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Abstract—The paper presents a counterexample-guided
abstraction refinement procedure for verifying stability (re-
gion stabillity) of CPS modeled as hybrid automata. It relies
on a characterization of the blocking property of hybrid
automata in terms of well-foundedness of a relation that
combines the discrete transitions and continuous trajectories
and a key assumption about the switching speed of the
system in terms of average dwell time, but does not require
the individual modes to be stable. This characterization
enables the adaptation of program analysis techniques to the
domain of hybrid systems. It is shown that the procedure is
complete for rectangular initialized hybrid automata. Several
illustrative examples are verified using a prototype tool that
implements the methodology.

I. INTRODUCTION

In this paper, we will say that a system A with state
space X is stable with respect to a set of states S ⊆ X
if starting from any state x ∈ X , every execution of
A eventually enters and remains in S. This property
has also been called region stability [26] and practical
stability [17] in the hybrid and dynamical systems lit-
erature, self-stabilization in the distributed computing
literature [12], and is related to asymptotic stability
which is widely studied in control theory. Stability is
important in many cyber-physical systems as it captures
the desirable liveness property of a system returning to
an acceptable state after failures or disturbances deflect
it to an arbitrary state. The ability of a traffic control
protocol to reconfigure routes in the face of congestion
and disruptions, the ability of an autonomous vehicle to
track a new target, the ability of a real-time system to
recover from failures are all examples of stability. In this
paper, we study the problem of verifying stability of CPS
modeled as hybrid automata [1].

Computing the reach set is at best difficult and often
impossible, for hybrid models of complex CPS. Auto-
matic invariance and safety verification of such systems
therefore invariably rely on overapproximating the reach
set (see for example [5], [4], [7], [15], [16]). Recently,
several abstraction-refinement based techniques have
been developed for automatically constructing abstrac-
tions of hybrid automata especially for proving given
safety properties [27]. A general scheme for abstraction-
refinement called counterexample guided abstraction re-
finement (CEGAR) [9], [2] works as follows: The process
starts with a coarse abstraction B0 of the given system A
and a safety property P . In each iteration, the abstraction

Bi is model-checked with respect to P . If it is proven to
be safe then A can be inferred to be safe. Otherwise, the
model checker returns a counterexample βi illustrating
that the abstraction Bi is not safe. Then βi is validated
to determine if there is indeed a real counterexample
of A that corresponds to it. Otherwise, the spurious
abstract counterexample β is used to obtain a new finer
abstraction Bi+1 which (at least) eliminates the spurious
counter example βi. Under some restrictions, the above
procedure can be shown to be complete. That is, the
procedure terminates with either an abstract automaton
which establishes safety or a real counterexample which
illustrates safety violation. In [3], [9], [27], [28], [8], it
has been shown how variations of such abstraction-
refinement based algorithms can dramatically improve
the efficiency of safety verification. The verification pro-
cedure we propose in this paper relies on an analogous
CEGAR-based approach, but for proving stability.

Our work stems from the simple observation, that,
roughly speaking, a hybrid automaton A is stable with
respect to a set S if and only if the automaton A′,
obtained by restricting A to Sc, is blocking. This is useful
because verifying blocking property is closely related
to termination analysis of (infinite state) programs, and
enable us to employ powerful results and recently de-
veloped tools from software verification and program
analysis [11], [25], [10] for verifying stability of hybrid
systems.

The standard technique for proving that a program
is terminating (or blocking) is to establish that the tran-
sition relation for the program is contained in a well-
founded relation. Of course, finding such a well-founded
relation automatically is impossible in general [30]. Us-
ing Ramsey’s theorem, in [25], it is shown that a program
is terminating if and only if the transitive closure of the
transition relation is contained in a disjunctive union
of a finite collection R of well-founded relations. This
result makes it possible to systematically search for R
by considering one loop of the program at a time [24].
Based on [25], in [10] the authors present a (necessarily
incomplete) abstraction-refinement based procedure for
verifying termination of programs.

Programs evolve in discrete steps while CPS involve
continuous trajectories in addition to discrete steps. A
trajectory models the evolution of the state variables
of a hybrid automaton over an interval in R≥0. Thus,



any trajectory can be broken down into infinitely many
tiny steps and consequently the relation defined by such
steps cannot be well-founded. This poses as a technical
barrier in adapting the above results to the context of
hybrid systems. In addressing this issue, we define hybrid
step relation that relates the pre-state of a trajectory to
a post-state obtained by applying a transition at the
end of the trajectory. The hybrid step relation together
with a mild assumption about the switching speed of
the system in terms of average dwell time [13], enable
us to characterize blocking in terms of well-founded
relations. With the help of tools for synthesizing ranking
functions [25] and results from termination analysis [10]
we then proceed to develop a CEGAR-based scheme for
proving the blocking and hence stability. We apply the
technique to several examples using a prototype tool.
We also show that the procedure is complete for certain
classes of initialized hybrid automata (e.g., rectangular)
for which the individual steps of the procedure can be
effectively computed.

II. RELATED WORK

Analyzing the asymptotic stability1 of hybrid au-
tomata is challenging because the stability of the con-
tinuous dynamics of each individual mode does not
necessarily imply the stability of the whole automaton.
The basic techniques rely on finding a Common Lyapunov
function, whose derivative along the trajectories of all
the modes must satisfy suitable inequalities. Approaches
for finding common Lyapunov functions for hybrid au-
tomata have been presented in [23]. By reasoning about
the graph structure of the automaton and solving a set
of semi-definite programs, a family of local Lyapunov
functions are generated which can be combined to obtain
a common Lyapunov function.

