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We describe a problem solving environment to transform a range of questions about sub-
surface flow and transport phenomena into numerical simulations. In our prototype imple-
mentation, the problem description is presented as a set of differential equations written in a
coordinate-free operator form using LATEX. The simulator is assembled from algorithmic skele-
tons and solvers represented as components following the Common Component Architecture
standard, and executed under the control of the Ccaffeine runtime system. In this paper we de-
scribe the structure and operation of our prototype problem solving environment, and illustrate
its operation on a simple problem.

1. INTRODUCTION

Subsurface systems hold vast fresh water reserves of vital importance to our lives above
ground, but are susceptible to depletion and contamination. Hence questions about the man-
agement and remediation of subsurface systems are important for sustainability and regulatory
reasons. The ability of computational models to characterize subsurface systems adequately
and provide the information necessary for decision-making is currently limited at best, due to
the complexity of the models and the computational demands placed by simulations of realistic
multiphase systems. Fortunately, physical models are evolving as scientific understanding of
subsurface systems improves, and numerical methods are advancing as researchers attempt to
address the computational requirements of large-scale simulations.

The question that naturally arises is how to provide access to simulations of complex subsur-
face systems in the face of constantly changing models and numerical methods. Not only are
the simulations subject to constant change, but also the sorts of questions that may be answered
using the simulations can change with improved models. The goal of our problem solving envi-
ronment (PSE) is to transform a range of questions about subsurface phenomena into numerical
simulations. A PSE fixes a framework for problem specification, and constructs simulators
drawn from a set of evolving algorithmic skeletons and numerical methods. The goal is that,
over time, an increasing set of problems can be solved with an increasing range of solution
methods targeting multiple computational environments, while largely retaining the way prob-
lems are expressed. By decoupling the development of algorithms and numerical methods from
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specific applications, a problem solving environment can facilitate the introduction of new sci-
entific advancements into models, and obtain better use and reuse of numerical methods as they
become available.

Developing a PSE capable of fully realizing the above demands is a difficult task requiring
many person-years of effort and necessitating research on many fronts. As a first step, we have
focused our efforts on developing a prototype PSE flexible enough to produce efficient solvers
for a restricted but significant and meaningful set of problems. Thus, we have selected several
model subsurface problems to guide the development of the PSE. The model scenarios include a
range of characteristics and difficulty in terms of the dimensionality, steady and transient behav-
ior, single or coupled equations, and both linear and nonlinear problems. Using a broad range
of physically meaningful problems helps insure that the PSE will include a sufficient and robust
language for problem specification and will be flexible enough to include a set of advanced
numerical techniques required for large-scale simulations. Our target scenarios include

1. batch sorption using a distributed first-order model

2. a batch model of the nitrogen cycle, including reactions and interphase mass transfer

3. transient groundwater flow in a confined aquifer

4. transient, variably saturated groundwater flow

5. non-reactive contaminant transport

6. nitrogen cycling in the vadose zone, including the solution of both groundwater flow and
transport of multiple nitrogen species

1.1. Problem Solving Environments
Problem solving environments have been characterized as the integration of a problem-

domain oriented specification language with numerical solvers, algorithm selection intelligence,
and component software technology [10]. This definition can encompass many approaches
ranging from the ELLPACK system for solving a large class of PDEs [5] to the MATLAB sys-
tem. Restricting the problem domain can lead to a narrow but very practical PSE such as the
Virtual Cell [15].

A PSE should be more than a toolkit of library routines providing a range of solution methods
and functionality. Such an approach lacks a high-level problem specification language, and
instead requires a user to construct a simulation using routines found in the library. However,
excellent toolkits exist in many areas, such as linear system solvers [3, 8], and PDE solvers [5].

At the other hand, a software synthesis, or transformational, approach constructs a simulator
directly from the high-level problem description given by the user. Producing a simulator using
this approach involves the application of a set of transformations by which algorithms are intro-
duced and data structures are refined from an abstract, high level into a concrete implementation
to be executed on a given platform. The synthesis approach is complex, and is only feasible for
a limited domain of problems. Examples include Ctadel [16] which automatically translates
high-level descriptions of climate equations into optimized Fortran codes running on vector and
parallel computers, and SciNapse [1] which solves a class of partial differential equations. One
version of this system is specialized for financial modeling.
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In our prototype PSE, we take a hybrid approach that offers the ability to refine a problem
specification from an initial high-level description but is not required to generate the entire
set of solution methods as would typically be done in a transformational approach. The key
to realizing this goal is to provide sufficiently rich internal representations of the underlying
mathematical problem as well as a component-based approach to representing the solvers.

