and synchronization requirements
to be explored.

For some problems, the solution emanates from a single, clear-cut, best algorithm, for others, perhaps the choice is
not so clear, or perhaps the algorithm has been pre-selected. Regardless of how the choice is made, this stage
simply boils down to asking the following question about the algorithm.

“Consider the Work & Parallel Step Complexities: What are the best, worst, and average cases?” For parallel
processing, it is of extreme importance to know what the best possible parallelism is that can be achieved. The
work reflects the amount of computation done, while the step complexity is a measure of how many steps the
program will take on a parallel processor with “enough” processors. Note that this measure uses a PRAM model of
computation in which communication is free. While this is not realistic and ignores important details, the approach
is to separate concerns and formulate tractable, staged analysis methodology. At a later stage, other issues comes to
the forefront, but at this point, it may be discovered that there is insufficient opportunity for a parallel solution, or
even that a sequential one may be adequate (taking into account performance requirements as described below).
Larger differences between the work and step-complexities give better justification for using parallel computers.

Of great benefit is the ability to determine the work and step complexities of a parallel algorithm using language-
based models, as described in [9]. In high-level languages, the work complexity of an operation is typically the
sum of the work-complexities of its subexpressions, while the step complexity is the maximum of the step
complexities of its subexpressions. For example, the element-wise addition of two sequences has work complexity
based on the length of the sequences, while the step complexity is simply O(1). The step complexity is increased
by sequential steps such as recursion, let-expression evaluation (including parameter evaluation), and conditional
expressions. If all the operations in a language have step and work-complexity measurements, then programs
written in the language can have measurable step and work-complexities.

A work-efficient parallel algorithm is one whose total work matches that of the best sequential algorithm. In this
stage, work-efficiency of the parallel algorithm is the primary means of selecting algorithms to advance into the next
stages. The emphasis is on work efficiency rather than parallel step complexity (“fast algorithms”) as the primary
selection criterion reflects an increasing understanding in the theoretical community that very fast algorithms with
suboptimal work complexity have poor scaling behavior when the number of processors is limited (which
ultimately is true of any setting).

8

While work-efficient algorithms are generally the best choice, other constraints may lead to a choice of a sub-
optimal algorithm. Some work-efficient algorithms are very complex and difficult to code correctly. Others are
theoretically shown to be work-efficient, but have high constant factors that demand large problems to demonstrate
their performance improvements. In light of this, it is often better to choose an algorithm with slightly inferior
complexity that aids in development and/or performance for the size of problem being solved. An example is the
parallelized bitonic sort which has O(n log2 n) work (worse than an O(n log n) sequential sort) and a step
complexity of O(log2 n), but is difficult to outperform for small problem sizes.

Understanding complexity measures is an important aspect in choosing an algorithm. Real-time applications are
analyzed with worst-case analysis to meet hard deadlines. Other applications may be analyzed with average-case
analysis. To understand the average case performance, it may be easier to measure an executing prototype rather
than formulate a probability distribution of input cases for a more formal analysis.

The coarse data from experimentation with a naive algorithm gives insight into the whether more sophisticated
algorithms need to be employed and what impact parallelism will have. The most important single step in
developing a data parallel application is choosing an algorithm. No amount of low-level optimization can overcome
a poor algorithmic choice. Also, low-level optimization produces brittle, hard to maintain code. It is of the utmost
importance to choose a parallel algorithm that does no more work than the best serial algorithm. It may be necessary
to refine and analyze alternative algorithms until their behavior on an architecture class, and given problem size
becomes clear.

2.3 Performance and Hardware Constraints

The analysis in the previous step does not consider anything but the work and step complexities of the algorithms.
As we move forward, other factors are considered: the performance requirements, special input/output characteristics,
and mandated architecture choices. The questions to be asked are:

“Based on the analysis performed above, does it appear likely that the performance constraints can be met?” This
can be a difficult question to answer because not all of the factors contributing to the performance have been
determined. However the work complexity or step complexity may be sufficient on its own to identify problems in
meeting performance criteria. That is, based on the most optimistic assumptions on the time required to perform
primitive operations, the required work may overwhelm the computational resources.

“Is the work data-dependent, or is the algorithm executed the same way regardless of the data values?” When an
algorithm’s worst case, best case and average case performance differ, running the prototype on actual data is often
the best way to get insight into projected performance. Without prototypes to evaluate the performance, average
case analysis requires probability distribution functions, which may be difficult to formulate.

2.4 Analysis For Parallel Architectures

The goal of the next stage is to analyze the algorithm to determine communication requirements and other problem
characteristics needed to select an appropriate refinement path among those described in figure 1. This analysis is
organized by posing questions about the design that relate to its communication requirements and the regularity of
the computation. In particular, the goal is to establish the ratio of non-local communication to computation and
insure that the parallel architecture can match the ratio. Thus the fundamental question is:

“What are the communications requirements compared to the computational requirements?” To perform
computations, each processor must have the data it requires locally. If the data is not local, it must be retrieved
from the remote location prior to computation. It is possible to explore the ratio of local-operations compared with
remote-words-delivered for both an algorithm and a parallel computer. For example, in a matrix calculation, on
what values does the (i, j) entry depend? The next step is to partition the data and computation to minimize non-
local communication and still exploit the available parallelism.

Parallel hardware can be compared in the same manner, by considering the ratio of operations-per-second (floating-
point or integer, as appropriate) to remote-words-delivered-per-second. If the ratio is 1, the machine is a uniform

9

shared-memory computer since remote references can be delivered at processor speed. For other architectures the
ratio is not this good (indicated by a larger value), but the closer the communications speed is to local processor
speed the better. If the ratio is large, then there must be substantial computation per datum communicated,
otherwise the program execution will spend most of the time communicating and will not scale. The fundamental
goal is to achieve a ratio of local computation to non-local communication that insures a compute-bound, not
communication-bound, computation in order to maximize processor usage. Thus this ratio is an essential factor in
matching an algorithm with an architecture.

The communication pattern must also be analyzed for scalability: as the problem size grows does the amount of
remote data required increase? If so, what is the growth rate? (Logarithmic, linear or worse?). That is, this
ratio must be considered both for the problem sizes of interest and more abstractly for varying problem sizes.

For example, an all-pairs algorithm (simple N-body codes) performs O(n2) computation while only needing O(n)
remote data. For each remote value delivered to a process, there is O(n) work, so the ratio of computation to
communication is O(n). On the other hand, if an algorithm requires about the same number of remote data words as
it performs operations on, the ratio is closer to O(1), a cause for concern in parallelization. If the communication
increases faster than computation with increasing problem size, then for large problem sizes communication will
dominate and the algorithm will not scale.

Measuring locality can be done analytically in some cases, but is too difficult to analyze in others. In particular, for
irregular computations (see below), determination of locality is difficult, since the values needed by an irregular
computation cannot be statically determined. The data dependencies among these results may have to be
characterized by a schema or pattern. A suitable formal notation for representing such schema has not been found,
and substantial tool support is not foreseen to support this analysis.

By examining the computations required compared to remote fetches in an algorithm, and comparing that to the
ratio of computation speed against communication speed of a parallel architecture, one can gain insight whether or
not to pursue a certain line of development. For example, this sort of analysis for a molecular dynamics simulation
with a fixed cutoff radius suggests that for typical problem sizes (20,000 atoms) with a modest number of
processors (8-16), about 200 floating-point operations are performed for every remote value fetched, making most
current parallel architectures attractive for this kind of simulation. For smaller problems or larger parallelism,
higher-performance interconnects may be needed. For particular architectures locality may be increased by caching,
batching communication together, and processor virtualization.

“Is the work regular or irregular?” Regular data is much easier to decompose for parallel execution than irregular
data; there is often some regular decomposition scheme that has good locality and low communications costs.
Regular problems are those that assign consistently sized sub-problems to each processor, such as “a row of a
matrix,” or “a cubic region of space,” where all the rows or regions require similarly complex calculations. It is not
too surprising that irregular problems far outnumber regular problems since they often arise from data-dependent
optimizations for work-efficient solutions. Simple examples are quicksort, whose sub-problems depend on the
value of the pivot, or variable-density triangularizations that depend on the domain being simulated. Indeed,
asymptotic improvements are often the result of dynamic algorithms making a difficult trade of the simplicity of a
static processor and communication to overcome the disadvantage of performing too much work. Irregular problems
can often be solved with a recursive structure in which sub-problems are decomposed until they are small enough to
be solved directly. This decomposition can be captured as a nested aggregate data structure or as dynamic process
creation (see [17] for a full-scale example of modeling and implementing an irregular problem).

2.5 Design Refinement

This section describes the refinement of programs shown in figure 1. The design notation is a high-level language
where certain modifications are made to reflect the different programming models outlined.

10

2.5.1 Data Parallel Design Notation to Vector Model

A nested data-parallel design can be transformed to a vector model with automatic refinement, where the tools
rewrite the program to use inter- and intra-function parallelism. The vector model such as that presented by the C
Vector Library (CVL) [18], consists of C augmented with a vector data type, possibly segmented, whose elements
must be scalar data types (integers, reals, booleans). CVL can execute on many parallel machines but runs best on
UMA because transformation to the vector model makes no provision for the non-uniform delays accessing
memory. Thus, this is an appropriate choice when all accesses are local, or when the target architecture has uniform
memory access times.

A key aspect of the refinement requires flattening of nested vectors to vectors over scalar data types. The required
transformations are essentially distributive laws that can be applied automatically and exhaustively. For details of a
transformational approach see [19-21].