When such a function cannot be found or does not ex-
ist, Multiple Lyapunov functions [6] are useful for proving
stability of a chosen execution. These and many other
stability related results which use Lyapunov functions
for the individual modes are discussed in [18], [31]. For
example, if the individual modes of the automaton are
asymptotically stable, then the notion of dwell time [22]
and the more general average dwell time (ADT) [13]
provide sufficient conditions for system stability. These
conditions have been used to develop (in some cases
automatic) verification procedures in [20].

In [26], stability of a linear hybrid system is charac-
terized as finiteness of certain sequences called snapshot
sequences. Three kinds of snapshot sequences are identi-
fied and a new automaton which represents the evolu-
tion through these three kinds of snapshot sequences is
created. By analyzing the unary reachability property of
the new automaton, the stability of the given automaton
is verified.

1The relationship between asymptotic stability and stability as de-
fined at the beginning of this paper, is discussed in Section III-B.

III. PRELIMINARIES

We will use the Hybrid Input/Output Automaton
(HIOA) framework for modeling cyber-physical systems.
We begin this section by introducing some key concepts
in this framework and refer the reader to [14], [19] for a
more detailed development.

Let V be a set of variables. Each variable v ∈ V is
associated with a type, denoted by type(v), which defines
the set of values v can take. A valuation v for V maps
each v ∈ V to a value in type(v). We use the standard
v.x notation to refer to the valuation of a variable x ∈ V
at v. The set of all valuations of V is denoted by val(V ).
A trajectory for a set of variables V models continuous
evolution of the values of the variables over an interval
of time. Formally, a trajectory τ is a map from a left-
closed interval of R≥0 with left endpoint 0 to val(V ).
The domain of τ is denoted by τ.dom. The first state of
τ , τ.fstate, is τ(0). A trajectory τ is closed if the domain
of τ is a closed interval [0, t] for some t ∈ R≥0, and in
that case we define τ.ltime

∆
= t and the last state in τ ,

τ.lstate
∆
= τ(t). If the domain is an open interval, then

τ.ltime is defined as the supremum of τ.dom.

A. Hybrid Automata

A hybrid automaton is a state machine for which a state
is defined by the valuation of a collection of variables
and the state changes either instantaneously through
discrete transitions or over an interval of time following
a trajectory.

Definition 1. A Hybrid Automaton (HA) A is a tuple
〈V ,A,D, T 〉 where
(a) V = X ∪ {loc} is a set of variables, where loc is a

discrete variable of finite type L called the set of locations,
and each x ∈ X is a continuous variable of type R; the
elements of val(V ) are called states

(c) A is a finite set of actions
(d) D ⊆ val(V ) × A × val(V ) is a set of transitions A

transition (v, a,v′) ∈ D is written in short as v
a→A v′

or as v
a→ v′ when A is clear from the context

(e) And T is set of trajectories for V which is closed under
prefix, suffix, and concatenation (see [14] and [19] for
details). Over any trajectory τ ∈ T , loc remains constant
and each x ∈ X evolves according to certain differential-
algebraic equations. For l ∈ L, Tl

∆
= {τ ∈ T | τ(0).loc =

l} is the set of trajectories in location l

A hybrid automaton usually also specifies a set of
initial states but for this paper that information is un-
necessary.
Notation and Syntax. Transitions are specified using
guards and reset maps. For every action a ∈ A, a guard
Ga

∆
= {v | ∃v′,v a→ v′}, specifies the set of states at

which some discrete transition labeled by a can occur.
The set Ga is defined by an expression, denoted by
Ga(V ), involving the variables in V . A reset map for a



is a function Ra : val(V ) → 2val(V ) which specifies how
the state changes when a does occur. It is specified by
an expression, Ra(V, V ′), involving V and their primed
versions V ′.

Trajectories are specified using location invariants and
differential-algebraic equations (and inequalities). For
every l ∈ L, Il ⊆ val(V ), defined by an expression
Il(V ), is called the location invariant. El is a collection of
differential-algebraic equations and inequalities. A tra-
jectory τ with τ(0).loc = l is in Tl ⊆ T iff (a) τ satisfies El,
and (b) for all t ∈ τ.dom, τ(t) ∈ Il and τ(t).loc = l. In this
paper, we assume that the solutions of the differential-
algebraic equations are available to us in the form of
an expression El(V, V, t) which describes the relationship
between τ.fstate and τ.lstate for any trajectory τ ∈ Tl
with τ.ltime = t. For example, for ẋ ≤ −a; y = bx, the
expression E(V, V ′, t) is x′ ≤ x− at; y′ = bx′.

B. Executions and Stability
An execution of A records all the information asso-

ciated with a particular run of A. Formally, an execu-
tion fragment is a (possibly infinite) alternating sequence
τ0a1τ1 . . . where for each τi in the sequence, except
possibly the last, τi is closed and τi.lstate

ai+1→ τi+1.fstate.
The first state of an execution fragment α is denoted

by α.fstate
∆
= τ0.fstate. The duration of an execution

fragment α is defined as α.ltime
∆
=

∑
i τi.ltime, where the

summation is over all the trajectories in α. An execution
is finite if it is finite sequence, otherwise it is infinite.
A finite execution is closed if its last trajectory τn is
closed. In this case, the last state of α, is defined as
α.lstate

∆
= τn.lstate. An execution is said to be admissible

if its duration is infinite, and it is said to be Zeno if its
neither admissible nor finite.

A location l ∈ L is closed if time cannot diverge in
it. That is, for every τ ∈ Tl, τ.dom is bounded. The
automaton A is locally closed if all its locations are closed.