Our notation for problem specification is a set of differential equations written in a coordinate-
free operator form using LATEX. In analogy to “literate programming” approaches [12] in which
a written document describing the development of a program includes pieces of the program
(which are extracted from such a document as input for a compiler), we expect a PSE problem
specification to be developed in a written document culminating in the formal equations. Our
current working documents follow this approach. Where needed, we use some LATEX macro
definitions to convey semantic information about equations beyond that needed by LATEX for
equation layout.

In an effort to provide the desired flexibility in constructing simulators, we have adopted a
component-based approach for assembling numerical solution methods. In very broad terms,
such an approach assembles applications out of existing software elements (components) that
interact through well-defined interfaces. The specification of component interfaces is indepen-
dent of the actual language used to implement the components. Moreover, components interact
via a framework provided by a component architecture and so are more loosely coupled than
one would commonly find within an object-oriented paradigm. We are using the Common
Component Architecture (CCA) [4] under development by the CCA Forum based out of the
DOE’s SciDAC program, and targeted toward scientific computing.

In this paper we describe the structure and operation of our prototype PSE, and illustrate its
operation on a simple problem.

2. ARCHITECTURE OF THE PSE

An overview of the PSE is shown in Figure 1. The boxes in this figure correspond to programs
employed within the PSE to construct a component library and to generate a simulator.

On the right hand side of this figure, we illustrate the set of steps followed when integrating
a new component such as a linear equation solver into the system. The component is expected
to be written in a standard language such as C, C++, or Fortran. The component interfaces are
described using the Scientific Interface Definition Language (SIDL) [7] to express the kinds of
values required and the kinds of values generated. The interface description file is processed by
the Babel processor [7] which generates interfaces that follow CCA conventions, and outputs a
program in the selected language that has placeholders for the actual function to be performed
by the component. The code implementing the function is inserted into this file, and a standard
compiler can then be used to generate an object file that can be loaded dynamically (.so file).
This object file becomes a component of the component library.

Another part of the integration of a new component is to add one or more rules to the knowl-
edge base. The knowledge base is used by the PSE compiler to decide which algorithmic
skeleton(s) and numerical methods can be used for a given problem [17, 9]. We have not settled
on a form for these rules. The set of rules must be easily expandable to accommodate new
forms of problems and additional solution methods, and must also provide a ranking of appli-
cable solvers. Thus far we have a very limited set of problems and solvers and our selection
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Figure 1. PSE architecture. The left hand side shows the steps involved in creating a simulation.
The right hand side shows the steps involved in extending the PSE.

method is ad-hoc.
On the left side of the figure we illustrate the sequence of steps involved in constructing

and running a simulation in response to a problem specification. The PSE compiler reads the
problem specification in LATEX form and computes a number of attributes and properties of
the equations it encounters therein. Using these attributes in conjunction with the knowledge
base, the PSE compiler determines a set of applicable algorithms and a relative ranking of the
suitability of the possible choices. Once a particular algorithm is chosen, the PSE compiler
determines what components it must generate. These would typically be right hand sides of
a linear system, a Jacobian, or a residual function. These are generated from the equations
and output as small functions to be inserted into CCA components. They need to be named
components because in a problem that involves multiple solvers (e.g., one that involves diffusion
as well as advection), each solver must be connected with the appropriate piece of the problem
to be solved.

The compiler also outputs a component network which directs which components are to be
used, where each gets its arguments, and what results are produced. This description is read by
the Ccaffeine run-time system [6] which dynamically loads the necessary components from the
component library and starts the simulation running.
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The last part generated by the PSE compiler is a parameter file that is used by a standardized
component to determine inputs for a given simulation run. By modifying parameters in this file,
multiple simulation runs can be made without requiring repeated PSE compiler executions.

2.1. Choosing algorithms
A problem is presented to the PSE compiler as a list of equations and function definitions.

Defined functions can be used in the equations. The PSE compiler expands all function ap-
plications so that each equation is fully specified. The resultant set of equations are analyzed
individually and together. For each equation the following properties are determined.

