Lyapunov Abstractions for Inevitability of Hybrid Systems

Parasara Sridhar Duggirala & Sayan Mitra {duggira3, mitras}@illinois.edu University of Illinois at Urbana-Champaign

> SRI International, Menlo Park June 2012

Inevitability Property

- Definition. A set of states S of system A is inevitable if every execution starting from arbitrary state reaches S in bounded time
- Examples:
 - Autonomous vehicle reaches destination
 - Routing protocol recovers from failures
 - Traffic control protocol does not deadlock

in bounded time

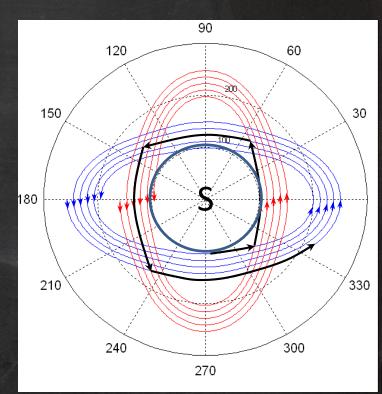
Inevitability of Hybrid Systems

If S is inevitable for each of the individual dynamical subsystems, S may not be inevitable for combined hybrid system

Goal: Design algorithm for verifying inevitability of HA. Given

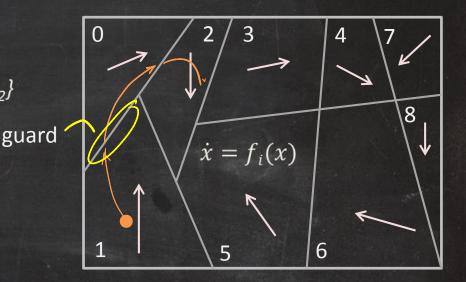
- (a) HA A and a set S, it should either produce
- (b) a proof that S is inevitable OR
- (c) a counter-example behavior of A that does not ever reach S
- What is a proof?

What is a counter-example ?



Hybrid Automata (HA)

- $A = \langle X, L, Q_0, D, T \rangle$
- L: set of locations
- X: set of continuous variables {x₁, x₂, v₁, v₂}
- *Q:* state space = $\mathbb{R}^4 \times L$
- *D* ⊆ *Q x Q discrete transitions*
- T: trajectories each $\tau \in T$, $\tau : [0, t] \rightarrow Q$
- over which continuous variables flow according to $\dot{x} = f_i(x)$
 - Rectangular HA: $\dot{x} \in [a_i, b_i]$
 - Linear HA: : $\dot{x} = A_i x + b_i$
- An *execution* of **A** is a sequence $\tau_0, \tau_1, \tau_2, ...$
- Assume A is *non-blocking, i.e,* if time diverges along **every** execution



Outline

- Background
- Hybrid Step Relation
- Well-Foundedness and Inevitability
- Relational Abstractions
- Conclusions

Termination and Inevitability

- Similarity to Program Termination (Halting state inevitability)
- Well-founded relations
- Dense time model vs Well-foundedness
- Hybrid Step Relation

Lets talk about Termination

Termination of Programs: An Example

integer i,j; /* initially arbitrary */
while (|i| > 1 or |j| > 1)
 { i= i + j; j = j - 1; }

- Program terminates if transiton relation
 - T_A is well-founded
- Transition relation
- T_A: If (|i| > 1 OR |j| > 1) then (i' = i+j AND j' = j-1)
- For above program T_A is not well-founded
- $(4,2) \rightarrow (6,1) \rightarrow (7,0) \rightarrow (7,-1) \rightarrow (6,-2) \rightarrow (4,-3) \dots$
- $(-4,2) \rightarrow (-2,1) \rightarrow (-1,1)$ stops
- But, $I \wedge T_A$ is, where $I \triangleq |i + j(j+1)/2| \le 1 \wedge j \le 1$

Hybrid Step Relation

 T_A

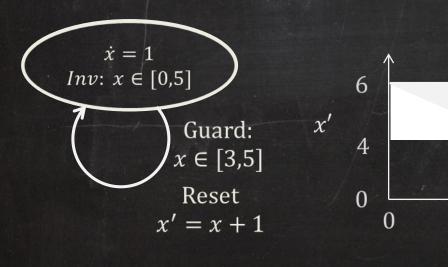
3

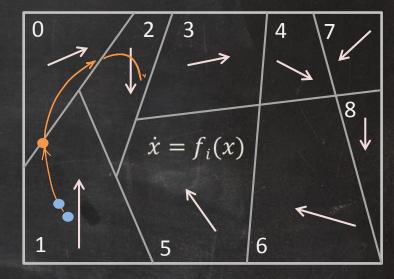
X

5

Definition. $T_A \subseteq Q \times Q$ hybrid step relation (HSR) $(q,q') \in T_A \iff there \ exists \ q''$ such that there exists a trajectory from q to q'' and a transition from q'' to q'