A hybrid automaton A is nonblocking if for every state
v, time diverges eventually for all executions starting
from v. It is blocking if all its executions are closed. Thus,
there are hybrid automata which are neither blocking
nor nonblocking. For example, a Zeno hybrid automaton
falls in this class because time does not diverge in Zeno
executions and nor are they closed. A hybrid automaton
for which some of the executions are closed while others
are Zeno or diverging, is also neither blocking nor non-
blocking.

Definition 2. For hybrid automaton A, a set of states S ⊆
val(V ) is said to be closed if (a) for every v

a→ v′ with v ∈ S,
v′ is also in S, and (b) for every τ ∈ T , with τ.fstate ∈ S,
τ.lstate ∈ S. A hybrid automaton A is said to be stable with
respect to S, S ⊆ val(V ), if S is closed and from every state
v every execution starting from v reaches S.

Definition 3. A hybrid automaton A is said to be globally
asymptotically stable at the origin if for every ε > 0, A

is region stable with respect to val(loc) × Bε, where Bε ⊆
val(X) is the set of valuations corresponding to the ball of
radius ε around the origin.

Stability is also called practical stability and is identical
to the self-stabilization property that is commonly used as
a requirement in fault-tolerance and distributed systems
literature (see, for example [12]). We note that if the set
S is the singleton set with the origin, then asymptotic
stability is weaker than stability with respect to S. On
the other hand, if S is a superset of the origin, then
asymptotic stability implies stability with respect to S.

The notion of dwell time and the more general av-
erage dwell time were introduced in [13] (see [18] for
more details), to obtain sufficient conditions for proving
asymptotic stability of hybrid systems.

Definition 4. A hybrid automaton A is said to have an
average dwell time (ADT) ∆ > 0, if there exists a constant
N0 > 0 such that for any execution α the number of discrete
transitions (mode switches) over N(α) is bounded by:

N(α) ≤ N0 + α.ltime/∆. (1)

Roughly, A has ADT ∆ if on an average it performs
at most one mode witch or transition every ∆ time, plus
a constant number N0 of extra switches. The sufficient
condition in [13] requires that (a) each of the individual
modes of the hybrid automaton is asymptotically stable,
i.e., they have exponentially decaying Lyapunov func-
tions, and (b) that the ADT is large enough with respect
to decay rate of the Lyapunov functions of the individual
modes.

Throughout this paper we assume that the hybrid
automata in question have some positive ADT.

Assumption 1. There exist ∆ ∈ R+ and N0 ∈ Z+ such that
every execution of A satisfies Equation (1).

Though our results use the existence of a ADT, they
do not require the individual modes to be stable and
only require the ADT ∆ to be positive. Typical models of
CPS systems, particularly those which periodically sense
inputs and make decisions, satisfy this assumption (see,
for example. [33], [32]).

IV. VERIFYING STABILITY

In Section IV-D we will identify the problem of ver-
ifying stability of a hybrid automaton to the problem
of verifying the blocking property of another related
automaton. In the next section we are developing a
methodology for verifying the blocking property.

A. Verifying Blocking Property
The transitions and the trajectories of a hybrid automa-

ton defines a hybrid step relation ΓA on the state space,
defined as vΓv′ iff there exists v′′ ∈ val(V ), a ∈ A, τ ∈ T
such that v = τ.fstate, v′′ = τ.lstate, and v′′

a→ v′. That
is, there exists a trajectory and a transition which take v



to v′. When the automaton A is clear from the context,
we drop the suffix and write ΓA as Γ. A relation is well-
founded if it permits no infinite decreasing chains. Next,
we state a key theorem which characterizes blocking in
terms of well-foundedness of the hybrid step relation.

Theorem 1. A locally closed HA A with positive ADT is
blocking iff Γ is well-founded.

Proof: Suppose that A is not blocking, i.e., there
exists an execution α in which time diverges. Since A
is locally closed, α must be of the form τ0, a1, τ1, . . .. Let
β = v0,v1,v2, . . ., be a sequence of states such that for
each i, vi = τi.fstate. Thus, for each i, there exists v′i such
that τi.fstate = vi, τi.lstate = v′i and v′i

ai→ vi+1, and it
follows that viΓvi+1. Since β is an infinite sequence, we
conclude that Γ is not well-founded.

Suppose that the hybrid transition relation Γ is not
well founded. There exists a sequence β = v0,v1,v2, . . .,
such that for each i in the sequence viΓvi+1. From β
and the definition of Γ, we can construct a sequence
β′ = v0,v

′
0,v1,v

′
1,v2,v

′
2 . . . such that for each i, there

exists τi, ai such that vi = τi.fstate,v
′
i = τi.lstate and

v′i
ai→ vi+1. It follows that τ0a1τ1a2 . . . is an infinite

execution fragment of A. Recall (from Definition 4) that
every infinite execution fragment of any hybrid automa-
ton with positive ADT is admissible (i.e., time diverges),
and therefore by Assumption 1, α.ltime = ∞, and A is
not blocking.

Theorem 1 which uses the assumptions about local
closedness and ADT makes it possible to analyze block-
ing properties of hybrid automata using well-formed
relations. Using Theorem 1 from [25], we obtain a (pos-
sibly) more practical condition for verifying the blocking
nature of A:

Theorem 2. A locally closed A with positive ADT is blocking
iff the transitive closure of Γ is contained in the disjunctive
union of a finite collection of well-founded relations. That is,
there exists a collection {R1, . . . , Rn} of well founded relations
such that Γ+ ⊆ ∪Ri, where Γ+ is the transitive closure of Γ.

