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Abstract—Traditional architecture design approaches hide
hardware uncertainties from the software stack through over-
design, which is often expensive in terms of power consump-
tion. The recently proposed quantitative alternative of stochastic
computing requires circuits and processors to be correct only
probabilistically and use less power. In this paper, we present the
first step towards a theory of stochastic computing. Specifically,
a formal model of a device which computes a deterministic
function with stochastic delays is presented; the semantics of a
stochastic circuit is obtained by composing such devices; finally,
a quantitative notion of stochastic correctness, called correctness
factor (CF), is introduced. For random data sources, a closed
form expression is derived for CF of devices, which shows that
there are two probabilities that contribute positively, namely,
the probability of being timely with current inputs and the
probability of being lucky with past inputs. Finally, we show the
characteristic graphs obtained from the analytical expressions for
the variation of correctness factor with clock period, for several
simple circuits and sources.

I. INTRODUCTION

Moore’s Law states that the number of transistors that
can be placed over an integrated chip will double itself for
approximately every 2 years. This has been the singular driving
force behind the advances in information and communication
technologies over the last half-century. However, as transistor
sizes decrease exponentially, the resulting effect of manu-
facturing and environmental uncertainties on the behavior of
transistors [1] has become a serious threat to the continuation
of Moore’s Law.

Traditional design methodologies completely hide hardware
uncertainties from the software stack through overdesign. For
example, the operating voltage is often chosen to be at least
20% higher than what is required for correct operation under
nominal conditions [2]. Similarly, the frequency of a chip
is consistently chosen based on the length of the slowest
timing path under worst-case conditions. The power and
performance costs of such hiding mechanisms are high in
present technologies and will become prohibitive in the future
as the relative magnitude of uncertainty increases [1]. As a
bold alternative, the mantra of the recently proposed stochastic
computing approach [3], [4], [5] is to relax the notion of
correctness and design processors that produce stochastically
correct results very quickly and efficiently, and rely on hard-
ware and software-based mechanisms for tolerating errors
when necessary. For to be an attractive approach, the rate
of errors should be such that there are system-level power
benefits even after accounting for the overhead of tolerating
errors.

From the physical standpoint, stochasticity in the outputs
comes from the stochastic nature of the stabilization delay
that an input data item experiences in the processor. Variations
in the the stabilization delay depends on spatio-temporal
variations in environmental factors such as temperature, in-
ductive coupling, and voltage noise [6]. Stochasticity may also
arise from manufacturing variations that may impact different
functional units differently. Finally, aging can cause stochas-
tic variations in delays over relatively longer time scales.
While a conventional processor is overdesigned to produce
deterministic outputs in spite of these stochastic delays, a
stochastic processor allows for stochastic (and hence, possibly
wrong) outputs. The error rate dictates the overhead in terms of
performance and output quality, and, therefore, a quantitative
analysis is needed to carefully balance the benefits of hardware
stochasticity against the overheads of dealing with errors.

While previous work on stochastic processors has shown
considerable power and performance benefits [4], [7], [8] of
relaxing correctness, however, a formal framework for design,
analysis, testing, and verification of stochastic processors. is
missing. Such a framework will enable quantitative analy-
sis of the trade-offs between hardware stochasticity and the
overheads of error tolerance, and in its absence, the current
architecture and design methodologies [4], [7], [8] are ad hoc
at best.

In this paper, we present a first foray into developing a
theory of stochastic processing. We begin in Section II, by
introducing the model of a stochastic computing device—the
basic building block of a stochastic processor. A device is
the stochastic analogue of a traditional logic gate, however,
its output changes with some delay after the presentation of
the inputs. This delay models the effects of stochasticity in
the physical environment of the device and is captured by
a (discrete) probability distribution, called delay distribution,
that has bounded support1. Because of this unpredictable delay,
the observed or latched output at the next observation time
(clock cycle) may not be the correct output corresponding
to the input. Furthermore, causality of input-output behavior
of the devices may prevent an older input that experienced
a large delay from producing an output, when a newer input
experiences a much smaller delay. Formally, the state of such a
stochastic device is essentially a queue that stores all the inputs
for which the outputs are yet to be produced, except that more

1In practice, the delay distributions for different sources of stochasticity
can often be obtained from detailed physics-based models and from device
and circuit characteristics



recent inputs may obliterate older inputs that experience large
delays. Note that this model of stochasticity does not capture
the stochasticity caused due to manufacturing variations, but
can be easily tuned to capture stochasticity due to aging. Next,
we develop the notion of a stochastic circuit which is obtained
by interconnecting the inputs and outputs of a collection of
stochastic devices. We show that the behavior of such circuits
fed from random sources of data can be described as a Markov
chain.

In Section III, we define what it means for a stochastic
circuit to be correct at a given point of observation. This notion
is then used to quantify the correctness of circuits in the long
run (we call this correctness factor), given specific sources of
data and specific periodicity of observation. The correctness
factor is a key property of a circuit, which influences important
design choices including the operational voltage and the clock
frequency.

In the Sections III and IV, we show how correctness factors
of elementary feed-forward circuits can be computed exactly.
The main insight here is the following: an observed output
can be correct either because (a) all the current inputs have
actually propagated to the output, or because (b) some of the
older inputs cause the correct output to appear nevertheless.
The probability of (a) is directly obtained from the delay
distributions of the relevant devices, and it turns out that
the probability of (b) can be analyzed using a key property
of a circuit which we call random correctness probability
(RCP). The RCP of a circuit with M inputs tells us the
likelihood of observing two identical outputs when presented
with two sets of random M -bit inputs, of which some subset of
input bits overlap. Combining the above we obtain expressions
for correctness factors for elementary circuits. In Section V,
we present the characteristic graphs for correctness factors
of several simple circuits obtained by plugging-in different
types of delay distributions and sources, and varying the
clock period, in the above-mentioned analytical expressions.
These results have also been validated separately through
probabilistic model-checking and Monte Carlo simulations
(which we do not report here). These graphs corroborate
our informal understanding of how correctness of different
stochastic computing elements change with frequency scaling,
based on detailed architecture-level simulations. The founda-
tions laid out in this paper, we believe, will aid the analysis of
more complex stochastic circuits and processors and also will
aid in making design choices for stochastic processors with
respect to energy consumption, clock-speed, and correctness
factor.