Equation Type The compiler classifies whether a given equation is an algebraic (possibly non-
linear) equation, an ordinary differential equation (ODE), or a partial differential equation
(PDE) based on the appearance of differentials in the input. By default the input is consid-
ered algebraic. ODEs are similarly considered implicit by default. However, the compiler
will also attempt to determine if the equation is in explicit or semi-explicit form without
performing symbolic manipulation.

Order The order is found simply by determining the highest order of any differential in the
equation. The order of each differential is included in its definition.

Linearity The PSE compiler constructs a list of differentiated variables that appear somewhere
in the system of equations in either partial or ordinary differentials. The PSE compiler
analyzes each equation to find occurrences of differentiated variables in multiplication or
exponentiation expressions. If a differentiated variable appears in such an expression, the
equation is marked as nonlinear in that variable.

Once these attributes are computed for each of n equations, an n × n coupling matrix is
constructed for the full set of equations. The coupling matrix has value 1 in position (i, j) if a
variable that is differentiated in the ith equation occurs in the jth equation, and a 0 otherwise.
Since a variable that is differentiated in an equation also occurs in that equation, the (i, i) entry
in the matrix is 1 if and only if equation i is a differential equation. The coupling matrix
provides important information about the global properties of the problem. For example, a
diagonal matrix indicates a completely uncoupled system of differential equations.

The determination of other mathematical properties such as the stiffness of an ODE system
or whether a given PDE is parabolic, hyperbolic, or elliptic is significantly more involved and
depends, in part, on the dynamics of a simulation and the value of run-time parameters. Devel-
oping this capability is part of our ongoing work. Our approach will rely largely on assumptions
about coefficient ranges and explicit user input on the allowed range for a given quantity.

2.2. Creating a solver
Once a problem specification has been analyzed, the PSE must then construct an efficient

solver. To facilitate this process, we use the CCA paradigm. In CCA, high-level functional
objects are represented as components.

Each component is treated as a black box, with the only knowledge about it being its name
and its ports. In the following, we will use the convention of writing component names in
Sans Serif and port names in typewriter. Each component has at least one provide port,
which denotes what function it implements. Thus, a linear solver might provide the function:
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Solve( in Matrix A, in Vector b, out Vector x)

This could be called a LinearSolve port. Any component that provides the LinearSolve
port is expected to be able to take in a matrix A, a vector b, and provide the solution vector x.

Components also have an arbitrary number of use ports. These represent functions in the
component that have no actual implementation — at run time each use port must be provided
with a component with a provide port of the same name as the use port. Thus, if we have a PDE
solver as a component, with a LinearSolve use port, we can provide any component with
a LinearSolve provide port. The idea is to be able to abstract away parts of the program.
The PDE solver does not care whether the component that provides the LinearSolve is
sequential or parallel, whether it is written in C++ or Fortran, or many other implementation
details. It depends only on the LinearSolve-providing component correctly solving the
linear system.

The PSE takes the attributes it has derived from the model and the type of solution being
sought and chooses a top-level component, defined as a component that provides a GoPort.
The CCA calls the GoPort function to begin the program. These components are, for example,
ForwardInTimeSimulation, SteadyStateSimulation, InverseProblem, etc. Each top-level
component has a different set of use ports. For example, ForwardInTimeSimulation requires
an Integrator port, as well as several pre- and post-processing components. The PSE then
chooses a component that provides an Integrator port, and that we know to to be appro-
priate for this problem. As a simple example, if the PSE knows that the system is made up of
PDEs, it knows not to select an ODE integrator. This integrator will need other use ports, and
the PSE selects appropriate components for those. In this manner, the PSE uses the attributes to
select the appropriate component for each use port needed by each component.

Unfortunately, pre-written components cannot serve all our needs. At some point, there must
be a connection between the actual mathematical model and the solver. Thus the PSE will write
out certain low-level functions (generally objects representing the function to be integrated) that
are inserted into interface wrappers generated by Babel. In this manner these problem specific
functions become components that can be used in the solver.

2.3. Advantages of CCA
The advantages of this architecture for our needs are several. It provides a convenient ab-

straction of the solver. Each solver is represented as a network of components. This is useful
for the PSE user, as it allows him or her to be able to quickly see and understand how the solver
works, far more than if a monolithic code were output. It also enables components of the solver
to be tested or profiled in isolation.