A pair of states (v,v′) ∈ Γ+ iff there exists an exe-
cution fragment α ending with a point trajectory with
α.fstate = v and α.lstate = v′. If v.loc = l and v′.loc = l′

and l 6= l′ then the (v,v′) is contained in the simple well-
founded relation R

∆
= {(v,v′) | v.loc = l ∧ v′.loc = l′}.

Now for execution fragments that begin and end at
the same location, instead of considering each such
fragments individually, it is equivalent to consider a
relation that captures all fragments that fit a particular
pattern of alternating locations and actions and to show
that this relation is contained in a well-founded relation.

We proceed by defining the relation corresponding to
a path of A which is a sequence of locations and actions.
Let σ = l0a1l1 . . . ln be a path. We define the relation
ρσ ⊆ val(V ) × val(V ), as (v,v′) ∈ ρσ iff there exists
an execution fragment α = τ0a1τ1 . . . τn such that for

each i in the sequence τi.fstate.loc = li. Under some
additional assumptions which are discussed below, ρσ
can be symbolically computed as:

ρl(V, V
′) = Il(V ) ∧ (∃ t El(V, V ′, t) ∧ Il(V

′)),

∀l ∈ L, (2)
ρa(V, V ′) = Ga(V ) ∧ Ra(V, V ′),∀a ∈ A (3)
ρl,a(V, V ′) = ρl ◦ ρa (4)
ρσ(V, V ′) = ρl0,a1

◦ ρl1,a2
◦ ρl2,a3

◦ . . . ◦ ρln−1,an . (5)

Remark 1. (i) If σ is a cyclic path then the last action an
must be a transition into location l0 and the last location
ln contains not additional information. Hence, ln does
not appear in the above expression for ρσ . (ii) Clearly, the
set of discrete transitions satisfying ρa(V, V ′) are exactly
those in D that are labeled by a. However, Tl is contained
(and in general not equal to) in the set of trajectories
satisfying ρl(V, V

′): a trajectory τ that violates Il at an
intermediate point but not at the end-points satisfies
ρl(V, V

′). Equality holds under several conditions, for
example, (a) Il is convex and El is a linear function of
time, and (b) Icl is closed under Tl.

In view of the above remark, we have the following
version of Theorem 3.

Theorem 3. A locally closed A with positive ADT is blocking
iff there exists a collection {R1, . . . , Rn} of well-founded
relations such that for every cyclic path σ, ρσ ∈ Ri for some
i ∈ {1, . . . , n}.

Example 1 The HA TwoTanks of Figure 1 is locally
closed and has a positive dwell time. Its only cyclic path
is σ = l1 a1 l0 a0. From the specification of the automaton
we obtain:

ρl0a0
= 0 ≤ x, y ≤ 100 ∧ 40 ≤ x′ ≤ 50 ∧

y′ ≤ 10 ∧ x+ 3y − 3y′ ≤ x′ ≤ 5y − 5y′ + x

ρl1a1
= 0 ≤ x, y ≤ 100 ∧ 20 ≤ y′ ≤ 30 ∧

y + 2/5(x− x′) ≤ y′ ≤ y + 4/5(x− x′)
ρσ = ∃x′′, 0 ≤ x′, y′ ≤ 100 ∧ 20 ≤ y′′ ≤ 30

∧y′ + 2/5(x′ − x′′) ≤ y′′ ≤ y + 4/5(x′ − x′′)
∧0 ≤ x′′, y′′ ≤ 100 ∧ 40 ≤ x′′′ ≤ 50 ∧ y′′′ ≤ 10 ∧
x′′ + 3y′′ − 3y′′′ ≤ x′′′ ≤ 5y′′ − 5y′′′ + x′′

Upon eliminating the quantifiers ρσ is simplified to:

0 ≤ x ≤ 100 ∧ 0 ≤ y ≤ 100 ∧ 40 ≤ x′ ≤ 50 ∧ y′ ≤ 10

∧ − 25 ≤ x′ − x ≤ −1 ∧ y′ ≥ y + 2,

which is a well-founded relation and can be automati-
cally proved to be so with existing tools such as [24].
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Fig. 1. Rectangular hybrid automaton TwoTanks.

B. Abstraction-Refinement Algorithm
For general hybrid automata, direct application of the

proof rule given by Theorem 3 may yield step transition
relations for which automatic quantifier elimination and
checking of well-foundedness can be hard. This moti-
vates the need for abstractions for verifying the blocking
property.

Abstractions of hybrid automata have employed for
making verification tractable from the beginning of this
research area [3], [28], [27]. An abstraction for a hybrid
automaton A is another (hybrid or finite state) automa-
ton B such that every execution of A is simulated by
some execution of B. The abstraction B is defined in
terms of an abstraction function fabs : val(VA)→ val(VB),
or more generally a simulation relation Rsim ⊆ val(VA) ⊆
val(VB), such that every transition and trajectory of A
can be simulated by a transition (and trajectory in the
case of hybrid abstractions) of B while preserving fabs
and Rsim .

Instead of abstracting the states and defining tran-
sitions and trajectories in this abstract state space, it
is possible to abstract the hybrid step relation directly.
The advantage of doing so in the context of termination
analysis of programs has been illustrated in a sequence
of papers by Cook, Podelski, and Rybalchenko [10].