II. STOCHASTIC PROCESSOR MODEL

In this section, we first discuss the underlying physical
phenomenon corresponding to stochastic processing and then
present the mathematical model of stochastic devices and
circuits.

A. Physical processing

Basic computing elements are interconnected by wires to
create larger and more complex circuits, devices, and systems.
Inputs to and outputs from computing elements are voltage
signals on wires. Although these signals are real-valued and
change continuously with time, for the sake of convenience of
modeling we will work with the usual discrete-time discrete-
valued abstraction: signals are {0, 1}-valued and they change
state instantaneously. To be clear, there is a hardware clock
in the system, and the edges of this clock determine when
values are latched. The periodicity of this clock shows up as
the period of the sources and the observation in our paper.

When an input signal to a computing element changes, the
corresponding output appears after a delay which is chosen
according to some discrete probability distribution, say γ. This
stochastic delay models the time it takes for the element to
reach a steady state value after the change in the input, and it
depends on complex environmental factors such as inductive
coupling of the circuit, temperature, and voltage noise.

For two consecutive changes in input I1 and I2 separated
by a time interval of ∆, if the delay experienced by I2 is
less than sum of ∆ and the delay experienced by I1, then the
output corresponding to I1 never appears at the output. This
preserves causality of the input-output relationship of devices.
This property also makes our model for stochastic devices
different from standard queuing models.

B. Stochastic Devices as Probabilistic Automata

The set of boolean values {0, 1} are represented as B. For
a natural number N ∈ N, we denote the set {1, 2, . . . , N} by
[N ]. For a set S, we denote the set of probability distributions
over S by D(S). For a probability distribution γ ∈ D(N)
over natural numbers, γ(i) denotes the probability of choosing
i ∈ N, supp(γ) ∆= {i ∈ N | γ(i) > 0}, i.e., supp(γ) is the set
of values v for which the γ(v) 6= 0 and if γ has finite support
then max(γ) ∆= max(supp(γ)). For the cumulative distribution
function (CDF) Γ of γ is defined as, Γ(i) ∆=

∑i
j=0 γ(j) and

Γ(> i) ∆= 1− Γ(i).
A queue of type T is a sequence of elements of type T .

The first element of a queue q is denoted by q .head , and
the rest of the elements constitute another queue, which we
denote by q .tail . The total number of elements in a queue is
denoted by q .length . A timed queue of type T is a sequence
of elements of type T × N. The first component of such an
element w is called the value, denoted by w.value, and the
second component, w.deadline , is called the deadline. Thus,
q .head .value denotes the value corresponding to the head
element of the timed queue q.

The elementary model of a processing unit is a device.
Roughly, a device stores input(s) from (possibly multiple)
input wires and produces outputs according to a specific
function and after a certain amount of delay which is given
by delay distribution(s).

Definition 1: An N -bit device D is specified by (a) a
collection {γi}Ni=1 of N discrete probability distributions over



N with finite supports and min(supp(γi)) > 0; γi is called
the delay distribution for the ith input, and (b) f is a function
BN → B called the device function.
We denote the number of inputs of a device D by N(D).
The CDF for the distributions γi is denoted by Γi. The
device function defines the single bit output as a function
of the N input bits. The output, however, does not change
instantaneously when the input changes; the delay distributions
define the duration of time after which a change in an input
is reflected at the output.

Example 1 Figure 1 illustrates the inputs and outputs of three
devices: a 1-bit inverter D1, a 2-bit AND device D2, and a
3-bit device D3. Device D1 is completely specified by (a) its
delay distribution, for example γ1(1) = 1

2 , γ1(2) = 1
4 , and

γ1(3) = γ1(4) = 1
8 , and (b) its device function f

∆= (y =
¬b1).
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Fig. 1. Left: A 1-bit inverter device D1. Right: A 2-bit adder circuit
with devices D2 and D3.

The semantics of a device D is given in terms of a discrete
time-probabilistic state machine, which we also denote by
D (the meaning of the notation will be clear from context).
Informally, the state machine D stores the inputs from all the
input wires in respective queues until it is time for the inputs to
appear at the output of the device. The state of D is specified
using the following variables: (a) queuei, i ∈ [N ], a queue
of pairs 〈b, t〉, where b ∈ B, t ∈ N; initially each queuei is
empty, (b) boolean valued head variables hi, for each i ∈ [N ],
(c) boolean valued output variable y. Initially, hi’s and y are
all 0. A state of D is a valuation of all the above variables.
We will denote states of D by bold letters x,x′,x1, etc.

The functions in Figure 2 describe the probabilistic tran-
sitions of D. Specifically, given a state x, a set of inputs
b1, . . . , bN , and a set of input delays d1, . . . , dN , the next
state x′ is obtained by applying Time,Deq , and the ap-
propriate Enq function to x in sequence. That is, x =
Enq(b1, . . . , bN , d1, . . . , dN ) ◦ Deq ◦ Time(x). The Time
function advances time: it decrements the deadlines for each
of the previously enqueued inputs that are yet to affect the
output. The Deq function updates the output and the head
variables: first, for any enqueued input 〈b, t〉 in queuei for
which the deadline t is 0, b is copied to h and removed from
queuei. Next, the output y is computed by applying the device
function f to the (possibly newly updated) head variables.
Finally, the function Enq(b1, . . . , bN , d1, . . . , dN ) models the
arrival of new inputs bi at the ith wire and experiencing a delay
of di. This has the effect of wiping out all the past inputs in
queuei that are supposed to experience a delay of di or more,

and the addition of 〈bi, di〉. The transition probability from x
to the above x′:

µx,x′ = ΠN
i=1P [ith input = bi]P [ith input’s delay = di]

= ΠN
i=1P [ith input = bi] ΠN

i=1γi(di).

Thus, at every time instant, if the probability of a certain
sequence b1, . . . , bN appearing at the input of D is given,
then the the transition probability µx,x′ is well-defined and
the process D is a finite state Markov chain.