2.5.2 Nested Data-Parallel Design Notation to Flat Data-Parallel Notation

Flat data-parallel programming languages allow no nesting of aggregates, providing flat, rectangular arrays instead.
As a result, iterator variables are bound to scalar values rather than sequences, and no nested sequence operations are
permitted. Flat data parallel programs are suitably expressed using languages such as HPF, Fortran90 with
OpenMP [22], and C. Concurrency in flat data-parallel languages is limited to the concurrent operations on
sequences of scalars, where nested data-parallelism allows concurrency on sequences of sequence values.

Many compilers for flat data-parallel languages partition computation based on memory decomposition using an
“owner-computes” rule (the processor storing an array element is responsible for computing its value). For instance,
in an array model such as Fortran, there is a certain confidence that two similarly dimensioned arrays indexed at the
same location will be placed in the same memory (the statement a(i) = b(i) + c(i) has all local references).

Typically, there are many more values to compute than there are processors, so several methods of combining
partitions are provided. HPF incorporates data decomposition declarations that provide memory decomposition
strategies to the compiler, using cyclic or block distributions. It also allows description of how multiple arrays are
overlaid on the processor space so that differing index sets for different arrays will still lead to local references
(matrix-multiply is a common example showing both row and column decompositions). Other languages support
compiler directives or explicit code for assigning data to processors.

Thus to refine into this model, general nested vectors must be transformed to array-like data aggregates. Arrays are
less general than nested parallel aggregates in the following respects. They are flat, that is, arrays must be indexed
fully (all dimensions indexed) for the expression to make sense, where partial indexing of a nested sequence yields
another sequence. They have uniform dimension and are rectangularly shaped, e.g., each dimension has a constant
range. In addition to simply obtaining the required syntactic form, many optimizations and reformulations,
including iterator inversion, and index set transformation can be introduced at this stage. These transformations can
alter the final data partitioning.

2.5.3 Nested Data-Parallel to SPMD

From either a nested or flat data-parallel program, the next refinement is the creation of a Single-Program, Multiple-
Data (SPMD) program, where a single program is executed by many processors. The benefit of this kind of program
is that the work and memory decomposition is under program control, varying from techniques such as simple
memory-decomposition models to complex, perhaps even adaptive, load-balancing techniques. SPMD
programming allows the most flexibility in terms of controlling the decomposition of work, since ownership of
computation can be dynamically adjusted. At this level, finer-grained complexity models such as the LogP [23],
BSP [24], and PMH [25] models can be used to direct the refinement process. As figure 1 illustrates, SPMD
designs can be implemented on platforms for which the computation/communication ratio varies considerably.

11

2.5.4 SPMD to SPMD/C

This model includes explicit communications in a SPMD program. After development on shared-memory parallel
computers (especially NUMA), the developer has deep knowledge about which memory references are local, and
which are not. This step makes the sharing of data explicit with the introduction of messages.

The conversion to messages also gives the developer an opportunity to replicate heavily used data, such as tables,
that is required for all processes. By replicating data, memory space is traded for communication delays, which is
the key consideration when deciding what to replicate. It also allows prefetching and batching of messages, which is
important when communication latency is high.

Some compilers for distributed-memory architectures present a global shared-memory model to the programmer, and
implement schemes that mimic cache memory [26]. Multiple read-only instances of data migrate on demand, and if
the single, write-only copy is changed, then all the read-only copies are invalidated. These schemes often reduce the
amount of work required by the programmer, but he/she must be aware of what is occurring.

2.5.5 Moving to a SIMD Model

The nested data-parallel version of an algorithm (or the vector-based code derived from it) is often the most suitable
starting point for SIMD code rather than the SPMD instances. The problematic part of the transition is in non-local
memory references. Different indexing of vectors generates a permute operation to align data prior to further
operations. General route instructions exist on most SIMD computers, but in many cases, the full generality (and
slow speed) of the router can be replaced with specific knowledge about the movement of data, allowing use of the
faster interconnection network. The refinement of general route commands to specific transfer commands will have
the biggest impact on SIMD programs.

The communication operations derived in the conversion from SPMD to SPMD/C may be helpful in deriving a
SIMD refinement. For SIMD code, non-local data must be communicated, but on a SIMD machine, the latency
and overhead are not nearly as large, allowing efficient communication of smaller messages.

2.6 Managing the Results of the Design Process

During the entire design process, all the questions posed about the problem and any prototypes developed should be
kept in the forefront. The questions should be reviewed periodically, to ensure that answers to them are
forthcoming. As the questions are answered, they should be documented for further activities, such as transfer of
knowledge to software engineers, justification to upper-level management, or simply to state what can or can’t be
done with regard to high-performance implementations of particular algorithms.

3. Existing Parallel Software Development Tools

In considering the impact of the proposed design methodology, it is worthwhile to explore not only the proposed
methodology, but also to consider what is currently available for developing high-performance software. Both the
design phase and the implementation phase of software development are examined.

3.1 Design Tool Support for Parallel Software

During the design stages of software, many tools can be used to assist the process. Higher-level graphical CASE
tools allow the user to “draw” a program or system, defining many characteristics of a system, but also very
common is a set of specifications accompanied by programming.

3.1.1 Software Engineering Tools for Parallel Applications

In the sequential programming realm, many tools exist to aid in the design of software. These tools are referred to
as CASE tools (computer-aided software engineering), and are often graphical in nature. The number of useful
CASE tools for parallel program development is small but growing, and each tool tends to target a very specific

12

development paradigm. For example, the Code and Hence tools [27] aid in the development of coarse-grain MIMD
programs that are not only displayed, but edited and debugged graphically.

3.1.2 Machine-Independent Parallel Programming Languages

The next level of support is that of programming languages and their supporting tools. The justification for this
focus is that programming languages present a model of computation. An excellent overview of parallel program
development in several different languages is [28].

While many parallel programming languages allow the specification and execution of parallel applications, the level
of support from tools to achieve good performance varies widely. Some of the languages mentioned are indeed the
lowest level (generally available) for programming the underlying hardware, have little room for optimization, and
rely on the parallel support for enhanced performance (e.g. C with MPI). Some languages use higher-level
constructs, such as arrays and array operations, allowing stronger support for concurrency. And several of the
languages mentioned (Proteus, Nesl, Sisal, HPF, Fortran90, OpenMP directives) provide substantial optimization
support to obtain a high level of concurrency from the developer’s source code.

3.1.3 Libraries and Algorithm Templates

Highly optimized and extensively distributed mathematical and communication libraries have aided parallel software
development for many years despite the poor notation and lack of automatic support. The most widely used include
the ScaLAPACK, BLAS, LAPACK, LINPACK, NAG, and IMSL mathematical libraries and the PVM and MPI
communications libraries [13, 14, 29]. The mathematical libraries allow users to program in a familiar setting,
calling vector and matrix routines that have been carefully written and scrutinized for the fastest possible execution
on a variety of architectures.

The communications libraries enable a general model of multi-processor, message-passing execution. They support
distributed computation by introducing libraries that, for instance, allow differing styles of message communication
(broadcast, point-to-point) and support control over process groups. On machines with relatively slow
communications, only very large-grain computations will perform well using these libraries. However, highly
tuned versions of these libraries exist on high-performance computers, enabling good concurrency for medium or
even fine-grain applications. The Cray T3E and SGI Origin2000 are both examples that have fast, hardware
dependent implementations of PVM and MPI.

A more progressive method of support suggested for parallel software development is that of using predefined
archetypes or templates [30-32]. This method has many benefits; among them are highly optimized architecture-
specific correct implementations and software reuse. The use of templates has been suggested for sequential
software without much success; perhaps the additional complexity of code and difficulty in achieving high-
performance in concurrent systems will aid in their adoption.

Templates work well for solving problems that have a well-known, common structure, especially if the common
structure is one that is difficult to parallelize. Templates may not be useful for exploring new algorithms (since an
applicable template may not exist), but it may be worthwhile to explore using templates if possible due to the level
of effort, high quality, and wide-spread architecture applicability of templates. Templates also have the potential to
increase the number of people developing efficient high-performance applications, since the people who understand
the details of concurrent algorithms can distribute their knowledge in a form that is directly useful by many others.

Besides the fine-tuning available with libraries and templates, another bonus is that of software reuse. If a general
construction method for templates is forthcoming, then there’s bound to be a boon in high-quality reusable
software. However, the current number of templates available is small, and the number of template specification
systems is even smaller. For example, the eText project at CalTech has reports on linear algebra, spectral methods
and mesh-spectral archetypes, but the templates are supported by writing and linking Fortran-M, rather than a
system that is expressly built for templates. In time, however, we feel that templates will be a rather simple
method of creating efficient, high-performance codes.

13

3.2 Post-development support of parallel software: analysis tools

As software is developed, there is a need for tools to help analyze performance. Debuggers aid developers in finding
incorrect actions in programs, while performance analysis tools point out execution bottlenecks. The support for
post-development tools in parallel programming is nearly up to par with the tools for sequential programming.
Debuggers have been ported and extended appropriately to aid in building correct programs, and performance
analysis support comes from many sources; compiler messages, tools that show states vs. time, and message
logging all provide useful information to analyze the performance of an application.