Example:

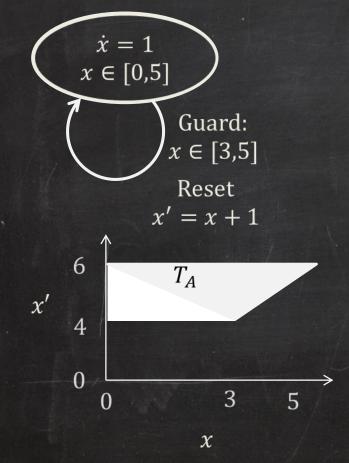




 $0 \le x \le 5 \text{ AND}$ $\exists t: 3 \le x + t \le 5 \text{ AND}$ x + t + 1 = x'After quantifier elimination $0 \le x \le 5 \text{ AND}$ $x + 1 \le x' \text{ AND}$

 $4 \leq x' \leq 6$

Is it possible to perform this selfloop infinitely many times ?



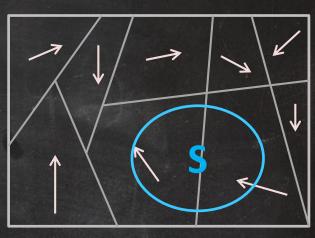
(0,4) (4,5) (5,6) stop
All finite sequences

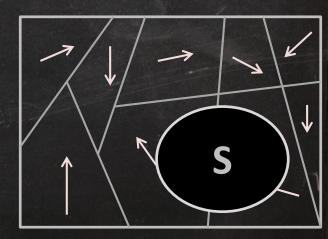
 $0 \le x \le 5 \text{ AND } x + 1 \le x' \text{ AND } 4 \le x' \le 6$

Inevitability and Well-foundedness

Theorem 1. S is inevitable for A iff hybrid-step relation $T_{A/S}$ for A/S is well-founded

Definition: A/S = obtained by removing S from A Remove transitions from S All trajectories stop at S





Proof Sketch

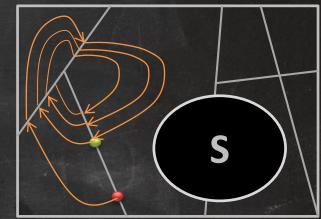
- Theorem 1. S is inevitable for A iff hybrid-step relation T_{A/S} for A/S is well-founded
- (T_{A/S} Well-founded => S is inevitable for A)
 - If $T_{A,S}$ is well founded then there are no infinite chains outside **S**
 - Every execution outside S has finitely many transitions
 - Since, finite duration elapses between transitions (local nonblocking), total time outside S is also finite => Since, A is non-blocking, S is inevitable
 - (S is inevitable for $A => T_{A/S}$ Well-founded)
 - Suppose there is an infinite decreasing chain q_0q_1 ... in $T_{A/S}$
 - Chain corresponds to an execution α with infinitely many transitions outside S
 - Time diverges in α (nonZeno) outside S, which contradicts inevitability of S

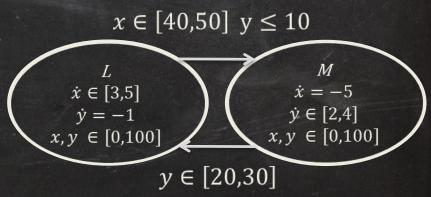
Hybrid Step Relations for Loops

- **Theorem 1. S is inevitable** for *A* iff $T_{A/S} \subseteq R$, *R* is well-founded Using [Podelski & Rybalchenko 2004] **Theorem 2. S is inevitable for** *A* **iff** $T_{A/S}^+ \subseteq \bigcup_{i=1}^n R_i$, where $\{R_i\}$ is a
- collection of well-founded relations and $T_{A/S}^+$ is the transitive closure of $T_{A/S}$
- (a,c) $\in T_{A/S}^{+}$ iff a $T_{A/S} b_1 T_{A/S} b_2 T_{A/S} \dots T_{A/S} c$
- $(q, q') \in T_{A/S}^+$ iff there is execution α : q to q'
- Need to show that every execution is well-founded
- Suffices to consider loops, i.e., executions starting and ending at the