Time
for each i ∈ [N ]

for each 〈b, t〉 ∈ queuei
replace 〈b, t〉 with 〈b, t− 1〉

Deq
for each i ∈ [N ]

if queuei.head.deadline = 0
hi := queuei.head.val
queuei := queuei.tail

y := f(h1, . . ., hN )

Enq(b1, . . ., bN , d1, . . . , dN )
for each i ∈ [N ]

for each 〈b, t〉 ∈ queuei with t ≥ di

queuei := remove(queuei, 〈b, t〉)
queuei := add(queuei, 〈bi, di〉)

Fig. 2. Transition function for device D with delay distributions
γ1, . . . , γN , and device function f . The choice of the parameteres
d1, . . . , dN in the Enq transition are chosen according to γ1, . . . , γN .

Example 2 Consider the device 1-bit D1 in Example 1 being
fed with a sequence of input bits 0, 1, 0, 1, . . .. At the beginning
of time-step 1, queuei is empty. At the beginning of step
2, queuei has a single element 〈0, d〉, where d = 2 with
probability (w.p.) 1

2 , d = 3 w.p. 1
4 , and d = 4 and d = 5,

each w.p. 1
8 . The variables h1 and y continue to remain 0 at

this time.

C. Stochastic Sources and Circuits

A source in our framework models a source of data encoded
as bits which feed into stochastic devices.

Definition 2: For N,K > 0 an N -bit K-period source s
produces N new binary values every Kth instant of time, and
the values remain constant for the intervening (K − 1) time
periods. The ith bit produced by s at time t is denoted by
si(t).
Let t ∈ N. Let t be written as qK + r, for some fixed q, r ∈
N, 0 < r < K, then si(t) = si(qK). If for every q, si(Kq) is
the same, then s is a constant source; if for every q, si(Kq)
depends only on si((K − 1)q) then s is Markovian, more
generally, si(Kq) may depend on sj((K−k)q). For this paper,
we consider the simple class of random sources: For each
i ∈ [N ] there is a constant pi ∈ [0, 1], such that for any q then

si(qK) =

 1 with probability pi,

0 with probability (1− pi),

and for any q and r, si(qK + r) = si(qK). As we shall see
shortly, circuits with random sources provide a good starting
point for the development of the general theory. Techniques
developed for this simpler class, we believe, can be adapted



to other types of sources. We denote the number of outputs
and the period of a source s by N(s) and K(s).

A circuit models an interconnected collection of devices and
sources such that every input of every device is connected to
either an output of some device or a source. For a device D,
we denote its inputs by D1, . . . ,DN(D) and its output by Dy .
For a source s, we denote its N outputs by s1, . . . , sN(s).

Definition 3: A circuit with a collection of D devices and
a collection of S sources is a function C that maps every
output of every source and device to some (possibly empty)
set of inputs of devices

C : {Dy | D ∈ D} ∪ {si | s ∈ S , i ∈ [N(s)]}
→ {Di | D ∈ D , i ∈ [N(D)]}

such that, for every D ∈ D and every input Di, |C−1(Di)| =
1. That is, every input is mapped from exactly one output.
Given a circuit C with devices D1,D2 ∈ D , D1 is said
to precede D2, if C maps the output of D1 to an input
of D2. Consider the graph GC = (VC , EC) with the set
of vertices V = D ∪ S and the set of edges EC =
{(u, v) | u precedes v in C}. If GC is a DAG then C is said
to be a feed-forward circuit. A feed-forward circuit consisting
of a single device is called a simple circuit.

We recursively define the depth of feed-forward circuits. All
the sources of a circuit C are at depth 0. A device in C is at
depth i, if all its predecessors are in depth (i−1) or less, with
at least one predecessor exactly at depth (i − 1). A simple
circuit has a depth of 1.

Finally, we describe the semantics of feed-forward stochas-
tic circuits (henceforth, simply circuits). A circuit computes
a function of the bits produced by the sources by applying
a sequence of transformations to these bits through devices.
There are two possible interpretations of a circuit: (i) static
and (ii) dynamic:

The static interpretation tells us how the circuit behaves in
the steady state or in the long-run under fixed inputs. That
is, the output observed from the circuit when the sources are
fixed to constant bits, and as time goes to infinity. This static
or steady-state behavior of a circuit C is captured by the
circuit function and is denoted by fC : it assigns values to
the output variables of all the devices in C as a function of
the inputs from the (constant) sources. The circuit function
can be expressed in terms of the device functions recursively
as follows. A circuit of depth 0 consists of only sources, and
the circuit function is the identity map. A circuit of depth k
consists of at least one device at depth k. For every such device
D, the circuit function assigns to Dy the valuation obtained by
applying the device function of D to valuations of the outputs
of the devices preceding D. The circuit function of a simple
circuit with a device D is the device function of D.

The dynamic interpretation of a circuit is given by the step-
by-step evolution of the state machine, specifically the Markov
chain, corresponding to the circuit. At every time step, the
state of the circuit evolves as follows: first, all the sources
are read to obtain their new outputs. Then, iteratively, for

any N -bit device D at depth i the variables (including the
output) are (probabilistically) updated using the outputs of
all the devices and sources at depth less than i, by applying
Enq(b1, . . . , bN , d1, . . . , dN ) ◦Deq ◦ Time to the state of D.
Note that the values of the inputs b1, . . . , bN are fixed for D
as they are outputs from sources and devices at a lower depth
(sub-circuit). The values of d1, . . . , dN are probabilistically
chosen from the delay distributions of γ.

Example 3 Consider the device D1 of Example 1 connected
to a 1-bit random source s1. We call this simple feed-forward
circuit C1; its circuit function fC1(s1) ∆= f(s1) equals ¬s1.

Consider the circuit C2 obtained by interconnecting devices
D2,D3, with random sources s1, . . . , s4 at b1, . . . , b4, respec-
tively. This is a feed-forward circuit of depth 2 and circuit
function fC2(s1, s2, s3, s4) = f2(f1(s1, s2), s3, s4).

As mentioned above, the static and dynamic interpretations
of a circuit are related when the sources are constant and
time goes to infinity. More precisely, consider a circuit C
with constant sources s1, . . . , sM fixed at values c1, . . . , cM
and let π be the steady-state distribution of the Markov chain
corresponding to the circuit C with these inputs. Then, for
any device D in C, at any state in the support π, the valuation
of Dy is the same as the valuation of Dy in fC(c1, . . . , cM ).
This is proved in Theorem 3.