3.2.1 Debuggers

Debuggers allow a developer to monitor a program as it executes, stopping it along the way, allowing the
inspection of data and flow-of-control. Debuggers for sequential machines commonly allow the developer to make
queries about the program in terms of the original source code (rather than the compiled machine code that is being
run). On some parallel machines, the serial debuggers have been ported, with the few additional commands that are
needed to support the underlying architecture. For instance, the dbx debugger under IRIX has added support for
multiple threads and thread-private memory. An example of a sophisticated concurrent program debugger is
TotalView from Cray. It has powerful graphical interfaces (X-windows) combined with an interpretive command
interface to create a useful tool for debugging Fortran, C, and C++ programs. Unfortunately, since many users of
supercomputers are remote, graphics interfaces are often not usable, either because of the limited bandwidth or for
security reasons (with X-windows). This often forces the developers to resort to text-based debugging techniques, a
less than ideal situation, since recompiling code is often extremely time-consuming (compilers for new architectures
tend to perform poorly).

In debugging parallel software, there is a distinction among compilers for the supercomputers: those that have
excellent compiler optimizations for the architecture and those that don’t. Vectorizing compilers have extremely
good optimization capabilities as opposed to, say, compilers for a MIMD system that make use of the more
pedestrian optimizations. Heavy optimization and debugging are often at odds with one another as it is often not
possible to debug optimized code that is running incorrectly. Many debuggers do not function with code that is
optimized, leaving the developer to perhaps debug apparently correct code (it is a common problem to have
optimized code fail and unoptimized code perform with expected results; this is often due to not-quite-correct code
running successfully until it is optimized, where the assumption that it is correct is false).

A debugger developed some time ago by the Convex Computer Corp. was a remarkable achievement in this manner
[33], and has been ported to other vector platforms. It relates heavily optimized code back to the original source,
understanding such optimizations as loop-fusion, loop-unrolling, strength-reduction, dead-code removal, etc. This
allows the developer to inspect the executing code in its optimized form. This helps alleviate code problems that
are often blamed on the optimizer, allowing better code to be developed. Hopefully debugging technology such as
this will migrate to more architectures over time.

3.2.2 Performance Monitors

Once parallel software computes the proper result, the focus changes from achieving functionality to that of efficient
performance, after all, that is usually the point of using parallel hardware. Analyzing the performance of functioning
code is an area where tool support is of extreme importance, since it is not possible to improve performance unless
the impediments can be found. Another area that is equally important to the performance of parallel codes is the
implementation of the primitive parallel operations, such as semaphore or other synchronization primitives.
Analysis tools can often point out where the supporting software is impeding high-performance, rather than the
user’s code.

Accurate timers are the first step in measuring the performance of parallel software. Most systems offer timers that
are accurate to the processor clock (counting clock ticks). Additionally, registers may exist that count different
kinds of operations executed on the machine, including local and non-local memory operations (cache hits) and
floating-point operations, giving the performance-conscious developer powerful inspection capabilities.

14

In conjunction with accurate timers, statistics-gathering capabilities help a developer achieve good performance, but
only if the statistics gathering minimally impacts the execution of the program. The kinds of information gathered
may include events such as the delay between waiting for a message and its actual arrival, or when each process is
ready to synchronize, or the number of processors performing useful work over time. The ability to gather statistics
such as these depends on accurate and consistent clock data available to all processors.

Running a program to gather statistics about its execution can generate a large volume of data. Rather than analyze
the data in its raw form, data displayed graphically can convey characteristics of the program almost immediately.
Visual performance tools are available for analyzing both architecture-specific and architecture-independent software.
Cray provides analysis tools for T3E programs; SGI provides the CaseVision Debugger; KSR provided state-
transition timelines; included with PVM is xpvm to monitor PVM programs; MPI has the nupshot, jumpshot, and
xmpi program to display logged MPI events; Paragraph [34] is used for debugging PICL message-passing
programs; SvPablo displays performance data collected from programs using the Pablo toolkit. All of these tools
are useful for making large improvements in the performance of parallel (and distributed) software. An excellent
source describing many of these tools is [35].

4. Case Studies: Multi-target Tracking

In this section, an example will be presented that demonstrates the use of the proposed methodology and the
reliance on particular tools used for the process. The problem chosen to solve here is that of multitarget tracking
(MTT), and through the development process, it will be shown that there is a need for additional support that is
currently non-existent.

4.1 The Multi-target Tracking Problem

The problem to be solved is conceptually simple: a set of targets is being tracked when new location data arrives
(from radar, sonar, or other locating devices). Prediction models compute the expected locations of the tracked
targets, but the new data does not necessarily coincide with the estimated positions. The problem then is to find
the probability that a target t (for a total of n targets overall) is represented by a measurement j (for each of m
measurements). It is a joint probability: that is, it is to be computed in the presence of all other targets and
measurements.

P0 P1 P2

Nested Data-Parallel
CR-JPDA

Flat Data-Parallel
CR-JPDA

SPMD /ShMem
CR-JPDA

SPMD /C
CR-JPDA

P0 P1 P3 P4 P5

MTT Tracking
Algorithms

Column-recursive
JPDA

ZB-JPDAF

Trans'd
NDP CR-JPDA

Trans'd ZB-JPDAF

Seq Memo-table
ZB-JPDAF

HPF F77

Figure 2. The development tree of the multi-target tracking (MTT) algorithms.

15

While there are several algorithms for solving the multi-tracking target problem, the results presented here focus on
two. The first is the joint probability data association (JPDA) algorithm, since it has been the subject of other
studies. The second is the tree-search joint probability data association filter (ZB-JPDAF) algorithm, it is an
algorithm which in the worst case takes much more time than the JPDA, but has claims of better performance in the
average (and highly likely) cases, making it interesting for prototyping.

The JPDA is a specific association strategy that uses a weighted average of returns. Targets are not treated
independently; if two (or more) targets have non-zero probability of being the same return, then the JPDA
calculation of each target is dependent on the other(s). A report from MITRE [15] describes a column-recursive
implementation that is exponential, but improved by a factor of n(m+1) over the computation of all permanents of a
matrix, yet another method of multitarget tracking.

Zhou and Bose have presented several papers on efficient algorithms for data association in multitarget tracking [36,
37], and in their most recent paper, they present an improved version of their depth-first search joint probabilistic
data association filter (which is referred to as ZB-JPDAF). It is a tree exploration based on a recursive formulation,
requiring the same a priori probability input as the JPDA. They claim that it typically performs more efficiently
than the JPDA, and that it is more amenable to parallel execution than their previous algorithms.

4.2 Undocumented characteristics about parallelism in MTT Studies

In the descriptions of the JPDA and the ZB-JPDAF, there are claims about the parallelism available in each of the
algorithms, and hints about what the developers did in terms of parallelization, but architecture-independent
discussion about parallelism is lacking. Games et al. describe implementations written in C, Sisal, and C*, with
parallel execution on a CM-2. The discussion focuses on the implementations with regard to the machines that
executed them. This leaves questions about future implementations and expectations of the JPDA, such as how
well it will run on today’s newer architectures. Zhou and Bose present their ZB-JPDA algorithm, but do not
describe its parallelism. They give indications about how it can be implemented using Fortran, but again, there is
no analysis of the parallelization outside of a particular architecture. Both of these studies have the groundwork
completed for analyzing the parallel performance of their algorithms for multiple architectures, but do not do so,
rather, they focus on the specific architectures chosen.

4.3 What Support Exists (Templates, Libraries, Pre-Developed Software)?

Support for implementing MTT algorithms exists in many forms. Publications have been the primary source of
information leading to development. This includes several journal articles, several technical reports, and several
books. No software templates have yet been sought out, yet templates would be of help for a high-performance

Zn = {0,..., n − 1}

Input:P = [pij] ∈Rn× (m+1)

Auxiliary: F = [f ij] ∈R (m +1)× (2n −1)

Output: B = [βij] ∈ Rn× (m +1)

f ja
0 =

piji ∈a∏ j = 0 and a ⊂ Zn

undefined 0 < j ≤ m

For l = 1..m

f ja
l =

f ja
l −1 + pil ⋅ f j ,a \ i

l −1
i∈a∑ j < l and a ⊂ Zn

f 0a
l −1 j = l and a ⊂ Zn

undefined l < j ≤ m

βij =
α ij

α iji ∈Zm+1
∑

i ∈Zn and j ∈Zm +1

where α ij = pij ⋅ f j ,Zn \ i
m

Figure 3: The JPDA calculations specified in the MITRE report

16

solution. The template repositories are young, so no real support exists today, but in the future, this could be a
substantial resource.

The reasons that a template would help for this problem are that the column-recursive JPDA is a dynamic
programming solution and may fit well into a dynamic programming template. The ZB-JPDAF is a tree-search
algorithm, which is a common algorithmic solution that is not trivial to parallelize, thus good templates for parallel
tree-search would be very helpful. Templates were also not sought out since the code that has been written is quite
short.

4.4 Development hierarchy to solve multi-target tracking problems

Figure 2 shows the development hierarchy of MTT solutions using the proposed methodology. The development
of the multitarget tracking algorithms begins at the root with a specification of the problem to be solved. This is
written in English and is not executable. Below it are the two algorithms under consideration, the JPDA and the
ZB-JPDAF. These two implementations are written in Proteus1, and serve the purpose of achieving a baseline
implementation with no initial concern for parallelism. The first descendant of the JPDA targets nested-data-
parallelism, which is suitable for translation to C with vector operations. The initial version of the ZB-JPDAF,
written in Proteus, is also suitable for translation to C with vector operations. At this level, all implementations
are architecture-independent, although they are tending towards particular architectures.

Additional studies were done, according to the development path outlined in figure 1. A flat data-parallel version of
the column-recursive JPDA (CR-JPDA) was developed in Proteus and translated (by hand) into HPF and Fortran77,
where memory decomposition and vectorization could be examined. An SPMD version of the CR-JPDA was
developed, to explore assignment of work to processors, and further memory decompositions. Each of these is
discussed in the following sections. There was also a paper study was performed to estimate the performance of a
variety of message-passing implementations of the CR-JPDA, the results of which are briefly summarized.

