Abstraction Refinement for Stability

Parasara Sridhar Duggirala Sayan Mitra

University of Illinois at Urbana Champaign

Stability

System eventually reaches a set of stable states and remains in them forever

Also called Practical Stability or Region Stability

Stability

Practical Application: Automotive control protocol ensures that destination is reached eventually

- Self Stability Distributed Systems
- Related to Control Theory

Stability

Similar to Halting Problem

- Techniques for proving termination
- Terminator project from Microsoft Research
- Well-Founded Relations: Partial Order Relations with no infinite chains

To use abstraction refinement techniques from software Verification to verifying stability of Hybrid Systems

Mix of continuous and discrete dynamics

- Several modes of operation
- System switches modes based on constraints
- Trajectories (τ) and Discrete Transitions
- Execution sequences $-\tau_0 a_1 \tau_1 a_2 \tau_2 \dots$
- Thermostat example:

 $temp = 20 \rightarrow temp = 30 \rightarrow a_1 temp = 30 \rightarrow temp = 15 \dots$

(Region) Stability and Blocking

- A set of states **S** is stable for **A** if
 - **S** is closed and
 - **S** is inevitable
- Examples: Vehicle <u>reaches</u> destination, protocol <u>recovers</u> from failures
- A is nonblocking if time can diverge along every execution starting from every state
- A is blocking if time stops along every execution starting from every state

Relating Stability and Blocking

• $A_{\overline{S}}$: HA obtained by removing **S** from A

- If A_s is blocking then S is inevitable for A
 In addition if S is closed then S is stable for A
- Conversely, if **S** is stable for A then $A_{\overline{S}}$ is blocking
- Relate stability verification to blocking property
- Trouble: Dealing with the dense time

Solution : Hybrid Step Relation

Hybrid Step Relation

▶ $H_r \subseteq Q \times Q$ is called Hybrid step relation

► (q,q') \in H_r iff \exists q" q \rightarrow_{τ} q" \land q" \rightarrow_{a} q'

Hybrid Step relation and Blocking

Prove blocking property using hybrid step relation

Intuition : If the hybrid system is blocking, then there are no infinite chains of hybrid step relations

Well-founded relations do not have infinite chains

x' = x + 1 – not well founded $x' = x + 1 \land x' < 5$ – well founded

A non-Zeno Hybrid System **A** is blocking iff the Hybrid step relation H_r is well-founded

To verify blocking property of A : Compute H_r and check whether it is well-founded

Stability (Overview)

Abstraction Refinement - Need

- Coming up with one well-founded relation for the whole system is impractical
- Similar to proving termination of programs

Abstraction: We abstraction a transition relation R with an abstraction transition relation R' if $R \subseteq R'$

- Ex: $x R y \leftrightarrow \exists n, x y = 10n$ $x R' y \leftrightarrow \exists n, x - y = n$
- Advantage: Divide the task of proving that H_r has no infinite chains by giving more than one well founded relation

Hybrid Step Relation – well foundedness

- For a state transition system (s,t)
 No infinite chains s₁→ s₂→ ... if
 t⁺ ⊆ R₁ U R₂ U ... R_n
 where R_i is well founded [Podelski & Rybalchenko 2004]
- Similarly if $H_r^+ \subseteq \mathbf{R_1} \cup \mathbf{R_2} \cup \dots \mathbf{R_n}$ then H_r is well founded
- (q,q') $\in H_r^+$ if $q \rightarrow_{\tau_1} q_1 \rightarrow_{a_1} q_2 \dots \rightarrow_{a_m} q'$
- if q.mode \neq q'.mode then well founded
- Suffices to consider only loops

Abstraction Refinement (sketch)

- For every loop L check whether the corresponding loop transition relation H_L is well founded
- Abstraction: We abstract H_L by a more "general" transition relation
 ex: x' = x + 10n can be abstracted by x' = x + n
- Given $\mathcal{P} = \{P_1, ..., P_m\},\$
- $abs_{\mathcal{P}}(H_L) \supseteq H_L$ is defined as the smallest superset of H_L constructed by taking conjunctions of predicates in \mathcal{P}
- Locally blocking, non-Zeno

A is blocking if there exist predicates $\mathcal{P} = \{P_1, \dots, P_m\}$ and well-formed relations $\mathcal{R} = \{R_1, \dots, R_n\}$ such that for every loop L, $abs_P(H_L) \subseteq R_i$

Abstraction refinement algorithm

Requirements

- Compose hybrid step relations to construct H_L
- Check $\exists R \notin H_{L} \subseteq R$
 - RankFinder
- Sound and complete for initialized rectangular HA
- Terminates for many rectangular HA in practice

Summary and Future Work

- Well founded relations can be used to prove blocking property of hybrid systems
- Hybrid systems with positive average dwell time
- Complete for Initialized rectangular hybrid automata

Future Work

- Extend the technique for Linear Hybrid Systems
- Use Lyapunov functions effectively