Of course, constant inputs and observing outputs as time
goes to infinity, is not useful for performing computations
quickly. Thus, in the next section we introduce a quantitative
notion of correctness that allows us to observe the outputs of
a stochastic circuit arbitrarily quickly, with some probability
of error.

III. STOCHASTIC CORRECTNESS AND ITS ANALYSIS

Having introduced the notion of stochastic devices, circuits,
and sources, we now proceed to define a meaningful quantita-
tive notion of correctness for feed-forward stochastic circuits
and show how this quantitative property can be computed and
verified.

In a stochastic circuit, the computed output depends in the
inputs and the stochastic delays. Thus, there is no guarantee
that a correct output is observed for a given input. We measure
the correctness of a circuit by the fraction of correct outputs
observed in the long run. This is defined as the correctness
factor (CF) of a circuit. CF of a stochastic circuit is defined
with respect to an observation period K ∈ N which is the
periodicity with which the output(s) are observed. This period
K corresponds to the frequency with which signals are latched
in the physical circuit; it is usually determined by a hardware
clock (oscillator) that drives the timing-dependent parts of the
circuit.

Definition 4: Given a circuit C with M 1-bit input sources
s1, . . . , sM , K ∈ N, and a designated output device D in C,
for each q ∈ N>0, C is said to be correct with observation
period K if Dy(qK) = fC(s1((q−1)K), . . . , sM ((q−1)K)),
where fC is the circuit function for D. The total number



of times C is correct upto time t is denoted by zC(t). The
correctness factor (CFK) of C is:

lim
t→∞

zC(t)/b t
K
c.

Thus, at every observation time t = qK the circuit is correct
if the output matches with the output of the circuit function
applied to the inputs from time t − K = (q − 1)K, and
the correctness fraction is the fraction of correct observations
as time goes to infinity. In this paper, whenever we consider
correctness with observation period K, we implicitly assume
that all the sources are K-period sources. Then, the K-period
correctness factor CFK of a simple circuit C with a M -
bit device D and M 1-bit sources s1, . . . , sM depends on
(a) the delay distributions {Γi}Mi=1 of D, (b) the distributions
of the sources specified by the parameters {pi}Mi=1, and (c) the
device function f of D. We believe that an estimate of CFK
will guide the designer in choosing the trade-offs in clock
(latching) frequency and the overhead due to the error in
computations. This is directly related to other elements like
voltage and power. Thus, CFK will be one of the key entities
required during the design of a stochastic circuit.

A. Properties of Stochastic Circuits

In this section, we prove several properties of stochastic cir-
cuits and ultimately derive expressions for correctness factors.

Calculating the correctness factor (CFK) of an arbitrary
circuit with arbitrary input sources involves finding the in-
variant distribution of the resulting Markov chain. We first
analyze the correctness factor for simple circuits and then
extend the analysis to general circuits. We begin with several
basic properties of stochastic devices and circuits. Invariant 1
bounds the length of the internal queues in all devices.

Invariant 1: For any N -bit device D in any circuit C, in any
reachable state, for each i ∈ [N ], queuei .length ≤ max(γi).

Proof: Recall from Definition 1 that for Enq transition of
the device D, if an element 〈b, d〉 is inserted into queuei, all
〈b′, d′〉 where d′ > d will be removed from queue. Thus for
each d ∈ N, there can be at most one 〈b, d〉 in queuei. Since
d ≤ max(γi), queuei can have at most max(γi) elements.
The next lemma states that a device connected to constant
sources ultimately stabilizes to a fixed output. This lemma
is used to prove Theorem 3 which states that the output of
stochastic circuits with constant sources ultimately stabilizes
to the output corresponding to the circuit function applied to
the constant inputs.

Lemma 2: For a stochastic device D with constant sources
c1, . . . , cM , ∃N ∈ N, such that ∀t > N,Dy(t) =
f(c1, . . . , cM ).

Proof: We have proved that ∀i, queuei .length ≤ max(γi)
and at least one element is removed from queuei for each
Deq transition. Also, since the inputs are constant sources we
have that for each Enq transition, the tuple 〈b, d〉 enqueued
has same value of b. Thus, after max(γi) + 1 transitions of
the system, for all 〈b, d〉 ∈ queuei, we have b = ci. Thus,
∀t > max(γi) + 1, hi(t) = ci.

For the device D, ∀t > max{max(γ1), . . . ,max(γM )}+ 1,
we have ∀i, hi(t) = ci. Thus Dy(t) = f(h1(t), . . . , hM (t)) =
f(c1, . . . , cM ).

Theorem 3: For a stochastic circuit C with constant sources
c1, . . . , cM , ∃N ∈ N, such that ∀t > N,Dy(t) =
fC(c1, . . . , cM ), where D is the designated output device.

Proof: We will prove this by induction on the depth of the
circuit C. The base case is a circuit of depth 1 and it trivially
follows from Lemma 2.

Inductive hypothesis: For all stochastic circuits of depth
l, ∃N ∈ N, such that ∀t, t′ > N,Dy(t) = fC(c1, . . . , cM ),
where D is the designated output device.

Consider a stochastic circuit C of depth l+ 1. It is built by
combining several stochastic circuits of depth l, say C ′1, . . . C

′
r

and a stochastic device D, where the inputs of D are the
output of C ′1, . . . C

′
r or c1, . . . , cM . Let, N ′1, . . . , N

′
r be the

values after which the output from C ′1, . . . C
′
r is constant.

Thus, ∀t > max{N ′1, . . . , Nr}+ 1, the inputs to the device D
are constant sources. Thus, ∀t, t′ > max{N ′1, . . . , Nr}+ 1 +
max{maxγ1 , . . . ,maxγq

}+ 1, Dy(t) = fC(c1, . . . cM ).
Lemma 4: A stochastic device D with Markovian input

sources s1, . . . sM is a finite state Markov chain.
Proof: A stochastic device D is a collection of queues

namely queue1, . . . , queueM . In Invariant 1 we have proved
that queuei.length is finite and thus the state space of
queuei is finite. Let queuei(t) be the state of queuei at
time t. In order to prove this lemma, it is enough if
we show that the queuei satisfies the Markovian prop-
erty that P (queuei(t + 1)|queuei(t), queuei(t − 1), . . .) =
P (queuei(t+ 1)|queuei(t)). We prove that Markovian prop-
erty is satisfied on all possible transitions enabled from queuei
and thus queuei satisfies the same.