4.6 The Proteus Programming Language, Briefly Explained

All the prototypes in this study were developed using Proteus, a high-level parallel programming language. A brief
introduction is given here.

Proteus is a block-structured, imperative, procedural language with some additions from functional languages (let-
expressions). There are local and global variables, assignment statements, for- and while-loops, function definition

1Proteus was chosen for its expressiveness of nested sequences, and the ability to translate nested sequence notation to
vector-based execution. Any language with first-class sequences would have been suitable.

[1..n] A sequence from 1 to n, inclusive
a[i] Indexing. Return the ith element of a.
[i in D : expr]
ex: [i in [1..10] : -a[i]]

Build a sequence of values, evaluating the expression for each value
of the sequence-expression D.

[i in D | predicate(i) : expr]
ex: [i in [1..10] | prime(i) : i]

Filtering an expression based on a predicate. This restricts where the
expression is evaluated.

#S Size of a sequence (number of top-level elements).
let x1 = e1, x2 = e2, ...
in expr
ex:
let d = sqrt(x*x + y*y)
in [x/d, y/d]

let-expression. sequentially evaluate (and assign) e1, e2, etc. for
use in the final expression.

a 'op' b
ex: a 'merge' b

Infix function call for binary functions, identical to op(a, b).

+/S
ex: +/[1..5] is 15

Summation (add-reduction) of sequence S. Other binary operators
can also be used (‘*’, min, max, etc.).

Table 2. Proteus syntax for sequence expressions, let-expressions, and infix function calls.

17

and calling, as well as a full set of operations on sequences. It is block-structured, and uses ‘{’ and ‘}’ to demarcate
a block. Conditional constructs (if) can either be statements, or expressions (where both the true and false branches
must exist).

The biggest difference between Proteus and other languages is the inclusion of nested aggregate data types, namely
sequences (sets are included as well). Sequences are first-class data, they can be assigned, passed as parameters, and
returned from functions. Sequence members may either be scalars (numbers, booleans, etc.) or sequences
themselves. Table 2 shows some sequence syntax and operations.

The nested data-parallel nature of Proteus permits sophisticated compilation and optimization techniques for parallel
execution. Typically, functional programs written with nested sequence expressions, even those crossing function
boundaries, can have all their operations run concurrently. As an example, consider a nested merge operation, or
nested summations that are used in the MTT algorithms. The syntax for each is:

[i in [1..n] : a[i] 'merge' b[i]]; -- where a and b are depth-2 sequences

+/[t in members(A) :
+/[j in members(B) : p[j][t]]]; -- to sum all remaining probabilities

In the first line, an additional function has been automatically created from the user-defined "merge" function. It has
been modified to take sequences of parameters, and returns a sequence of results. The transformed code would then
be “x_merge(a, b)”. Any pure function, whether it applies to scalars or sequences, can be promoted in this fashion
to concurrently execute on sequences of parameters to compute a sequence of results.

The second line specifies a sum of several nested sums, and the transformations rely on a segmented-sum function
that can compute all the inner sums concurrently (the outer sum is still computed after the inner sums). The
“hoisting” of concurrency is a powerful technique to achieve highly concurrent programs from nested data-parallel
programs. For a complete description, see the references [19, 20].

4.7 The JPDA, as described by Games et al of MITRE and Bar-Shalom

4.7.1 Description

The CR-JPDA algorithm has a short mathematical description with many subtleties. The description is shown in
figure 3, and provides enough information to develop a prototype. The input data is described by shape only, but,
as stated earlier, the matrix P with entries ptj represents the a priori probability that target t is associated with
measurement j. The output is the joint probability that target t is associated with measurement j.

From the description, it is apparent that the for-loop executes m+1 sequential steps to calculate the elements of f.
The space required for f is (m+1)m2n, however, analysis reveals that only 2 rows of f are needed at any time during
the calculation (indices l and l-1), so the space required for f is reduced to 2m2n. The number of operations
described is larger than the space required, since each value of f depends on several values, on the order of
m(m+1)n2n-1.

4.7.2 Prototyping the Column-recursive JPDA

The description of the algorithm is straightforward mathematics, with some ordering information akin to program
control (for loops). We created a working, high-level prototype in Proteus2, where it was quickly discovered that
the specification had errors (there are indexing bugs in the normalization step). The occurrence of bugs in the high-
level specification is not uncommon, since specifications are typically written without formal verification. After the

2Translation into Proteus is a straightforward step. The summations are written with add-reduction operations over
sequence expressions that are identical to the expressions in the description. The for-statement is written as a for-loop in
Proteus, and the assignment to f is written as a nested sequence expression that enumerates the values of l, j and a.

18

bug was repaired, we generated several test-cases on which the prototype was run, and the results not only convinced
us that the joint probabilities were correctly computed but that the computational complexity was as large as
estimated. The prototype is shown in figure 4.

The column-recursive JPDA always performs the same amount of work for given values of m and n. As pointed out
earlier, the amount of work is O(nm22n), a complexity that can be calculated from the number of iterations of the
for-loop, the range of j within the for-loop, and the sum of the sizes of all subsets of Zn. The parallel step

complexity is estimated at O(m) (or O(mn) if reduction and scan operations require logarithmic time), since all
calculations required at each step of the algorithm can all be computed simultaneously, given enough processors.
The difference between the step and work complexity is enormous, indicating that there is substantial work per step.
This is the first successful characteristic in determining that it is sensible to run an algorithm in parallel, but there
are several more issues to address when considering a parallel implementation (except on an ideal machine, such as
the PRAM that has no communication or memory-contention costs).

The computations in this algorithm are independent of the values in the input data, however, the computations are
not quite regular. Consider the summations over each subset of Zn. The subsets range in size from 0 up to n, so

#include "dpl.pro"

-- set of integers from 0 to n-1
function Z(n) return 2**n-1;

-- take the int i out of the set of ints n
function without(n, i) return n - 2**i;

-- Return the members of the set numbered n.
-- This is the bit indices where there are 1 bits in n.
function members(n:int):[int]
return

[i in [0..n > 0 ? lg(n): -1] | (n div 2**i) % 2 == 1 : i];

function cr_jpda(p:[[real]]) : [[real]]
{

var f : [[[real]]];
var B : [[real]];
var n, m;

n = #p;
m = #p[1] - 1;

f[0] = [j in [0] : [a in [0 .. Z(n)] :
*/[i in members(a) : p[i][j]]]];

for el in [1 .. m] do
{

f[el] = [j in [0 .. el] : [a in [0 .. Z(n)] :
if j < el
then f[el-1][j][a] +

+/[i in members(a) :
[el] * f[el-1][j][a 'without' i]]

else f[el-1][0][a]]];
}
B = let

a = [i in [0 .. n-1] : [j in [0 .. m] :
p[i][j] * f[m][j][Z(n) 'without' i]]]

in
[i in [0 .. n-1] : [j in [0 .. m] :

a[i][j] / +/[k in [0 .. n-1] : a[k][j]]]];
return B;

}
Figure 4. Initial implementation of the column-recursive JPDA as described in figure 3

19

care must be taken to ensure that the summations over all subsets of Zn are not performed as if they were all of

cardinality n. The predictable nature of the computations can be used to distribute the work more evenly.

The locality analysis at this level of program description can be surmised from array indexes. The majority of the
work is performed in computing f[l][j][a], where it can be seen that the indexing on the left and right-hand sides of
the assignment are similar only in the second array index. If all data with the same value of j is local, then the
majority of the calculations rely on local values, but with parallelism limited to a maximum of m tasks. Other
locality schemes are possible, but locality is a detail for later refinement, in a development paradigm where better
data-placement control exists.

In the original description of the calculations, there is a description of what to do in the case where the indices of f
are not legal. Presumably, these are described to explicitly show what isn't calculated. The prototype ignores this
constraint, using nested sequences of differing lengths. Since no indexing operations refer to the “undefined”
locations, there is no need to describe their values.

This version of the code runs serially under the Proteus interpreter, and is almost amenable to translation by our
tools for data-parallel execution. Our model of nested data parallelism [19] (and those of others [9]) does not
include iteration, thus the focus of further modification is to rewrite the loop that calculates f, with the goals of
making it functional, and storing data only at levels l and l+1.

function compute_f(p:[[real]], f1:[[real]], el, m, n) : [[real]]
{

return
let
 f = [j in [0..el] : [a in [Z(0)..Z(n)] :

if j < el
then f1[j][a] +

 +/[i in members(a) :
p[el][i] * f1[j][a 'without' i]]

else f1[0][a]
]]

in
 if el < m

then compute_f(p, f, el+1, m, n)
else f;

}

function cr_jpda(p:[[real]]) : [[real]]
{

return let
m = #p - 1,
n = #p[0],
f0 = [j in [0] :

[a in [0..Z(n)] :
*/[i in members(a) : p[j][i]]]],

f = compute_f(p, f0, 1, m, n),
B = let

a = [i in [0..n-1] : [j in [0..m] :
p[i][j] * f[j][Z(n) 'without' i]]],

sum = [i in [0..n-1] : +/[k in [0..m] : a[i][k]]]
 in

-- reversed indices for compatibility with Zhou-Bose.
[j in [0..m] : [i in [0..n-1] : a[i][j] / sum[i]]]

in B;
}
Figure 5. The cr_jpda routine from figure 4 is replaced with a functional recursive implementation that is amenable to
nested data-parallel translation.