The CCA model is also useful for the PSE compiler. The abstraction of provide and use ports
allow the PSE compiler to ignore the components that it has already chosen, or will later choose,
when choosing a component. Since the ports serve as “contracts” to provide a certain service,
theoretically the PSE need only consider one component at a time. That is, when choosing
a component that provides an Integrator port, what component needs this port should be
unimportant, as it should be programmed to deal only with the Integrator port, not with a
specific component attached to the Integrator port. Similarly, other components used by
the Integrator-providing component should not be important, since it has agreed to provide
an integrating service regardless of what components are actually connected to its use ports.

The CCA-based component library also promotes portability and reuse of code. The compo-
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nents externalize the algorithmic skeletons, so that the PSE compiler need not maintain these
internally in code generation.

Moreover, if a person wanted to test their own code within a complex problem, they could
not do so in general without attempting to understand the created program. As an example,
consider a person who has created a new linear solver, or who has an old linear solver that they
would like to use. By wrapping it in a component, the person can substitute it into a created
component network and expect it to work the same without any modifications to the rest of
the network. Also, the specific implementation of the CCA that we use, based on Babel [7] and
Ccaffeine [6], allows components to be written in any of a number of languages, including C++,
Fortran, Java, and Python.

Complex mathematical models often require parallel processing to solve them in a reason-
able time period. The CCA is designed with this in mind — parallel processing is done by
running the same component network on each node [2]. The components may then communi-
cate “across” nodes, in which they may only communicate with their counterpart component on
another node. So an integrator component on node A may not communicate with a linear solver
component on node B. They may also communicate “within” a node, via the usual method of
provide and use ports. The idea is again abstraction. Components need only know how to
communicate with another component just like them.

Finally, we chose the CCA over other, similar component models such as CORBA or COM
because those models are designed for business software, not for scientific applications. They
are far less efficient in the implementation of interfaces, and they are not specifically designed
for parallel computation. Further, they do not have support for Fortran, which is a common
language in scientific applications.

3. EXAMPLE FORMULATION — BATCH DISTRIBUTED FIRST-ORDER SORPTION

As an example, we next step through a formulation for the first of our test-suite problems
from section 1. We examine a batch system with mass exchange between solid and aqueous
phases only — no reactions or sources. This is a simple problem that can be formulated sev-
eral ways, including a small system of explicit ODEs. We proceed through several steps in
the formulation to illustrate how we envision our PSE compiler functioning within a literate
programming approach. Then we show the solver output by our prototype PSE.

3.1. Domain background
A general mass balance equation for species ι in phase α for the system under consideration

is [14]

d

dt
(ραθαωια) = Iια + Rια + Sια (1)

where t is time, ι is a species index, θ is a volume fraction, ρ is mass density, ω is a mass
fraction, Iια represents interphase mass exchange, Rια represents homogeneous (occurring in
a single phase) chemical reactions, and S ια is a source term.

For the first example, we can neglect source terms and reactions and still maintain suffi-
cient complexity. We also make a simplification and identify compartments with phases for the
purposes of the mathematical formulation based on eqn (1). We assume that there is a single
chemical species with a multi-compartment model to include heterogeneity in the solid phase.
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We’ll suppose that there is a “fast” compartment (α = sf ) and a “slow” compartment (α = ss)
exchanging mass with the aqueous phase but not each other. The fast compartment will be as-
sumed to be at local equilibrium with the aqueous phase while the mass transfer for the slow
compartment will be modeled using a first-order expression. The equilibrium solid-phase mass
fractions will be modeled by a Freundlich isotherm [11]

ωια
e = Kια

f (Cιa)nια

, α = sf , ss (2)

where Cιa = ρaωιa.
The corresponding mass transfer relations for the slow and fast compartments with the aque-

ous phase can be expressed as

Iιa
sf

= −θsf ρsf

(
dω

ιsf
e

dCιa

)
dCιa

dt
(3)

Iιa
ss

= −θssρsskιss
s (ωιss

e − ωιss) (4)

where kιss
s is a first-order mass transfer coefficient for the slow solid-phase compartment.