• Time: This transition decreases the deadline component
of each element in the queue deterministically.

• Deq : This transition removes the element in the queue
with deadline = 0 deterministically.

• Enq : This transition inserts an element 〈b, d〉 in the
queue by removing all the elements with deadline ≥ d.
Here, d is chosen from distribution γi and b is generated
from a Markovian input source si. Thus, it preserves the
Markovian property.

Hence, queuei satisfies the Markovian property and hence, a
stochastic device D with Markovian input sources s1, . . . sM
is a finite state Markov chain.
Remark:The Markov chain is time-homogeneous if all the
sources in the circuit are time invariant (for example, random
or constant), otherwise the chain is time-nonhomogeneous. It
can also be shown that D is irreducible and aperiodic, and
therefore it has a unique stationary distribution2.

B. Analysis of Steady State Correctness

Consider a simple circuit C = (S,D), where S =
{s1, . . . sM} is a set of Markovian input sources. We have

2The proof of this will be given in a future paper.



established that C is a finite state Markov chain. Correct-
ness factors of such circuits can be derived by analyzing
this Markov chain through probabilistic model checking or
Monte Carlo simulations. In order to gain insight about the
dependence of CF on various factors, in the remainder of
this section, we present new methods for analytically calcu-
lating CF for simple circuits. Recall from Definition 4 that
CFK = limt→∞ zC(t)/b tK c. Thus zC(t) can be viewed as a
counting process with the time scale 0,K, 2K, . . .:

zC(lK) =


zC((l − 1)K) + 1 if Dy(lK) = f(s1((l − 1)K),

. . . , sM ((l − 1)K))

zC((l − 1)K) otherwise.

In what follows, we show that the probability of Dy(lK) =
f(s1((l−1)K), . . . , sM ((l−1)K)) can be calculated from γi,
f and {p1, . . . , pM} where {p1, . . . , pM} are the parameters
of {s1, . . . sM}.

C. Calculation of Steady State Correctness

In this section, we arrive at a general expression for the cor-
rectness of an M -input simple stochastic circuit C = (S,D).
Informally, an observed output of such a circuit can be correct
in three ways: (a) All the current inputs presented actually
appear at the head of the queue before the outputs are latched
or observed, (b) some of the current inputs do not appear at the
head, but the corresponding previous input turns out to have
the same value, and (c) some of the current inputs do not
appear nor are the corresponding previous inputs the same,
yet the output from the gate with these different input values
turns out to be the same as the output corresponding to the
current inputs. Theorem 6 derives the correctness factor of a
circuit by analyzing the probability of each of these events.

We define delay(γ, t) as the deadline value generated in
queue according to the distribution γ at time t. Given T, t ∈ N
and t < T , let P (γ, T, t) denote the probability that ∀t1 ∈
(t, T ], delay(γ, t1) + t1 > T and delay(γ, t) + t ≤ T . That
is, P (γ, T, t) denotes the probability that the input appearing
at time t experiences a delay such that it has the smallest
deadline at time T and all subsequent inputs experience delays
that make them come after time T .

Lemma 5: If T > max(γ), then
∑T−1
t=1 P (γ, T, t) = 1.

Proof: We define the set S = {t ∈ N | delay(γ, t) +
t < T}. Since T > max(γ), 0 ∈ S, and so, S 6= ∅.
Also, as min(supp(γ)) > 0, for every t1 ∈ S, t1 < T .
Now, let tmax = max(S). Since, tmax ∈ S, we have
tmax < T . Further, ∀t2 ∈ (tmax, T ], t2 + delay(γ, t2) +
t2 > T . Thus, for i < T, P [tmax = i] = P (γ, T, i), and
tmax < T , thus

∑
i<T P [tmax = i] = 1 which implies that∑T−1

i=1 P (γ, T, i) = 1
By substituting T = lK in Lemma 5, it follows that

∑
t<(l−1)K

P (γ, lK, t) = 1−
lK−1∑

t=(l−1)K

P (γ, lK, t). (1)

It is worth noticing that
∑lK−1
t=(l−1)K P (γ, lK, t) depends

only on γ and K but not on the value of l(as l →∞). Next,
we define a key quantity E(γi,K), which is the probability
that at least one of the inputs over K time steps is latched
or observed as the output. Thus, if we have sources with K
clock period, the probability that si((l− 1)K) will be latched
at hi(lK) is given by E(γi,K).

E(γ,K) ∆=
lK−1∑

t=(l−1)K

P (γ, lK, t) (2)

This represents that there exists a time-step t, (l − 1)K ≤
t < lK, such that delay(t)i < lK−t. Therefore, 1−E(γi,K)
represents that ∀t, (l−1)K ≤ t < lK, delay(t)i > lK− t and
it follows that 1−E(γi,K) =

∏K
i=1 Γ(> i). Thus, E(γi,K) =

1−
∏K
i=1 Γ(> i). Also, by definition, we have E(γ, 0) = 0.

For a stochastic circuit, it is not always the case that the
input si((l − 1)K) will be latched at hi(lK). However, in
some cases it is possible that the output will be correct even
when all the inputs are not latched properly. This probability of
being randomly correct even when some of the current inputs
do not appear at the head of the queue, is characterized by the
quantity random correctness probability (RCP).

Informally, RCP corresponds to the probability that two
outputs from the same device with a set of common inputs and
two sets of independent but identically distributed inputs, are
the same. In other words, we fix a set of Markovian sources U
and we have two sets of independent but identical Markovian
sources S and S′. RCP gives the probability of the event that
the output of the device D with input U ∪ S is equal to the
output of device D with U ∪ S′ as input.