An abstraction function abs maps a binary relation
ρ ⊆ val(V )× val(V ) to a superset abs(ρ). In the spirit of
ordinary predicate abstraction, we define the abstraction
absP(ρ) with respect to a set of predicates P , where each
p ∈ P is a relation defining a subset of val(V )×val(V ), as
the smallest superset of ρ that can be constructed using
conjunctions of the predicates in P that are weaker than
ρ. Thus, if ρ = p1 ∧ p2 ∧. . . pk for some p1, p2, . . . , pk ∈ P ,
then abs(ρ) =

∧k
i=1 pi = ρ. Abstraction function abs for

a path σ = l0a1l1 . . . lnan+1 is defined inductively as:

absP(σ) = absP(ρl0a1
◦ absP(ρ))

where ρ = absP(l1a2l2 . . . ln)
absP(lnan+1) = absP(ρlnan+1

)

From Theorem 3 and this notion of hybrid relation
abstraction, a sufficient condition for blocking can be
derived.

Corollary 4. A locally closed A with positive ADT is
blocking if there exists a collection of predicates P and a

collection of well-founded relationsR such that for every cyclic
path σ, absP(ρσ) ∈ Ri, for some Ri ∈ R.

A counter-example guided abstraction refinement (CE-
GAR) algorithm for verifying program termination has
been presented in [10]. This algorithm can be adapted
in a straightforward manner for proving the blocking
properties of hybrid automata with abstraction and re-
finement. The key observations in [10] which lead to
this algorithm are following: (a) A counterexample to the
blocking property is a loop of the hybrid automaton, say
σ, such that abs(ρσ) is not well-founded. Thus, abstract
counterexamples are found by systematically searching
for loops that satisfy the above condition. (b) An abstract
counterexample is actually a feasible counterexample of
A, and the corresponding concrete relation ρσ is not
well-founded. (c) Otherwise, the abstract counterexam-
ple is spurious and this may be because of two reasons:
(i) First, the abstraction function absP defined by the
collection of predicates P is too coarse, that is, the
abstract counterexample absP(ρσ) * Ri for any Ri ∈ R,
but ρσ ⊆ Ri for some Ri. In this case a collection
of predicates are added to P to eliminate the abstract
counterexample abs(ρσ). (ii) Second, the collection of
disjunctive well founded relationsR is not weak enough,
that is, even the concrete relation ρσ is not included in
any of the Ri’s in R. In this case, some well-founded
relation containing ρσ is added to the collection R.

1R ← ∅; P ← ∅
while

3if exists σ = l0a1 . . . lnan+1 s.t. αP(ρσ) * R for any R ∈ R then
if exists R ∈ R such that ρσ ⊆ R then

5Refine Abstraction
Ppath ←

⋃
i∈0..n Preds(ρliai+1

◦ . . . ◦ ρlnan+1
)

7Ploop ← Preds(R) ∪
⋃
i∈0..n Preds(ρliai+1

◦ . . . ◦ ρlnan+1
◦ R)

P ← P ∪ Ppath ∪ Ploop
9else

if ρσ is well-founded relation by a (new) ranking relation R then
11Weaken disjunctive well-founded relation

R ← R∪ R
13else

return ”A is not blocking, l0a1 . . . lnan+1”
15else

return ”A is blocking”
17end

Fig. 2. Algorithm 1. Abstraction refinement based verification algo-
rithm for blocking properties of hybrid automata.

Initially, the set of predicates and the well-founded
ranking relations are empty. The algorithm explores the
abstractions of the loops in the hybrid automaton in a
depth-first manner as possible counterexamples to the
blocking property. For each spurious counterexample,
the algorithm (a) adds the corresponding ranking rela-
tions to R, and (b) adds predicates to P for refining the
abstraction. In doing so, in each refinement step there
is progress in the sense that once a loop σ is analyzed
and eliminated, it also eliminates an infinite collection
of loop counterexamples of the form σi (the proof of
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Fig. 3. Hybrid automaton Nav-1 modeling a 2-D Navigation Bench-
mark.

this is essentially the same as the proof of Theorem 3
in [10]). Furthermore, in Section IV-C we show that for
initialized hybrid automata this procedure is actually
complete. That is, if all the intermediate steps (comput-
ing ρσ and its abstraction, checking if it is well-founded,
etc.) in the algorithm are effectively computable, the the
procedure terminates with either a counterexample loop
or establishes that A is not blocking.

1) Case Study : Nav-1: In this section, we illustrate the
algorithm in Figure 2 by executing it step-by-step hybrid
automaton Nav-1. For this purpose, we use the prototype
tool that uses RankFinder [24].

We have a variant of 2 dimensional navigation exam-
ple in Nav-1. The 2 dimensional plane is divided into
4 regions, and in each region, the direction of motion
are given by the dynamics of the two variables x and
y. Automaton Nav-1 consists of 4 locations l1, . . . , l4; for
each location, there are two incoming transitions and two
outgoing transitions. As Nav-1 is a rectangular hybrid
automaton, the hybrid step relations can be derived
from the specification the guards, reset functions, the
invariants and the differential equations. We first start
by evaluating ρl1a4 . From the hybrid automaton, we have
ρl1a4

= ∃t > 0, x1, y1, 0 ≤ x ≤ 5∧5 ≤ y ≤ 10∧x1 = x+ t∧
y+t ≤ y1 ≤ y+2t∧0 ≤ x1 ≤ 5∧y1 = 5∧x′ = x1∧y′ = y1.
On simplification, we get that ρl1a4

= ∅. Similarly, we
calculate the hybrid step relation for all the locations and
actions as follows:

ρl1,a4
≡ ∅

ρl1,a1
≡ 0 ≤ x ≤ 5 ∧ 5 ≤ y ≤ 10 ∧ x′ = 5

∧5− x+ y ≤ y′ ≤ 10− 2x+ y

ρl2,a1
≡ ∅

ρl1,a2
≡ 5 ≤ x ≤ 10 ∧ 4 ≤ y ≤ 10 ∧ y′ = 4

∧x+ y − 4 ≤ x′ ≤ 2y + x− 8

ρl3,a2
≡ ∅

ρl3,a3
≡ 5 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 4 ∧ x′ = 5

∧10− 2x+ y ≤ y′ ≤ 5 + y − x
ρl4,a3

≡ ∅
ρl4,a4

≡ 0 ≤ x ≤ 5 ∧ 0 ≤ y ≤ 5 ∧ y′ = 5

∧x+ 2y − 10 ≤ x′ ≤ x+ y − 5

The algorithm considers all the loops in Nav-1. We start
with the simple loops of length 2, such as, σ = l2a1l1a1,
and so on. For each of these loops σ the relation ρσ
is proven to be well-founded, and then the algorithm
moves on to loops of length 4, and so on. As we will
observe, since all the loops of length 2 are not feasible,
the only loops possible in this automaton are simple
loops. We will prove that all these loops are well founded
and hence the algorithm terminates after considering all
the simple loops.

Step I/Line 1 Initially, the set of well-founded relations
R = ∅ and the set of transition predicates P = ∅.

Step II/Lines 4, 5, 6, 7 and 8 We start enumerating
simple loops and compute their abstractions.
Because R is empty, we find that for the cyclic path
σ = l2a1l1a1. The abstract relation αP(σ) does not
entail any relations in R. This means that σ is a
counter example. We now examine whether it is
spurious or not. Now, we move to line 5 and since
R is empty, there does not exist a relation R in R
such that ρ(σ) ⊆ R. We hence move to line 10. We
have ρ(σ) = ρl2a1

◦ ρl1a1
, we get

= ∃x′′, y′′,∧((x′, y′), (x′′, y′′)) ∈ ∅
∧0 ≤ x′′ ≤ 5 ∧ 5 ≤ y′′ ≤ 10 ∧ x′′′ = 5

∧5− x′′ + y′′ ≤ y′′′ ≤ 10− 2x′′ + y′′

= false

Since the relation false is well founded, the counter
example σ is spurious because the set of ranking
functions is too strong, i.e. R is too restricted. The
ranking function ∅ is the evidence that σ is well
founded. Thus, we go to line 13 and add the empty
relation ∅ to R.

Step III/Lines 4, 5, 6, 7 and 8 We observe that the loop



σ = l2a1l1a1 is still a counter example because,

αP(σ) = αP(ρl2a1 ◦ αP(ρl1a1))

= αP(ρl2a1 ◦ True))
= True

Now, since True is not entailed in any of the well
founded relations in R, we go to line 5 and recall
that this relation is well founded by the relation
∅. Thus, we add Preds(ρl1a1

), Preds(ρl2a1
◦ ρl1a1

),
Preds(ρl1a1 ◦ R) and Preds(ρl2a1 ◦ ρl1a1 ◦ R). Now,
since ρl2a1 ◦ ρl1a1 = false and R = ∅, we add the
following set of transition predicates

P = {0 ≤ x ≤ 5, 5 ≤ y ≤ 10,

x′ = 5, 5− x ≤ y′ − y ≤ 10− 2x}.

Step IV/Lines 4, 5, 6, 7 and 8 We note that after
adding the set of predicates and the well founded
relations, we can note that σ = l2a1l1a1 is no longer
a counter example. In a similar manner, all the
simple loops with two locations are not feasible
and hence we can prove that all these loops are
well founded and the set of predicates added after
considering all these loops are

P = {0 ≤ x ≤ 5, 5 ≤ y ≤ 10,

x′ = 5, 5− x ≤ y′ − y ≤ 10− 2x,

5 ≤ x ≤ 10, 4 ≤ y ≤ 10, y′ = 4,

y − 4 ≤ x′ − x ≤ 2y − 8,

5 ≤ x ≤ 10, 0 ≤ y ≤ 4, x′ = 5,

10− 2x ≤ y′ − y ≤ 5− x,
0 ≤ x ≤ 5, 0 ≤ y ≤ 5, y′ = 5,

2y − 10 ≤ x′ − x ≤ y − 5}

Step V/Lines 4, 5, 6, 7 and 8 After eliminating all the
simple loops of length 2, we now look at loops of
length 4. Consider the loop σ = l1a1l2a2l3a3l4a4.
We observe that αP(σ) * R for R ∈ R. Hence,
σ is a counter example. We now have to examine
whether it is a spurious counter example or not.
Now, we move to line 5 and since R has only
one element namely ∅ as the set of well founded
relations, there does not exist any relation R in R

such that ρ(σ) ⊆ R. We construct ρ(σ) as follows.

ρ(σ) = ∃x1, y1, x2, y2, x3, y3, x4, y4,
0 ≤ x ≤ 5, y = 5, x1 = x, y1 = y,

0 ≤ x1 ≤ 5, 5 ≤ y1 ≤ 10, x2 = 5,

5− x1 + y1 ≤ y2 ≤ 10− 2x1 + y1,

5 ≤ x2 ≤ 10, 4 ≤ y2 ≤ 10, y3 = 4,

x2 + y2 − 4 ≤ x3 ≤ 2y2 + x2 − 8,

5 ≤ x3 ≤ 10, 0 ≤ y3 ≤ 4, x4 = 5,

10− 2x3 + y3 ≤ y4 ≤ 5 + y3 − x3,
0 ≤ x4 ≤ 5, 0 ≤ y4 ≤ 5, y5 = 5,

x4 + 2y4 − 10 ≤ x5 ≤ x4 + y4 − 5.