20

4.7.3 Nested Data-Parallel Implementation of the JPDA

The column-recursive JPDA has iterative constructs. Our automatic translation of nested data parallel programs
depends on functional, not iterative, code, so the iteration is rewritten as recursion (figure 5 shows the updated
function cr_jpda and the added function compute_f). The recursive nature keeps only the 2 most recent levels of f
active; other levels can be discarded as analysis reveals their usefulness is over.

Without the looping construct, the entire program can be written as functions defined by a list of single-assignments
used for computing a return value. The assignments can be part of a let-expression that computes the return value.
When the program is written this way, it is amenable to the nested data-parallel transformations and optimizations
of the Proteus system. This version performs no less work than the iterative version, it is simply rewritten to use
single-assignment and recursion. It does, however, use less memory (factor of m/2), which allows programs of
larger size to be run. This version is a descendent of the previous version of the refinement tree of MTT algorithms.

This version of the CR-JPDA is suitable input to our transformation tool ptrans, based transformation rules in [38],
that generates a C program of vector operations from the Proteus input. Over 2000 lines of C code are generated
from less than 100 lines of Proteus, with calls to the CVL library to perform the calculation in parallel. The
important aspects of parallelism in the generated C program are:

• All members of all sets are generated in parallel by a parallelized ‘members’ function (takes a sequence
of integers and returns a sequence of sequences of member values). The function is automatically
generated in the transformation to C.

• All ‘without’ function calls are evaluated in parallel.

• All summations within a sequence are calculated in parallel.

These automatic benefits, while attainable manually in other languages, promote the rapid development of parallel
code at a high-level.

4.7.4 Flat Data-parallel Implementation of the CR-JPDA Algorithm

To achieve a “flat” data-parallel version, the code was modified to precompute data and store it in a table
(modifications shown in figure 6). Flat data-parallel programs have the following characteristics: no nested
sequence structures except to mimic rectangular multi-dimensional arrays; iterator variables are only bound to scalar
values; and only pure function calls are allowed in sequence expressions (where they can be inlined by the
compiler). This model is similar to that allowed by HPF and Fortran90.

The target of reformulating the JPDA to meet this model is again the calculation of f. In the nested prototype, the
call to ‘members’ returns a sequence that is bound to an iterator variable, and the nested sequence structure must be
made rectangular.

If an n*2n table indexed by [i, a] indicates whether the integer i is in set a is calculated upon entry to cr_jpda, then
the iterator ‘i in members(a)’ can be changed to the conditional iterator ‘i in [0..n] | is_member[i][a]’. This change
makes the nested structure regular and eliminates the binding of an iterator to a sequence value. The added
statement prior to loop entry is ‘is_member = member_table(n);’.

Another point to consider in developing a flat data-parallel implementation is that even though it may be possible
to describe nested calculations that meet the above guidelines, it is often the case that compilers can only parallelize
the innermost iteration. This forces the developer to consider the nesting order, putting the longest sequences as the
innermost expression.

Given these considerations, versions were quickly developed in HPF and Fortran77. As stated, a function was
written that computes the membership table, which is then used as a mask within some nested HPF ‘forall’ loops.
This version ran with comparable results to the previous Proteus versions, but the supporting tools are only in the
early stages of development, so some parallel operations are not executed in parallel (e.g., the ‘pack’ operation
which extracts and compresses values based on a boolean vector). A Fortran77 version was written to explore the
vectorization capabilities of compilers for different architectures, such as the Cray vector machines, where the loops

21

were inverted, since vector-parallelism typically means that only the innermost loop is vectorized. Fortunately,
with the changes required for the flat data-parallel version already described, the loops had been made independent of
one another, so loop inversion was a trivial change. The resulting code was fully vectorized by the compiler with
the commensurate increase in performance.

HPF provides directives for regular decomposition of arrays for the purpose of assigning work to processors with an
“owner-computes” rule. The decomposition of f along the longest axis (all subsets of {0..n}) assigns the memory
uniformly to processors, but not the work. The sets with fewer elements have fewer operations to compute their
values. This is a limitation of the HPF model: uniform memory decomposition does not always yield uniform
work decomposition.

4.7.5 SPMD Implementation of the CR-JPDA Algorithm

A Single-Program Multiple-Data implementation allows more control over the decomposition of work because a
wide variety of assigning computational responsibilities is possible, limited only by the expressiveness of the
programming language used. In the CR-JPDA, the sharing of data and strict ordering requirements force the
introduction of ‘barriers’ (or other synchronization mechanism) at the end of the for-loop (or recursive call) in each
process, to ensure that no process gets ahead of the other processes where it would read uninitialized memory
values. Once the proper constraints are introduced to insure correctness, the choice of decompositions within an
SPMD program is greater than with HPF.

An SPMD version of the JPDA was developed using C with Posix threads, running on up to 32 processors on a
SGI Origin200 (originally developed on a KSR-1 shared memory computer). The Posix threads interface is a
standard for shared-memory SPMD programs, and thus the developed code will run on other shared-memory
architectures such as SGI Challenge, HP V and K-class, and DEC Alpha cluster architectures.

The first attempt was to mimic the HPF version (the hand translation required less than one hour). The program
was written in such a way that it was simple to change between block and cyclic layouts of the f array. Block
layouts are defined by contiguous regions of size n/p with a delta of 1, while cyclic layouts have a larger loop delta
(n/p) and starting points are contiguous. On shared-memory computer systems, block-style layouts tend to perform
better, since the unit of shared memory is often larger than one word (such as a page, sub-page or cache line). If
multiple threads are attempting to update different locations in the same shared block, the memory system must
handle update requests from many processors. Block layout leads to a single thread writing into the same shared
memory block, and generates few concurrent requests from the memory system.

As pointed out previously, the JPDA does not perform the same number of operations per value computed, so
regular decompositions of memory will not balance work. Two efforts were made in achieving a better load

function compute_f(p:[[real]], f1:[[real]], el, m, n) : [[real]]
{

return
let
 is_member = member_table(n),
 f = [j in [0..el] : [a in [Z(0)..Z(n)] :

if j < el
then f1[j][a] +

 +/[i in is_member[i][a] :
p[el][i] * f1[j][a 'without' i]]

else f1[0][a]
]]

in
 if el < m

then compute_f(p, f, el+1, m, n)
else f;

}

Figure 6. The recursive “compute_f” function from figure 5 with the nested data-parallel features removed
(differences highlighted).

22

balance, the first of which was to couple remote memory references with values that required less work (giving more
local memory references to values that require more work); and partitioning the array based on estimated work.

The computation of f[l][j][a] depends on several values of f[l-1][j][x], where x is a set of values computed from a
where a single one-bit is set to zero. This implies that all values of x are less than a, so to compute a value in f,
only f-values at lower locations are required. The upshot of this when using a block-style distribution scheme, is
that each thread accesses its own memory and that belonging to lower numbered threads. The lower numbered
threads already have less work, and with the increase of local-to-remote memory references, the imbalance is
exaggerated. As stated earlier, cyclic decomposition creates false-sharing, reducing performance. Another
decomposition was sought to aid this computation.

One solution is to remap the data into small blocks that are laid out cyclically, in hopes of redistributing the
local/remote memory references. As a first attempt, this was done by rotating the bits of the a index of f. While
this succeeded in rearranging the memory references, the performance was reduced by a factor of two, because the
calculation of the index (several logical operations) is as costly as the single multiply-add operation that follows.

Instead of address recalculation, introducing an additional for-loop can also create a block-cyclic layout. The outer
loop iterates over each block while the inner loop iterates over the data in a block. This style of looping uses no

Figure 7. These screen-shots demonstrate the ability to improve performance by examining state durations in
the execution of SPMD JPDA application. The upper graphs show how much time each processor spent waiting
in barriers as a percentage of total time, while the bottom graphs display a state-vs-time strip for each processor
(the black areas represent waiting periods). The point to note here is the imbalance with the strategy on the left
(block decomposition) vs. the more balanced version (block-cyclic decomposition) on the right. This output is
from the Gist tool on the now-defunct KSR, but shows how analysis tools can aid in understanding performance.

23

other instructions than add and index to find the required values (as opposed to the previous attempt, or double
indirection of a precomputed map, such as a gray-code). The C-style for-loops appear as:

/* PE = total number of threads or processors
 * my_pe = thread number;
 * N = total size of array;
 * block_size = N / (PE**2)
 */

for (block = my_pe * block_size; block < N; block += (PE-1)*block_size) {
for (i = block, high = block+block_size; i < high; i++) {

f[j][i] = ...;
}

}

The block size used is N/P2, to give each thread as many blocks as there are threads. This gives each thread
enough work to do to make good use of the scalar processor (and pipeline), local cache, and shared memory locality,
while also redistributing the memory references more evenly for this algorithm. Some preliminary performance
charts are shown in figure 7. In our final implementation on 16 processors, the idle time of the least loaded thread
was reduced from over 60% to less than 20%.

4.7.6 Analysis of Implementations of the CR-JPDA Algorithm

Multiple parallel implementations of the CR-JPDA have been developed, and as described earlier, the focus of
interest in each changes as progress in the development is made. The original prototype was developed to ensure
that a baseline, correct version could be developed. The high-level, collection-oriented language allowed
transcription in almost a line-for-line manner, without eliminating any possibility for parallel execution. The
prototype also served to introduce the developers with the actual calculations performed, as well as requiring the
construction of test data.

Because of tool restrictions, it was refined into a nested data-parallel version that could be (and was) transformed
into vector-class C code. The goal behind this version was to specify as much parallelism as possible without
being burdened with any of the low-level details of architecture-specific parallel programs.