Definition 5: Given a function f : BM → B, with
common random sources U = {u1, . . . ur} with parameters
p1, . . . , pr and two sets of independent sources sr+1, . . . sM
and s′r+1, . . . , s

′
M with the same parameters pr+1, . . . , pM , we

define random correctness probability (RCP) of f with respect
to p1, . . . , pM and U ⊆ [M ] as:

RCP (f, p1, . . . pM , U) =
∑
x∈Br

∑
z∈BM−r

∑
z′∈BM−r

If(x,z)=f(x,z′)

×
r∏
i=1

P [ui = xi]×
M−r∏
i=1

P [si = zi]×
M−r∏
i=1

P [s′i = z′i],

where If(x,z)=f(x,z′) is the identity function that returns 1 only
when f(x, z) = f(x, z′) and 0 otherwise.
Observe that RCP depends only on the circuit function
fC , the input parameters p1, . . . pM and U . The RCPs for
seven different types of elementary 2-bit stochastic devices
are shown in Figure 3.

Theorem 6: The correctness factor of a simple circuit C =
(S,D) is given by the following equation

CFK =
∑

Q⊆[M ]

(
∏
i∈Q
E(γi,K)×

∏
j /∈Q

(1− E(γj ,K))

× RCP (f, p1, . . . , pM , Q)).



2 sources (.5, .5) 2 sources (.9, .1)

U = {a} U = {b} U = {a,b} U = {a} U = {b}  U = {a,b}
Const 0 1 1 1 1 1 1
AND ¾ ¾  5/8 .838 .982 .8362
OR ¾ ¾   5/8 .982 .838 .8362
XOR ½ ½  ½ .82 .82 .7048
NAND ¾ ¾  5/8 .838 .982 .8362
a 1 ½  ½ 1 .82 .82
NOT a 1 ½  ½ 1 .82 .82

Fig. 3. Random Correctness Probabilities (RCP). The first column gives the
names of the 2-bit circuits with inputs a and b. Columns 2-4 gives the RCPs
of the circuits fed with random sources with parameters 0.5 and 0.5, with
U = {a}, U = {b}, and U = {a, b}, respectively. Columns 5-7 gives the
RCPs for the same circuits with random sources with parameters 0.9 and 0.1.

Proof: We start by calculating the probability with which
zC(lK) increments its value. Recall from Definition 1 that
Dy(lK) = f(h1(lK), . . . , hM (lK)), and hence zC(lK) will
increment its value by 1 only if f(h1(lK), . . . , hM (lK)) =
f(s1((l − 1)K), . . . , sM ((l − 1)K)). Since the delays gen-
erated by γi are not always less than K, it need not be
the case that hi(lK) = si((l − 1)K). Let Q ⊆ [M ]
such that ∀i ∈ Q, hi(lK) = si((l − 1)K) and ∀j /∈
Q, hj(lK) 6= si((l − 1)K). Then, for j /∈ Q, hj(lK)
and sj((l − 1)K) are drawn from the same source but
are independent of one another. Hence, the probability that
f(h1(lK), . . . , hM (lK)) = f(s1((l − 1)K), . . . , sM ((l −
1)K)) is equal to RCP (f, p1, . . . , pM , Q).

Now, in order to obtain the probability with which zC(lK)
will increment its value, we sum the probabilities for all
possible Q’s. That is,

∑
Q⊆[M ](

∏
i∈Q E(γi,K) ×

∏
j /∈Q(1 −

E(γj ,K)) × RCP (f, p1, . . . , pM , Q)). We observe that this
value is independent of l and thus the value of CFK from
Definition 4 is equal to this probability computed above.

Example 4 . We use Theorem 6 to derive the correctness
factor for a simple circuit consisting of an 2-bit AND device
and two 1-bit 1-period random sources s1 and s2. Suppose
γ1 = γ2 = γ, where γ is given as γ(1) = γ(2) = γ(3) =
γ(4) = 1/4. Since γ1 = γ2 = γ, we have ∀K, E(γ1,K) =
E(γ2,K) = E(γ,K). Also, suppose the source parameters
p1 = p2 = p. In what follows we derive the correctness factor
for an observation period of 1:

CF1 = E(γ, 1)× E(γ, 1)×RCP (f, p, p, {1, 2})
+ (1− E(γ, 1))× E(γ, 1)×RCP (f, p, p, {2})
+ E(γ, 1)× (1− E(γ, 1))×RCP (f, p, p, {1})
+ (1− E(γ, 1))× (1− E(γ, 1))×RCP (f, p, p, ∅),

where f(s1, s2) = s1 ∧ s2. Calculating the value of E(γ, 1)

and substituting it in the above equation, we get

CF1 = (1− Γ(> 1))× (1− Γ(> 1))
×RCP (f, p, p, {1, 2})

+ (1− Γ(> 1))× Γ(> 1)×RCP (f, p, p, {2})
+ Γ(> 1)× (1− Γ(> 1))×RCP (f, p, p, {1})
+ Γ(> 1)× Γ(> 1)×RCP (f, p, p, ∅).

From Definition 5 it follows that RCP (f, p, p, {1, 2}) = 1.
RCP (f, p, p, {2}) = RCP (f, p, p, {1}) = 1 − 2(1 − p)p2;
RCP (f, p, p, {2}) represents the probability of the output be-
ing correct when the first bit in the AND gate is latched prop-
erly, whereas the second bit is generated from an independent
identical source. RCP (f, p, p, {1}) represents the symmet-
ric case. Through similar reasoning, RCP (AND, p, p, ∅) =
(1 − p2)2 + p4. Also, from the distribution γ, we have
Γ(> 1) = 3/4. By substituting these values in the above
expression, we get

CF1 = 1/16 + 6/16× (1− 2(1− p)p2)
+ 9/16× ((1− p2)2 + p4)

IV. CORRECTNESS OF ELEMENTARY CIRCUITS

In this section we analyze elementary feed-forward circuits
that are composed of more than one device. The elementary
circuits we consider have the following structure. The circuit
consists of M + 1 devices. M of these devices D1, . . . ,DM
are 1-bit devices with device functions f1, . . . , fM and delay
distributions γ1, . . . , γM . The M + 1th device DM+1 has
M inputs with device function fM+1 and delay distributions
γ′1, . . . , γ

′
M . The output of each of D1, . . . ,DM is mapped to

a ith input of DM+1. Each of the inputs for D1, . . . ,DM are
fed from s1, . . . , sM Markovian sources. In the remainder of
this section, we refer to this circuit as C = (S,D1, . . . , DM ),
where S = {s1, . . . , sM}.