Simplification of the above relation will yield us the
relation 0 ≤ x ≤ 5, x5 ≤ x − 2, 0 ≤ x5 ≤ 5. Hence
we know that this loop will not run for infinite
number of times. Thus, we go to line 13 and add
the following ranking relation R1 = 0 ≤ x ≤ 5, 0 ≤
x′ ≤ 5, x′ ≤ x− 2 to R.

Step VI/Lines 4, 5, 6, 7 and 8 We observe that the loop
σ = l1a1l2a2l3a3l4a4 is still a counter example
because we have αP(σ) = true. However, we
know that ρ(σ) ⊆ R1. Thus, we just need to
add the set of predicates given by Preds(R1),⋃
i∈1..4 Preds(ρ(liai . . . l4a4)) and⋃
i∈1..4 Preds(ρ(liai . . . l4a4) ◦ R1). These predicates

are as follows,

Preds = {0 ≤ x ≤ 5, 0 ≤ x′ ≤ 5, x′ ≤ x− 2,

0 ≤ y ≤ 4, x = 5, x′ ≤ 5− y, y′ = 5

5 ≤ x ≤ 10, y = 4, x′ ≤ 9− x, y′ = 5

x = 5, 5 ≤ y ≤ 10, x′ ≤ 8− y, y′ = 5

0 ≤ x ≤ 5, y = 5, x′ ≤ x− 2, y′ = 5}

After adding these predicates, we can see that the
loop σ = l1a1l2a2l3a3l4a4 is not a counter example.
Hence all the feasible simple loops in the given
hybrid automaton can be verified to be well founded
and hence the hybrid automaton is blocking

2) Nav-2: Nav-2 is also a 2 dimensional navigation
example which is very similar to Nav-1. We will precisely
define Nav-2 by enumerating all the differences from
Nav-1. The differences are a) The invariant for location
l3 is 5 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 5 b) The guard for transition
a2 is 5 ≤ x ≤ 10 ∧ y = 5 c) The guard for transition a2 is
5 ≤ x ≤ 10 ∧ y = 5

Algorithm 1 returns that Nav-2 is not blocking and
it finds an infinite execution of the system. As in the
case of Nav-1, the Algorithm 1 eliminates all the simple
loops of length 2 in Nav-2. However, when Algorithm 1
iterates over loops of length 4, it finds an actual counter
example. Consider the loop σ = l1a1l2a2l3a3l4a4. After
the abstraction, we get that σ is a counter example,
because of the set of predicates. The algorithm, now
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Fig. 4. Counter example in the Nav-2.

progresses to line 11, where ρσ is calculated similar
to illustrated in Nav-1 and is examined whether it is
well founded or not. If we calculate ρσ we get that
ρσ = 0 ≤ x ≤ 5, y = 5, 16x − 75 ≤ x′ ≤ x, y′ = 5. When
we give this relation to the ranking function synthesis
tool, we are unable to give a well founded relation
R, ρσ ⊆ R. Upon closer examination, we can see that
there is an infinite execution of the hybrid automaton
given as follows.

(x0, y0) = (2, 5); loc0 = l1;

(2, 5, l1) −−−→
3sec.

(5, 8, l1) −→
a1

(5, 8, l2) −−−→
3sec.

(8, 5, l2)

−→
a2

(8, 5, l3) −−−→
3sec.

(5, 2, l3) −→
a3

(5, 2, l3) −−−→
3sec.

(2, 5, l3)

−→
a4

(2, 5, l1).

This counterexample is shown in the figure 4.

C. Completeness of Initialized Hybrid Automata

The abstraction refinement algorithm of Section IV-B,
eliminates families of candidate counterexamples (to
the blocking property) by simultaneously refining the
abstraction and searching for disjoint well-founded re-
lations that prove blocking. We have found that the
algorithm terminates for several classes of hybrid au-
tomata in practice. In this section, we prove a simple
completeness result which shows that the algorithm
terminates for initialized hybrid automata.

A path σ is said to be an action-cycle if it is of the form
l0aβaln, where a ∈ A and β is a path. An action cycle σ
is simple if no other actions repeat in σ except the first
and the last actions. Theorem 5 implies that, at least for
initialized hybrid automata, if all the intermediate steps
of Algorithm 1 (e.g., finding and abstracting the hybrid
step relations, checking their well-foundedness, etc.) are
effectively computable, then the algorithm terminates

because it suffices to search for counterexamples over
simple action-cycles.

Theorem 5. Consider a locally closed initialized hybrid au-
tomaton A with positive ADT. The following two statements
are equivalent:
(a) A is blocking.
(b) Every simple action-cycle of A is well-founded.

Proof: We prove (a) =⇒ (b) by establishing its
contrapositive. Suppose, there exists a simple action-
cycle σ that is not well-founded. We can create an infinite
path σ′ = σ _ σ _ . . . by concatenating infinite number
of copies of σ. Since ρσ not well-founded, it is non-
empty and there exists an infinite execution fragment of
A corresponding to σ′. The ADT property implies that
such an infinite execution is actually admissible, i.e., time
diverges.