Subsequent development used the Proteus prototype as a model for development, while focusing on the specifics of
the architectures on which the code was run. For the flat data-parallel (HPF and Fortran77) versions, an irregular
structure was made regular, and sequence manipulation was converted to simple integer calculations. The
conversions not only made both Fortran versions possible to develop, they also introduced some efficiency
improvements that should be reflected in the higher-level version (so that subsequent development based on the
prototype will not have to develop the same modifications and miss the efficiency opportunity). It was hoped to
experiment with the memory layout directives in HPF, but with immature tools (in 1996), runs of this version were
limited to a single processor. Additional concerns with the Fortran77 version had to do with tool support for that
language, namely only the innermost sequence operation is run in parallel, so manual iterator inversion was used to
achieve the highest-performance.

The shared-memory SPMD version allowed us to examine work allocation strategies, as the cyclic and block
decomposition strategies used in higher levels were not efficient. The introduction of an extra for-loop to cyclically
execute small blocks added virtually no overhead while improving locality to create a much more efficient program.

The development of the CR-JPDA has shown a progressively refined set of versions, from a high-level prototype to
a variety of lower-level, portable versions where specific issues were explored. Each instance of the program
targeted a single issue (correctness, block/cyclic parallelism, load balancing, memory locality, etc.) allowing for
quick and focused development. The issues were resolved and the resolutions are migrated back to the high-level
description, so that further development (a message-passing implementation, for instance) builds upon the
knowledge previously gained.

24

4.7.7 A Paper Study of the CR-JPDA on a Message-Passing Architecture

A related study exploring parallel implementation of the CR-JPDA was performed separately [39]. In this study,
five different parallelization schemes were developed in an effort to attain efficient parallelization on machines with
thousands of processors. The underlying assumption of the study explored the main computational component as it
might be executed on an IBM SP-2. The study relied on some simple optimization and analysis tools that revealed
the peak performance of the code would be 71% of the machines maximum speed. Using this value and published
communication latency and throughput values, five decomposition schemes were developed, which are designated as
the SPMD/C branch of the CR-JPDA development. Please refer to the full report for details.

4.8 The ZB-JPDAF, as described by Zhou & Bose

This section briefly describes an alternate solution to the MTT problem. Rather than explore the details as was
done in the previous section, we only highlight key aspects of this development sub-tree, referred to as ZB-JPDAF
in figure 2. Full details can be found in [40].

4.8.1 Description

An alternate algorithm for solving multi-target tracking problems has been developed Zhou and Bose (in [37]) in
which they refer to their algorithm as “improved” over their depth-first-search algorithm [36] for a joint probabilistic
data association filter (hereafter referred to as ZB-JPDAF). The algorithm is a tree-exploration described with
recursive equations (and appropriate base cases), as such, it is straightforward to implement at a high-level in
Proteus. The independence of node expansions in the tree is a key feature that enhances parallelism, as there are
relatively few ordering constraints to with which to comply.

The tree exploration terminates upon matching all measurements to targets or encountering a zero-probability
scenario (a target has no probability of being any of the remaining measurements). Therefore, the amount of work
performed varies with the input data: if there is a high spatial density of measurements, then the work complexity is
large, and as the density of measurements goes down, so does the work. The work is O(max(m,n)) ≤ T(m,n) ≤
O(m!n). The authors claim that there are typically no more than three probable measurements for each target, thus
the average case has a complexity O(n3m).

The parallel step complexity is determined by the sizes of the target and measurement sets. These sizes control the
depth of the tree, since each level of the tree (usually) eliminates one target and one measurement. All the nodes at
each level can be computed simultaneously; the only dependency is that all children must finish prior to a parent
node finishing (thus the computation is not complete until the root receives data from all of its children).

The work this algorithm performs is irregular, being based completely upon the input data, and thus will have a
significant impact on the parallel implementation. Each sub-problem solved will be of different size, so allocation
of sub-problems to processors will result in all solutions running as slow as solving the slowest problem. The tree
exploration may also terminate early along some paths, leading to more irregularity. Unbalanced, irregular
computation such as this is exactly the style of computation where conventional parallel programming languages
offer little support. Automatic support for developing efficient parallel implementations of this algorithm is
manifested in two ways: programming languages that support irregular decompositions and parallel program
templates.

Nested data-parallel programming languages (Proteus, Nesl) can automatically generate functions that apply to all
nodes at a single level of the tree, using the function that applies to a single node (which is all the developer writes)
as a template. This automatic extension provides substantial leverage by providing inter-function parallelism,
especially in the case of irregular decomposition. In this algorithm, the step complexity is related to the depth of
the tree, since all node expansions at each level can be executed in one step. There is no doubt that code could be
written and parallelized similar to the output generated by the Proteus (or Nesl) translation tools [19, 41], but the
resulting code would be large, complex, difficult to understand and difficult to modify.

25

Software templates are an alternate solution. Tree-search algorithms have been studied for efficient parallel
implementation, and the resulting algorithms are complex [42, 43]. Fortunately, there are systems such as ZRAM
[44, 45] that implement many parallel tree-search algorithms. ZRAM not only provides a library interface, but in
addition, provides a “skeleton” (or template) where the user specifies some of his own routines to be called by the
parallel search engine (“upcalls” or “call-backs”). The ZRAM search uses the node-expansion and evaluation
routines in one of its many customizable search strategies (backtrack, branch-and-bound, reverse-search on graphs) to
perform the search in parallel. It also provides automatic checkpoint-restart capabilities to enable long-running
searches. This is a recently developed system that we look forward to using.

The Proteus version of the ZB-JPDAF was developed in such a way that it could be directly compared with the CR-
JPDA implementation, and it was found that on the sparser cases (branching factor of 3), the execution times were
nearly identical. On denser input data, the runtime increased for the ZB-JPDAF but not for the CR-JPDA.
However, an implementation based upon the specifications ignores key efficiency short-cuts. The authors note that
many of the nodes calculate identical values, since all matchings of a subset of targets with a subset of
measurements yield an identical sub-problem of remaining targets and measurements to match. We modified the
code so that the results are tabulated as calculated (using the memoize capabilities of Proteus), reducing the worst-
case work to O(n2m). Even the suggested average case (branching factor of 3) benefits substantially from
memoization, enough for the implementation of the ZB-JPDAF to almost always run faster than the CR-JPDA,
regardless of density. Unfortunately, our model of nested-data-parallelism does not include memoization, thus the
memoized version was not translated to C+CVL. At least one template solution supports memoization; ZRAM has
a parallel implementation of reverse search, which avoids expansion of nodes previously visited. Experimentally,
the ZB-JPDAF is the fastest MTT algorithm that was developed, and should be considered for parallelization.

4.9 Conclusion of MTT Case Studies

Even though the MTT application developed in this paper is relatively small, we feel that development was aided
by using the design methodology proposed here. The most obvious gains arise from a separation of concerns in
that a thorough understanding of the algorithm is developed during prototyping, while performance concerns are left
for subsequent development. Additionally, refinements made in low-level applications can be integrated into the
high-level prototypes, providing a clearer understanding of an improved algorithm.

The Proteus implementations showed the process of starting with a high-level functioning prototype that is carefully
refined, and eventually translated to production programming languages. Each level of refinement focused on more
specific problems where solutions were found, and often, the solutions were useful in improving their ancestral
codes.

The work also shows that the choice of the proper algorithm (work-efficient) is of utmost importance. In the ZB-
JPDAF algorithm, substantial gains were made by introducing memo-functions to avoid recomputation of complex
values. In runs comparing the ZB-JPDAF to the CR-JPDA, it ran at about the same speed in dense conditions to
over a factor of 100 times faster with sparser (branching factor of 3) data. A parallel solution of the CR-JPDA
would have to achieve a factor of 100 speedup, just to be equal with the sequential ZB-JPDAF. Additionally, since
it falls into a well-studied problem domain, templates exist that support its parallel execution.

5. Tools to support parallel software development

5.1 Powerful Parallel Programming Prototyping Language

While the brevity, clarity, and analyzability of the Proteus implementations shown in this report make a strong
argument for using high-level languages for prototyping, so do other efforts, most notably the Sisal implementation
of the JPDA in the MITRE report and the growing availability of MATLAB templates (e.g. [30]). It is our belief
that the strength and longevity of the Sisal JPDA implementation were unexpected to the authors in [15], and even

26

so, their implementation will still perform well on today’s fastest computers. Their other implementations have
become unusable due to the fading architectures on which they ran.

More powerful optimization models must be developed. Current high-level parallel programming languages rely on
functional (side-effect free) descriptions, limiting the developer to explore only those problems that fit within this
domain. There are additional programming techniques that can be formalized and optimized for parallel
computation, they simply are not yet developed. Examples are localized state changes for iteration, automatic
parallel hash-table management, or high-level task parallel models. If these programming structures were available,
recognizable, and translated for parallel execution, then the benefits of prototyping could extend much further.

5.2 Repository version manager

The development of a tree of program versions is not a one-way process where each descendent relies upon a perfect
ancestor, rather there is constant flow among all program instances in both directions. As an example, consider
what begins as a tree-style development. Version A is developed, and in doing so, several support routines are
developed. As version B is developed, it initially relies upon some code from version A, but later, better code is
developed that would have an impact on version A as well. Some changes, must be propagated up and down the
tree, while certain parts of the code must remain fixed (perhaps the improvements in one version are only beneficial
in certain models).

While consolidating routines in an additional file that both versions share might solve the problem for this
particular example, it is a primitive solution that is bound to be inadequate for large applications. Instead, it must
be possible to develop new versions on the development tree by taking parts of other versions, or perhaps new parts,
and composing them. Currently, no such tool exists, so the development of all of the versions in this report was
managed manually, with support from the Unix RCS and CVS tools.