For M = 1, C represents a circuit with two devices
connected in a sequence and D1 connected to a Markovian
source. It may appear that the sequential composition of D1

and D2 is equivalent (bisimilar) to a new device with delay
distribution γ1 + γ′1 and device function f1 ◦ f2, however,
it is easy to check this is not the case. This type of simple
composition rule breaks down because of the overwriting
property of the devices.

In the following analysis, we will use the quantity defined
below:

Definition 6: Given two delay distributions γ1 and γ2, and
K ∈ N,

V (γ1, γ2,K) =
K∑
i=1

(E(γ1, i)− E(γ1, i− 1))× E(γ2,K − i).

Informally, V (γ1, γ2,K) represents the probability that the
delay generated by γ1 and the delay generated by γ2 under
composition is less than K and thus, the input generated at
(l − 1)K will be latched as output at lK.



Next, we present a set of circuits and derive the expressions
for correctness factor.

Theorem 7: The correctness factor of C with observation
period K is:

CFK =
∑

Q⊆[M ]

(
∏
i∈Q

V (γi, γ′i,K)

×
∏
j /∈Q

(1− V (γj , γ′j ,K))×RCP (fC , p1, . . . , pM , Q))

Proof: The proof given is similar to proof of Theo-
rem 6. We begin the proof by calculating the probability with
which zC(lK) will be incremented by 1. Recall from Def-
inition 1 that DM+1y(lK) = fM+1(h′1(lK), . . . , h′M (lK)).
Thus, from Definition 4 zC(lK) will increment its
value if fM+1(h′1(lK), . . . , h′M (lK)) = fC(s1((l −
1)K), . . . , sM ((l − 1)K)). Since the delays generated by γi
and γ′i are not always less than K, it need not be the case that
for some i, h′i(lK) = fi(si((l− 1)K)). Let Q be the set such
that ∀i ∈ Q, h′i(lK) = fi(si((l−1)K)). This can only happen
if there exists t ∈ [(l − 1)K, lK), delay(γi, t) < lK − t and
there exists t1 ∈ [(l−1)K+delay(γi, t), lK), delay(γ′i, t1) <
K − t1. Recall, from Definition 2 that E(γi,K) represents
that ∃t ∈ [(l − 1)K, lK), delay(γi, t) < lK. Thus, the
probability that h′i(lK) = fi(si((l − 1)K)) is nothing but∑K
j=1(E(γi, j)−E(γi, j − 1))×E(γ′i,K − j), which is equal

to V (γi, γ′i,K). Thus, the value of h′i(lK) = fi(si((l−1)K))
with probability V (γi, γ′i,K).

Now, ∀j /∈ Q, h′j(lK) 6= fj(sj((l − 1)K)). thus,
hj(lK) = fj(sj(t)) for some t < (l − 1)K. In this
case, the values of sj(t) and sj(lK) are drawn from
the same source but are independent of one another.
The probability that fM+1(h′1(lK), . . . , h′M (lK)) =
fC(s1((l − 1)K), . . . , sM ((l − 1)K)) is given by
RCP (fC , p1, . . . , pM , Q)).

Thus, the probability with which zC(lK) increments by
1 is obtained by the sum over all possible Q which is∑
Q⊆[M ](

∏
i∈Q V (γi, γ′i,K) ×

∏
j /∈Q(1 − V (γj , γ′j ,K)) ×

RCP (fC , p1, . . . , pM , Q)). We observe that this term is in-
dependent of l and thus the value of correctness factor of
the circuit C from Definition 4 is equal to the above given
expression.

Example 5 . Having derived an expression for correctness of
a family of elementary circuits, we calculate its value for a
specific circuit: The circuit C has two devices A1 and A2

with the same device function and delay distributions. The
device function f1(b) = f2(b) = ¬b; and γ1 = γ2 = γ, where
γ is given by γ(1) = γ(2) = γ(3) = γ(4) = 1/4. The output
of A1 is mapped to the input of A2 and the input to A1

is fed from an Markovian input source s with parameter p.
The circuit function fC(b) = f2(f1(b)) = b. The expression
for correctness for this circuit as given by Theorem 7 is as
follows:

CF2 = V (γ, γ, 2)×RCP (fC , p, {1})
+ (1− V (γ, γ, 2))×RCP (fC , p, ∅).

It is clear from Definition 5 that RCP (fC , p, {1}) = 1.
RCP (fC , p, ∅) represents the probability that the output of
the circuit corresponds to the correct output when drawn
from an identical random source. Hence, RCP (fC , p, ∅) =
p2 + (1− p)2. Also, from Definition 6, we have

V (γ, γ, 2) = (E(γ, 1)− E(γ, 0))× E(γ, 1)
+ (E(γ, 2)− E(γ, 1))× E(γ, 0).

Since the value of E(γ, 0) equals 0, we have V (γ, γ, 2) equals
E(γ, 1) × E(γ, 1). In Example 4, we derived that E(γ, 1) =
1/4, substituting this value on CF2, we get

CF2 = 1/16 + 15/16× (p2 + (1− p)2).

V. ANALYTICAL RESULTS FOR SIMPLE CIRCUITS

Informally, the correctness factor of a circuit with respect
to an observation period K ∈ N is the fraction of time
that the circuit produces correct results (given inputs that
change every K time steps), in the long run. We have shown
in Lemma 4, that if the input sources are random then the
behavior of a stochastic circuit can be modeled as a Markov
chain, and consequently correctness factors can be computed
from the invariant distribution of this Markov chain. In order to
calculate the correctness factor, then, one can employ existing
tools for probabilistic model checking such as PRISM [9] and
MRMC [10]. In fact, although not reported here, we have
derived the correctness factors of several stochastic devices
using the PRISM model checker and with our own stochastic
circuit simulator, and these results match with the analytical
results discussed below. In what follows we describe the
numerical values of the correctness factors for several simple
circuits, obtained from the analysis of Section III-B.