3.2. Formulation
We can write the mass balance equations for our single species as

dωιss

dt
= kιss

s (ωιss
e − ωιss) (5)

dωιsf

dt
=

(
dω

ιsf
e

dCιa

)
dCιa

dt
(6)

θa dCιa

dt
= −θsf ρsf

(
dω

ιsf
e

dCιa

)
dCιa

dt
− θssρsskιss

s (ωιss
e − ωιss) (7)

Eqn (6) is redundant. Introducing the retardation factor Rf and dropping the superscript ι, we
have

dωss

dt
= kss

s (ωss
e − ωss) (8)

Rf (C
a)

dCa

dt
= −θssρss

θa
kss

s (ωss
e − ωss) (9)

for t ∈ (t0, tf ] and

Ca(t0) = Ca
0 (10)

ωss(t0) = ωss
0 (11)

with the constitutive relations and definitions

Rf = 1 +
θsf ρsf

θa

dω
sf
e

dCa
(12)

ωss
e = Kss

f (Ca)nss

ωsf
e = K

sf

f (Ca)n
sf

ωsf = ωsf
e (13)
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and parameters ρss , ρsf , θα, Kss
f , K

sf

f , nss, nsf , kss
s [14, 11].

Eqns (8) and (9) form an implicit ODE system. As long as Rf remains bounded and non-
zero, it can easily be recast to an explicit ODE system that would be appropriate for a wider
range of numerical ODE integrators. However, converting to an explicit ODE can increase the
system’s stiffness and make the problem harder to solve. The behavior of Rf depends on the
mathematical form of ω

sf
e and the parameter values K

sf

f and nsf chosen for a given problem.
In the following, we consider only the explicit form of eqns (8) and (9) for simplicity.

The set of equations forms the first part of the input for the PSE compiler. They are written
in LATEX using a set of macros to disambiguate the mathematical meaning, where needed. For
example, the definitions in eqn (12) are written as follows:

R_{f} &=& 1 +
\frac{\thetaˆ{s_f}\rhoˆ{s_f}}{\thetaˆ{a}}\od{\omegaˆ{s_f}_{e}}{Cˆ{a}}\\
\omegaˆ{s_s}_{e} &=& Kˆ{s_s}_{f} (Cˆ{a})ˆ{nˆ{s_s}} \nonumber \\
\omegaˆ{s_f}_{e} &=& Kˆ{s_f}_{f} (Cˆ{a})ˆ{nˆ{s_f}} \nonumber

The PSE compiler ignores formatting commands like \nonumber and “&.” Note the use of
the \od macro to specify a (first order) differential.

The second part of the formulation includes the auxiliary conditions and a specification of
what information is desired from the problem’s solution. For example, taking y(tk) to be
[ωιss, Cιa]T , one might write

Given y(t0) = y0

Find y(tk) for tk ∈ [t1, . . . , tf ] (14)

to determine the species mass fractions in the slow compartment and species concentrations in
the aqueous phase at each time step up to some parameter tf .

3.3. Creating an algorithm
Starting with the specifications above and attributes determined by the compiler, the PSE

must produce a useful classification for this problem that will allow it to generate a valid solution
approach.

The formulation can be broken down conceptually into two pieces. The first is the set of
equations or conservation laws that describe the evolution of the physical quantities together
with the necessary constitutive relations like ωe. These are shown in eqn (8) through eqn (13).

The second is the desired form of the solution. From eqn (14) the compiler can gather that
the current problem requires a forward simulation of some transient phenomena. Since no
spatial domain or keywords are included, the compiler assumes that the problem lacks spatial
dependence. Of course, this needs to be consistent with the evolution equations. The following
high-level algorithmic skeleton for the simulation is then selected.

initialize
for each time level

preprocess
solve evolution equation
postprocess

finalize
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This skeleton is called ForwardInTime (FT) and is a component in our library. Here, the
initialize step includes reading in parameters, setting the value of the solution variables
from the initial conditions, and initializing the solvers. The postprocess step is used to
output the state of the system at each time step, as specified in eqn (14).

The FT algorithm above is very general and doesn’t contain much information in itself. The
next step in the analysis is to examine the governing equations associated with the problem to
determine what actually must be done during each of the high level stages of the FT algorithm.
At this point, the PSE compiler makes use of the attributes of the evolution equations listed
above to choose a solver. For instance, an integrator capable of solving systems of nonlinear
differential algebraic equations (DAEs) of index one can solve explicit ODEs, but one might
expect that an explicit ODE solver would be better suited in this case since it is designed for
equations that more closely match the formulation provided in the problem specification. This
is not always the case, however, since the performance of a numerical solver depends on a host
of factors beyond just the form of the equations themselves. Our prototype system bases its
ranking of candidate solvers on matching the mathematical form of the analyzed system and
includes the ability to override the compiler’s selection through explicit instruction. One of the
requirements for building a full-featured PSE, however, is to develop a knowledge base that
allows for a more sophisticated ranking system incorporating expertise and domain-specific
information about the performance of candidate solvers [17, 9].