5.3 Program transformation tools

Why was MITRE’s Sisal version of the JPDA only run serially? Probably due to a lack of compiler support for
Sisal programs on parallel architectures to which the developers at MITRE had access. The development groups
working on Proteus, Nesl, and Sisal are all research groups, and lack the manpower to have new versions available
as machines are delivered. Furthermore, the translations and optimizations being performed are complex, and
require significant development tool capabilities. This all takes time and manpower for successful tool
development.

The translation and optimization strategies developed by at UNC, the Scandal group at CMU and the Sisal group at
LLNL give the developer powerful parallel programming constructs, unequaled in other parallel programming
languages. This is demonstrated by the concise, clear implementations that run competitively with less clear,
detail-packed implementations at a lower level.

The usefulness of good transformation tools can be extended even further as more translation and optimization
schemes are developed. But these are often difficult to implement, due to current limitations in tool support. As
the tool support grows, currently unused optimization schemes will become available to developers, enabling a
wider range of high-level parallel applications.

5.4 Multi-lingual programs

As prototypes are refined, it is often the case that one small part could be substantially improved if rewritten in a
low-level language. Rather than commit the entire prototype to the lower-level language, only the targeted parts
need to be rewritten if multi-lingual programming capabilities exist. This allows the majority of the program to
remain at a high-level, while also giving the developer the chance to use very efficient implementations.

Additionally, prototypes often solve only one small problem, which is exactly the situation here with the MTT
algorithm prototypes. Once the prototypes are developed, it would be ideal if they could be integrated in a
framework that already exists, such as a larger tracking system. Other examples are prototypes to perform non-

27

bonded electrostatic interactions in MD simulations, while avoiding redevelopment of an entire molecular dynamics
simulation prototype.

Thus, language interaction is important for enhancing prototypes as well as prototyping pieces of existing systems.
To be widely adopted, a prototyping system must support calling out to other languages, as well as being called by
other languages. This capability is available with Sisal and MATLAB, where key components of programs are
moved into low-level parallel programming domain while leaving the non-computationally-complex code at a high-
level.

5.5 Information Gathering Tools

Of course, a key goal of developing parallel programs is achieving high performance. As such, it is important to
know where the program is functioning as expected and where it is not. This includes help from optimizers about
when the code can and cannot be successfully optimized, and rather than bombarding the user with all the
information about the entire program, the tool would be better if the user could explore only those areas of concern.

Other information that is useful is data gathered about the successful executions of the program. What is the
efficiency? How many messages were sent? Where is the program spending all of the time? What is the
parallelism profile of the program? All of these questions can be answered with automatic or semi-automatic
support, and tools that display this type of data, such as Paragraph and XMPI, are indeed popular.

5.6 Tools for equational verification and refinement

One basic theme that is emerging is that, in the arena of data-parallel design, equational optimization (that is,
making equations work efficiently according to some simple operational model) is often tantamount to effecting
work and step efficient data parallel design. Moreover, the use of nested data-parallelism is invaluable in direct
expression and prototyping of recursive equational specifications in aggregate (data-parallel) form.

The above points argue for tools that exploit the extremely constrained form of data parallel programs— that is, that
they are functional in nature with the attributes of simple semantics and amenability to algebraic rewriting. Two
classes of interactive tools are envisioned:

• Equational verificationcan assist programmers by verifying the equivalence of manually derived
improvements. Tools here can leverage off ongoing work in semantic verification, term rewriting, and
functional program transformation.

• Refinement tools to semi-automatically guide equational optimizations.

Indeed the technique of algebraic rewriting is already explicitly used in the translation of Proteus in which nested
data-parallelism is transformed to flat data-parallelism. It is envisioned that related techniques can be further used to
guide derivation but at the refinement level.

5.7 Portable Compilation Targets

As stated earlier, complex translation and optimization schemes take significant time to develop. Having different
output models (languages, or libraries) lengthens this time. Blelloch has demonstrated, with the C+CVL target,
that an architecture-independent compilation target ensures the longevity of the Nesl project [18, 41, 46]. The
Proteus translator also relies on the CVL library, thus Proteus’ longevity currently depends on support from Nesl.
Other systems, such as Fortran-M, depend on portable message-passing, allowing quick migration to new computer
architectures.

6. Conclusions

It is difficult to develop reliable implementations of complex algorithms that run efficiently on parallel computers.
Adding to the difficulty is the constant turnover of high-performance computing hardware with differing models of

28

programming. To alleviate this problem, we have proposed and demonstrated a development methodology for data-
parallel programs that separates the concerns of algorithm complexity, efficient use of hardware, and the variety of
hardware targeted. The methodology relies on prototyping at a high level, followed by translation (either automatic
or “by hand”) to low-level implementations. The low-level implementations are often necessary to allow more
precise control of work and storage allocation.

Prototyping computationally-complex algorithms with high-level languages allows rapid development without over-
constraining the implementation for parallelism. Languages such as Proteus and MATLAB are ideal for specifying
data-parallel applications, as they have excellent support for specifying a single path of control over aggregate data.
Unfortunately, programs written in such high-level languages often fail to meet performance criteria. Still, the
process of developing a high-level, compact implementation is an extremely useful exercise in that it both builds
and conveys knowledge about solutions to the underlying problem. Given that prototypes do not generally have
adequate performance, there are two possible approaches to solve this problem. The first is to use tools that
automatically translate high-level prototypes to actual parallel code. While this is not currently applicable to all
problems, tools do exist for problem sub-domains where high-level specifications can be run with high performance.
Broader support in compiling a larger domain of solutions to a more comprehensive set of parallel architectures is a
topic of current research.

The second option is the hand-translation from the prototype to a particular model of parallel programming that has
high performance. This option is transitional as we await more tools that support the first option. While hand-
translation sounds work-intensive, the applications considered here are of moderate size, so the actual work is small;
our experience is an afternoon or a full day. This is relatively minor when compared to the time spent in original
development of the algorithm and test cases, followed by the subsequent performance tuning, which in our test
cases, amounted to many weeks.

The largest benefits of systematically developing a tree of versions are the wide-applicability and longevity of the
application. The benefits arise from the rapid initial development, the discussion that can occur about the initial
development, the development of versions for particular parallel programming models, and the continued execution
ability despite the aging and decommissioning of parallel hardware. This has been shown in our case, where our
original parallel computers were taken out of service and replaced with similar equipment from another vendor. The
ability to run the MTT algorithms on the new hardware was carried forward by having a reference model and out-of-
date artifacts to build a new application. The downside of beginning development at a low level is shown in the
studies cited in this paper, where implementations for particular architectures are no longer relevant. The software
that remains has far too many architecture-specific details to be a foundation from which new versions of the
application can be developed.

In time, indeed it is beginning to occur already, the need for low-level implementations will be reduced. This is
occurring in two ways. The first is the growth of available templates for common algorithms with parallel
execution. Linear algebra has had this support for some time, and there are tools appearing that support
sophisticated tree-search methods on a wide variety of parallel architectures, of which the ZRAM system is an
excellent example.

The second is the automatic translation of high-level programs to efficient, machine-specific implementations. The
Proteus and Nesl translation tools have demonstrated the capability for a narrow range of applications targeting
parallel computers with good memory performance. Further work in the area of efficient translation of nested data-
parallel programs to message-passing machines is ongoing [47].

29

7. References

[1a] G. Agha, “Concurrent Object-Oriented Programming,” CACM, vol. 33, pp. 125-141, 1990.
[2a] H. Korab, “Access Feature: Stormy Weather,” http://access.ncsa.uiuc.edu/CoverStories/StormPrediction/Storms.html,

1999.
[3a] K. Droegemeier, “Performance of the CAPS Advanced Regional Prediction System (ARPS) During the 3 May 1999

Oklahoma Tornado Outbreak,” http://geowww.ou.edu/~kkd/May 3 Case/, 1999.
[1] L. V. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object Oriented System Based on C++,” presented at

Proceedings of OOPSLA'93, 1993.
[3] D. C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz, “Partial orderings of event sets and their application to

prototyping concurrent, timed systems,” Journal of Systems and Software, vol. 21, pp. 253-265, 1993.
[4] P. H. Mills, L. S. Nyland, J. F. Prins, and J. H. Reif, “Software Issues in High-Performance Computing and a Framework

for the Development of HPC Applications,” in Developing a Computer Science Agenda for High-Performance
Computing, U. Vishkin, Ed.: ACM Press, 1994, pp. 110-117.

[5] A. Goldberg, P. Mills, L. Nyland, J. Prins, J. Reif, and J. Riely, “Specification and Development of Parallel Algorithms
with the Proteus System,” in Specification of Parallel Algorithms, G. Blelloch, M. Chandy, and S. Jagannathan, Eds.:
American Mathematical Society, 1994.

[6] L. Nyland, J. Prins, A. Goldberg, P. Mills, J. Reif, and R. Wagner, “A Refinement Methodology for Developing Data-
Parallel Applications,” presented at Europar'96, ENS, Lyon, France, 1996.

[7] L. Nyland, J. Prins, P. Mills, and J. Reif, “Design Study of Data-Parallel Multitarget Tracking Algorithms,” in AIP
Design Meeting (7/96). Rome Laboratory, Rome NY, 1996. ftp://ftp.cs.unc.edu/pub/projects/proteus/rome/taskII.pdf.

[8] J. Backus, “Can Programming Be Liberated From The Von Neumann Style? A Functional Style and Its Algebra of
Programs,” Comm. of the ACM, vol. 21, pp. 613-641, 1978.