We consider simple circuits consisting of (a) single 2-
bit devices with two different kinds of delay distributions,
namely uniform and exponentially-decaying, and (b) random
sources with different parameters. In these settings, we obtain
a set of graphs from the numerical results that show how the
correctness factor changes with the clock frequency. These
graphs are consistent with our earlier experimental results(??)
from detailed architectural simulations and also with our
informal understanding of how correctness factor scales with
clock frequency.

In the rest of this section, each delay distribution γ has
support supp(γ) equal to {1, . . . , 10}. An uniform delay
distribution has equal probabilities 1

10 , for each i, and an expo-
nentially decaying distribution has mean 5.5 and exponentially
decaying probabilities around this mean and is truncated at 10.

Figure 4 shows how the CFs for seven 2-bit devices (same
as the ones in Figure 3), change with increasing period (K)
when they are fed from two random sources, each with a
parameter of 0.5. That is, each of these sources produces a 1
with probability 0.5, at every Kth time step. First, observe that
the CF for a constant device (for example, Const 0 for which
the output is always 0 independent of the inputs) is 1 for all



periods. For all other, devices CF is (strictly) monotonically
increasing with K before it becomes 1. This holds for all
our experiments, and matches the intuition that slower the
clock frequency, more correct the circuit. Next observe that
there are three distinct “bundles” of curves in the plot: AND,
NAND, OR, a, NOT a, and XOR. This corresponds to the
three distinct values of RCP in this setting and corroborates
Theorem 6.
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Fig. 4. CFK variation with period K. Devices with uniform delay
distributions and random sources with parameters 0.5 and 0.5.

Figure 5 shows similar set of results for random sources
with 0.9 and 0.1. That is, the first source produces a 1 with
probability 0.9 and the second source produces a 1 with
probability 0.1, at every Kth time step. The graphs have
similar characteristics as Figure 4, but we make the general
observation that all other factors remaining the same the
correctness factor is higher in this case. This matches with the
informal notion that having biased sources of data can indeed
help stochastic computation, compared to perfectly random
sources.
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Fig. 5. CFK variation with period K. Devices with uniform delay
distributions and random sources with parameters 0.9 and 0.1.

Figure 6 shows the results for devices with exponentially-
decaying delay distributions. Once again, the general obser-
vations made for Figure 4 hold for this case as well. Perhaps
not surprisingly, these curves have similar extremal points as
Figure 4, but they have a sharper “knee-point” in the middle.
We anticipate that characterizing such knee-points will be
central to designing stochastic circuits that are optimal for

certain types of sources and with respect to certain energy
criteria. We plan on exploring this in the future.
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Fig. 6. CFK variation with period K. Devices with exponentially-decaying
delay distributions and random sources with parameters 0.5 and 0.5.

Finally, the results for devices with exponentially-decaying
delay distributions and random biased sources are shown in
Figure 7. These graphs share the characteristics of Figure 6
and Figure 5.
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Fig. 7. CFK variation with period K. Devices with exponentially-decaying
delay distributions and random sources with parameters 0.9 and 0.1.

VI. RELATED WORK

The idea of computing with stochastically correct compo-
nents is not new. Von Neumann studied the problem of reli-
able computing with unreliable devices [11]. Specifically, he
characterized the system reliability of automata designed using
stochastically correct three-input majority gates. The overhead
of his constructions, however, are enormous. A number of
later works also performed careful characterization of such
constructions [12], [13], [14]. Other related theoretical work
also includes the use of Markov random networks to design
robust logic [15]. Such implementations have been shown
to have large transistor counts, however. Finally, stochastic
logic is proposed in [16] whereby Von Neumanns N-wire
bundlpresentation of Boolean variables is employed.

A large body of work exists on fault tolerance. N-modular
redundancy (NMR) [17], for example, is a commonly em-
ployed fault-tolerance technique where computation is repli-
cated in N processing elements, and the outputs are ma-
jority voted upon. The power and performance overhead of



NMR-based techniques are at least linear in N . Temporal
redundancy-based techniques have been proposed as well.
The performance overhead for such techniques can be sig-
nificant. Techniques such as checkpointing [18], and coding
techniques [19] have been proposed, each of which incur a
significant energy-cost.

The work on stochastic processors [3], [4], [5] differs
from the above in that the goal is not error avoidance at
the processor-level. Rather the processor is allowed to pro-
duce errors. The errors are either tolerated by a hardware-
based error resilience mechanism or they are propagated to
the software stack where the software tolerates the errors.
Since hardware and software-based error resilience techniques
have overheads in terms of performance or output quality, a
quantitative analysis needs to be done to balance the benefits
of a stochastic processor design with the overheads of error
resilience. The models and the results presented in this paper
provide the framework and the tools necessary for making
such design choices, albeit for simplistic circuits.

VII. CONCLUSIONS

We have presented a formal model for stochastic (feedback
and feed-forward) circuits and developed a quantitative notion
of correctness for the same. The building blocks of these
circuits are stochastic devices, where the delays are generated
randomly according to given distributions. We developed a
methodology for constructing circuits by combining devices
and sources of data, and presented formal semantics for
stochastic feed-forward circuits. The quantitative stochastic
correctness property, correctness factor, is a measure of frac-
tional correct observations with respect to an observation
period. We proved that the stochastic circuits are Markov
chains (when fed from random sources) and derived closed
form expressions for correctness factor of devices and a
class of elementary circuits. Furthermore, we have presented
numerical results obtained from the analysis, that illustrate the
dependence of correctness on the delay distribution and the
input distributions for several simple circuits.

This is the first step towards laying the foundations for
quantitative reasoning about stochastic circuits and a lot of
research remains to be done. Specifically, our results do not
apply to circuits with feedback and analyzing such circuits
will be the subject of a future paper. We believe that direct
and exact analysis, like the one presented in this paper, for
complex feedback-based circuits and processors is going to
be challenging and hence one has to employ approximation
and abstraction-based tools and techniques [20], [21], [22]. A
different line of future research would be to evaluate different
realizations of the same computational function with respect
to energy consumption, clock-speed, and correctness factor. To
this end, the results presented in this paper will provide the
foundation for this direction of research.
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