We prove (b) =⇒ (a) by establishing its contrapos-
itive. Suppose α is an infinite execution of A. Since α
is an infinite sequence over finite set of actions A, there
exists an action a which repeats infinitely many times
in α. That is, α can be written as α = α0aα1aα2a . . .,
where each αi is an execution fragment free of action
a. Considering execution fragment α1, we observe that
α.fstate ∈ Ra and α.lstate ∈ Ga, where Ra is the
initialization set for action a and Ga is the guard set for
action a. Thus, α′ = α0aα1aα1aα1a . . . is also an infinite
execution of A.

Case a. If α1 does not have repeated actions then
aσ1a is a simple action-cycle which is not well-founded,
where σ1 is the path corresponding to the sequence of
locations and actions in α. Case b. Suppose, α1 has
repeated actions, then we show that we can derive
another execution fragment α′1, such that α′1.fstate ∈ Ra
and α′1.lstate ∈ Ga and α′ does not have repeated actions.
Suppose, α1 = β1bβ2bβ3 where β1, β2, β3 are execution
fragments and b ∈ A is a repeated action in α1. We define
α′1 = β1bβ3 and argue that α′1 is also a valid execution
fragment of A. Note that β3.fstate, β2.fstate are both in
the set Rb. Since A is an initialized hybrid automaton,
β1.lstate

b→ β3.fstate is a valid transition, from which it
follows that α′1 is a valid execution fragment of A with
α′1.fstate ∈ Ra and α′1.lstate ∈ Ga .

From α1 we obtained α′1 by removing at least one
pair of repeated actions, namely b. Since α1 can only
have a finite number of repeated actions, by performing
the above operation repeatedly, we obtain an execution
fragment α∗1 which does not have any repeated actions,
and with α∗1.fstate ∈ Ra and α∗1.lstate ∈ Ga . Then, aσ∗1a
is a simple action-cycle which is not well-founded, where
σ∗1 is the path corresponding to the sequence of locations
and actions in α∗1.

D. From Blocking to Stability
Having examined the blocking property and verifi-

cation algorithms for it, we proceed to show how the



stability of a hybrid automaton A can be verified by
proving that another automaton B is blocking. Infor-
mally, automaton B is obtained by removing the set S
from A.

Definition 5. Given a hybrid automaton A =
〈VB, AB,DB, TB〉 and a set of states S ⊆ val(VA), the
restriction of A to S, denoted by A \ S, is the hybrid
automaton B = 〈VB, AB,DB, TB〉, where:
(a) VB = VA,
(b) AB = AA,
(c) DB = {(v, a,v′) ∈ DA | v /∈ S, v′ /∈ S}, and
(d) TB = {τ | ∀ t ∈ τ.dom, t 6= τ.ltime =⇒ τ(t) /∈ S}.

Theorem 6. If (1) S is closed, (2) A \ S is blocking, and
(3) A is nonblocking, then A stable with respect to S.

Proof: Suppose A is not stable with respect to S.
By condition (1) in the hypothesis of the theorem, there
exists an execution of α of A such that α is contained
in Sc. By condition (3) there exists an extension α′ of
this execution α such that α′ is α′.ltime = ∞. Since,
every transition and trajectory in α′ is a valid transition
(respectively trajectory) of A \ S, α′ is a admissible
execution of A \ S, which contradicts (2).

Theorem 7. If A is stable with respect to S implies that
A d S is blocking.

Proof: Consider any execution α of A \ S. Clearly it
is also an execution of A. Note that α is contained in
Sc except possibly its last state. If α were admissible or
zeno then, A would not be region stable with respect to
S. Therefore, α must be closed, and it follows that A\S
is blocking.

Remark 2. Applying Theorem 6 for proving stability
requires us to check that S is a closed set, blocking,
and nonblocking properties. Previous section gives an
algorithm for proving the blocking property. There are
standard techniques for proving that a set is closed
which are used in inductive safety verification (see, for
example, [21], [33]). A sufficient condition for establish-
ing that an automaton A is non-blocking is to prove that
A has a positive dwell time or average dwell time and
the algorithms in [20] can be used to that end.

V. DISCUSSIONS AND FUTURE WORK

We have presented a CEGAR-based approach for sta-
bility verification of cyber-physical systems. The pro-
cedure uses results from program analysis, specifically,
abstraction-refinement with disjunctive union of well-
founded relations. In order to adapt these results in the
context of hybrid systems, we have characterized the
blocking property of hybrid automata in terms of well-
foundedness of a relation that combines the discrete tran-
sitions and the trajectories. This characterization requires
the automaton to have a bounded switching speed, i.e.,

expressed in this paper as a positive average dwell time
(though, unlike previous sufficient conditions involving
ADT, our procedure does not require the individual
modes of the hybrid system to be stable). We have
also shown that the procedure is complete for certain
classes of initialized hybrid automata (e.g., rectangular)
for which the individual steps of the procedure can be
effectively computed.

These suggest several directions of future research
which would advance the area of CPS verification. First
of all, we need to develop more powerful completeness
results. One approach would be to find classes of CPS
models where searching simple cycles are sufficient for
finding counterexample to the blocking property. Sec-
ondly, an obvious direction is to generalize the CEGAR-
based verification scheme to linear, affine, and polyno-
mial hybrid systems. This direction is likely to involve
have to use techniques of synthesizing non-linear rank-
ing functions for validating counterexamples. A third
direction of research is to explore how knowledge of
Lyapunov functions for the individual modes can be
used for stability verification. The ADT condition [13]
and the multiple-Lyapunov function conditions [6] give
sufficient conditions for stability based on the existence
of Lyapunov functions. Can CEGAR-based techniques
benefit from Lypunov functions in systems where the
above results are not applicable? Finally, a lot of work
remains to be done in developing software tools and in
applying them to realistic CPS models.
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