[9] G. E. Blelloch, “Programming Parallel Algorithms,” CACM, vol. 39, 1996.
[10]D. C. Cann, “SISAL 1.2: A Brief Introduction and Tutorial,” Lawrence Livermore National Laboratory, Technical 1993.
[11]G. Levin and L. Nyland, “An Introduction to Proteus, Version 0.9,” UNC-CH, Technical TR95-025, August 1993.

Lars Nyland is a Research
Associate Professor of
Computer Science at the
University of North Carolina at
Chapel Hill. He received his
BS with Highest Honors from
Pratt Institute in 1981, his AM
from Duke University in 1983,
and his Ph.D. from Duke
University in 1991. His
research interests include
languages and algorithms for
high-performance computing,
3D model acquisition, and
image-based rendering.

Jan F. Prins is an associate
professor in the Department of
Computer Science at the
University of North Carolina at
Chapel Hill. He obtained
a B.S. in 1978 in Mathematics
from Syracuse University, and
an M.S. in 1983 and a Ph.D. in
1987 in Computer Science from
Cornell University in
the area of formal methods in
program development. His
research interests center on
parallel computing, including
algorithm design, computer
architecture, and programming
languages.

Allen Goldberg received the
PhD degree in computer
science from Courant Institute,
New York University in 1979.
He is currently a senior
researcher at Kestrel Institute,
Palo Alto, CA. Previously, he
was an assistant professor of
computer science at the
University of California, Santa
Cruz. His current interests
include formal methods,
program transformation, and
mobile code security.

Peter Mills is Chief Technology
Officer of Orielle. Mills
received the BA in Mathematics
from Duke University in 1978,
and the MS in Computer
Science from the University of
North Carolina at Chapel Hill in
1989. Prior to founding Orielle
he was a Research Associate
in the Department of Computer
Science at Duke University
from 1991 to 1996, and a Senior
Scientist at Applied Research
Associates from 1997 to 1999.
His research interests include
parallel computing, real-time
systems, and distributed object
technologies.

CB #3175, UNC
Chapel Hill, NC 27599-3175
(919) 962-1796
nyland@unc.edu
www.cs.unc.edu/~nyland

CB #3175, UNC
Chapel Hill, NC 27599-3175
(919) 962-1913
prins@unc.edu
www.cs.unc.edu/~prins

Kestrel Institute
3260 Hillview Avenue
Palo Alto, CA 94304
(650) 493 6871
goldberg@kestrel.edu
www.kestrel.edu

Orielle, LLC
P.O. Box 99081
Raleigh, NC 27624
(919) 877-5765
phmills@orielle.com
www.orielle.com

30

[12]B. W. Boehm, “A spiral model of software development and enhancement,” IEEE Software, pp. 61-72, 1985.
[13]A. Geguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam, “A User’s Guide to PVM: Parallel Virtual Machine,”

Oak Ridge National Laboratory, Technical July 1991.
[14]W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface:

MIT Press, 1994.
[15]R. A. Games, J. D. Ramsdell, and J. J. Rushanan, “Techniques for Real-Time Parallel Processing: Sensor Processing

Case Studies,” MITRE, Technical MTR 93B0000186, April 1994.
[16]J. K. Antonio, “Architectural Influences on Task Scheduling: A Case Study Implementation of the JPDA Algorithm,”

Rome Laboratory, Technical RL-TR-94-200, Nov. 1994.
[17]L. Nyland, J. Prins, R. H. Yun, J. Hermans, H.-C. Kum, and L. Wang, “Achieving Scalable Parallel Molecular Dynamics

Using Dynamic Spatial Domain Decomposition Techniques,” J. of Parallel and Distributed Computing, vol. 47, pp.
125-138, 1997.

[18]G. Blelloch, S. Chatterjee, J. Hardwick, M. Reid-Miller, J. Sipelstein, and M. Zahga, “CVL: A C vector library,”
Carnegie Mellon University, Technical CMU-CS-93-114, Feb. 1993.

[19]J. Prins and D. Palmer, “Transforming High-Level Data-Parallel Programs into Vector Operations,” presented at
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego,
CA, 1993.

[20]G. Blelloch and G. Sabot, “Compiling collection-oriented languages into massively parallel computers,” Journal of
Par. and Distr. Computing, vol. 8, pp. 119-134, 1990.

[21]P. K. T. Au, M. M. T. Chakravarty, J. Darlington, Y. Guo, S. Jähnichen, G. Keller, M. Köhler, M. Simons, and W.
Pfannenstiel, “Enlarging the scope of vector-based computations: extending Fortran 90 with nested data parallelism,”
presented at International Conference on Advances in Parallel and Distributed Computing, 1997.

[22]OpenMP Architecture Review Board, “The OpenMP API,” OpenMP http://www.openmp.org, 1997.
[23]D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. v. Eicken, “LogP: Towards a

Realistic Model of Parallel Computation,” presented at Proc. 4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1993.

[24]L. G. Valiant, “A Bridging Model for Parallel Computation,” Comm. of the ACM, 1990.
[25]B. Alpern, L. Carter, and J. Ferrante, “Modeling Parallel Computers as Memory Hierarchies,” presented at Workshop for

Portability and Performance for Parallel Processing, Southampton, England, 1993.
[26]H. Lu, Y. C. Hu, and W. Zwaenepoel, “OpenMP on Networks of Workstations,” presented at Supercomputing98,

Orlando, FL, 1998.
[27]J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and P. Newton, “Visual Programming and Debugging for Parallel

Computing,” IEEE Parallel and Distributed Technology, vol. 3, 1995.
[28]I. Foster, Designing and building parallel programs: Addison Wesley, 1995.
[29]G. C. Fox, S. Ranka, and P. C. R. Consortium, “Common Runtime Support for High-Performance Parallel Languages,”

Northeast Parallel Architectures Center, Syracuse University, New York, Draft Technical PCRC-001, July 1993.
[30]R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. v. d. Vorst,

Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods: SIAM, 1994.
[31]K. M. Chandy, “Concurrent Program Archetypes,” Computer Science, 256-80, California Institute of Technology,

Pasadena, CA 91125, Electronic http://www.etext.caltech.edu/Papers2/ArchetypeOverview/ArchPaper.html, 1995.
[32]E. Johnson, D. Gannon, and P. Beckman, “HPC++: Experiments with the Parallel Standard Template Library,” presented

at International Conference on Supercomputing, Vienna, Austria, 1997.
[33]L. V. Streepy Jr., “CXdb: a new view on optimization,” presented at Proceedings of the Supercomputer Debugging

Workshop, Albuquerque, New Mexico, 1991.
[34]M. T. Heath, “Performance Visualization with ParaGraph,” presented at Proc. Second Workshop on Environments and

Tools for Parallel Sci. Comput., Philadelphia, PA, 1994.
[35]S. Browne, “Cross-Platform Parallel Debugging and Performance Analysis Tools,” presented at EuroPVM/MPI'98,

Liverpool, UK, 1998.
[36]B. Zhou and N. K. Bose, “Multitarget Tracking in Clutter: Fast Algorithms for Data Association,” IEEE Trans. on

Aerospace and Electronic Systems, vol. 29, pp. 352--363, 1993.
[37]B. Zhou and N. K. Bose, “An Efficient Algorithm for Data Association in Multitarget Tracking,” IEEE Trans. on

Aerospace and Electronic Systems, vol. 31, pp. 458--468, 1995.
[38]D. W. Palmer, “Efficient Execution of Nested Data-Parallel Programs,” : U. of North Carolina, 1996. .
[39]R. A. Wagner, “Task Parallel Implementation of the JPDA Algorithm,” Department of Computer Science, Duke

University, Durham, NC 27708-0129, Technical Report June 1995.
ftp://ftp.cs.unc.edu/pub/projects/proteus/rome/wagner-jpda.pdf

[40]L. Nyland, J. Prins, A. Goldberg, P. Mills, and J. Reif, “A Design Methodology for Data-Parallel Applications,” in AIP
Design Meeting (12/95). San Diego, CA, 1995. .

31

[41]G. E. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M. Zagha, “Implementation of a Portable Nested Data-
Parallel Language,” presented at Proc. 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 1993.

[42]R. M. Karp and Y. Zhang, “A Randomized Parallel Branch-and-Bound Procedure,” presented at Proc of the 20th Annual
Symposium on Theory of Computing, 1988.

[43]L. V. Kale, B. Ramkumar, V. Saletore, and A. B. Sinha, “Prioritization in Parallel Symbolic Computing,” in Lecture
Notes in Computer Science, vol. 748, T. I. a. R. Halstead, Ed.: Springer-Verlag, 1993, pp. 12-41.

[44]A. Brüngger, A. Marzetta, K. Fukuda, and J. Nievergelt, “The Parallel Search Bench ZRAM and its Applications,”
Annals of Operations Research, vol. to appear, 1999.

[45]A. Marzetta, “ZRAM: A Library of Parallel Search Algorithms and Its Use in Enumeration and Combinatorial
Optimization,” : ETH Zürich, 1998. http://nobi.ethz.ch/ambros/zram/zram.html.

[46]G. E. Blelloch, “NESL: A nested data-parallel language,” Carnegie Mellon University, Technical CMU-CS-93-129, Jan.
1992.

[47]G. Keller and M. Chakravarty, “On the Distributed Implementation of Aggregate Data-structures by Program
Transformation,” presented at Fourth International Workshop on High-Level Parallel Programming Models and
Supportive Environments'' (HIPS'99), San Juan, Puerto Rico, 1999.