Making the best choice from a collection of valid solvers is a difficult but happy task for
the compiler. Unfortunately, determining a valid solution approach can be more daunting. The
way the FT algorithm is structured, the solve evolution equation step is supposed to
encompass the entire physical problem. While finding a numerical solver capable of solving
systems of ODEs is no stretch, we can not rely on having numerical solvers at hand for entire
systems of PDEs that are typical for most subsurface flow and transport problems. The PSE’s
internal representation of the problem specification must be sufficiently rich so that the com-
piler can decompose the system of evolution equations using a combination of algorithms and
available solvers to build a valid solution approach.

To be somewhat more concrete, suppose the PSE only had scalar ODE solvers available.
None of these would match the two dimensional system for our example. If the PSE contained
an algorithm for decoupling systems of two equations that resembled

while ‖yk − yk−1‖ > ε

solve equation 1 for yk+1
1 using yk

2

solve equation 2 for yk+1
2 using yk+1

1

where k is an iteration index for the decoupling algorithm, the compiler could apply the decou-
pling algorithm with the scalar ODE solvers to find a solution to the problem. Of course, this
approach would likely fail for the batch sorption system eqns (8)–(13), but might succeed in
other cases for more loosely coupled problems.

3.4. Creating the component network
The FT algorithmic skeleton is represented in the component library as a CCA component

with four use ports: one for a general preprocessor, one for a time-step preprocessor, one for
an integrator, and a one for a time-step post-processor. The PSE compiler can associate these
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Figure 2. Component diagram for the example problem. The function provided by the compo-
nent is shown at the top of each box, and the actual component instance is shown at the bottom.
Arrows connect components to their users.

ports with any component that meets the CCA interface requirements. Figure 2 shows the
components selected to solve the example problem.

The general preprocessor is used to set parameters and initial conditions. We have a com-
ponent called InitialCondition that provides a uniform interface for obtaining parameters and
values from data files, and that initializes the initial state of the system. The time-step pre-
processor is run once each time step, before the integration. In this example, we have nothing
we need to do, so the pre-processor component is a dummy component.

Since the PSE compiler has determined that an explicit ODE integrator is to be used, it has
selected the Dumka3 [13] component. We chose this algorithm for inclusion in our component
library for its simplicity and ease of wrapping into a component. The integrator component has
two use ports, one to provide a right-hand-side for the problem, and one to provide an estimator
for the largest possible stable time step. The right-hand-side component provides a way to set
and read the state of the simulation, and provides the function to be integrated. This function is
generated by the PSE compiler from the system of explicit ODEs, and is included into the right-
hand-side skeleton to create a problem-specific component (here called Ex1) that is compiled
and inserted into the component library. We also provide a component that estimates stable time
steps to the Dumka3 integrator.

The post-processor component in this case simply reads the necessary quantities out of the
right-hand-side and appends them to a file.

Figure 3 shows a Ccaffeine screenshot of the network generated by the PSE compiler. To
run the simulation, this network is loaded dynamically by Ccaffeine, and executed by calling
the GoPort in the FT component. Different simulation runs can be made, using different
initial conditions and parameters, by simply modifying the parameter input and re-running the
network.
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Figure 3. Component network generated for the sample problem, as viewed with the Ccaffeine
network graphical tool. Each component is shown as a black box, with its name at the bottom.
The use ports are shown on the right, and the provide ports are shown on the left. A line connects
each use port with a provide port.

4. CONCLUSION

The objective of our PSE is to improve the current state of subsurface modeling by accelerat-
ing the process of developing simulators, facilitating the introduction of new scientific advance-
ments into models, and encouraging the application of more realistic models. The key to this
approach is to combine a high-level problem specification with a framework that is sufficiently
flexible to include advanced solution methods suited to large-scale problems, incorporate legacy
solvers, and introduce new methods as they become available. Finally, a succesful PSE must
be able to generate simulators that can run effectively on a variety of sequential and parallel
platforms.

Our prototype PSE thus far only handles a small subset of the intended class of problems,
but has an architecture that we believe can accommodate each of these objectives on the larger
range of problems.
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