Using Disjoint Union of Wellfounded Relations

- For every loop O, find a well-founded relation R_i containing T_O
- Example, Rectangular HA:
- $T_{MLM} =$ (x, y $\in [0, 100] AND x' \in [40, 50] AND y' \leq$ 10 AND x' - x $\in [-25, -1] AND y' \geq y + 2$)
- T_{MLM} can be computed and
- Well-foundedness of T_{MLM} can be checked using linear functions over x, x', y, y' e.g. using Rankfinder





For Linear Dynamical Systems computing HSR involves Matrix Exponentials

General Dynamics

- For a location $l \in L$ suppose we have a Lyapunov-like function $V_l: \mathbb{R}^4 \longrightarrow \mathbb{R}$ with - (stable) $\exists \lambda_l < 0$ and $B_l > 0$ such that for any trajectory τ in $l \in L$, $V_l(\tau(t)) \leq B_l e^{\lambda_l t} V_l(\tau(0))$ OR
 - (unstable) $\exists \lambda_l > 0$ and $B_l > 0$ such that for any trajectory τ in $l \in L, V_l(\tau(t)) \leq B_l e^{\lambda_l t} V_l(\tau(0))$
- We can over-approximate T_A^+ hybrid step relation if we know bounds on dwell time

Lyapunov Abstraction

- $\mathcal{V} = \{V_{l,i}\}_{i=1}^k$: Collection of k Lyapunov functions for location l
- Abstraction: $\beta \colon \mathbb{R}^n \to \mathbb{R}^k$

 $-\beta_{v}(x) = V_{l,1}(x), ..., V_{l,k}(x)$ where x. loc = l

Abstraction of HSR

 $-\beta_{\mathcal{V}}(\Gamma) = \{(y, y') | \exists x, x' : \beta(y) = x \land \beta(x') = y'\}$

- Theorem: If $\beta_{\nu}(\Gamma)$ is well-founded then so is Γ .
- Next: Steps, Loops, and Gamma (Γ)

Example: Time Triggered Linear HA

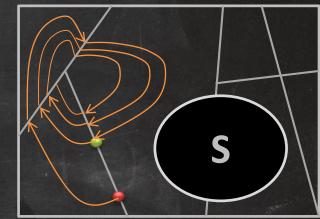
- Clock (c) constrains dwell time at each location
 - Unstable: upper bound
 - Stable: lower bound
- Guards overapproximated by level sets of V_{i,l}
- $\mu_{i,l,m}$:Bound on growth of $V_{i,l}(x) \le \mu_{i,l,m}$ $V_{i,m}(x')$
- $(y, y') \in \beta \iff \exists y''$ such that $- y''_i \le B_l e^{\lambda_l D} y_i$ where D:lower bound $- G_{i,min} \le y''_i \le G_{i,max}$
- $y'_i \leq \mu_{i,l,m} y''_i \leq \mu_{i,l,m} B_l e^{\lambda_l D} y_i$
- $y'_i \leq \frac{y_i}{K} \land y_i \geq c_i$

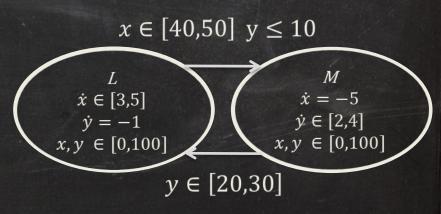
 $\dot{x} = A_1 x$ $c = 10; c \coloneqq 0$ $\dot{c} = 1$ $c \leq 5$ $\dot{x} = A_3 x$ $\begin{array}{c|c} c = 16; & c = 5; \\ c \coloneqq 0 & c \coloneqq 0 \end{array}$ $\dot{c}=1$ $c \leq 10$ $\dot{x} = A_2 x$ $\dot{c} = 1$ $c = 16; c \coloneqq 0$ $c \leq 16$

 $A_1 = \begin{bmatrix} -1 & 0 \\ 5 & -3 \end{bmatrix} \quad A_2 = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \quad A_3 = \begin{bmatrix} -4 & -2 \\ 0 & -9 \end{bmatrix}$

Using Disjoint Union of Wellfounded Relations

- For every loop O, find a well-founded relation R_i containing T_o
- For Rectangular HA and TTLHA we can compute (approximate) T_o
- Well-foundedness of T_o can be checked using linear functions over x, x', y, y' e.g. using Rankfinder
- But there may be infinitely many loops to consider
- We will abstract each T_o with an abstract transition relation



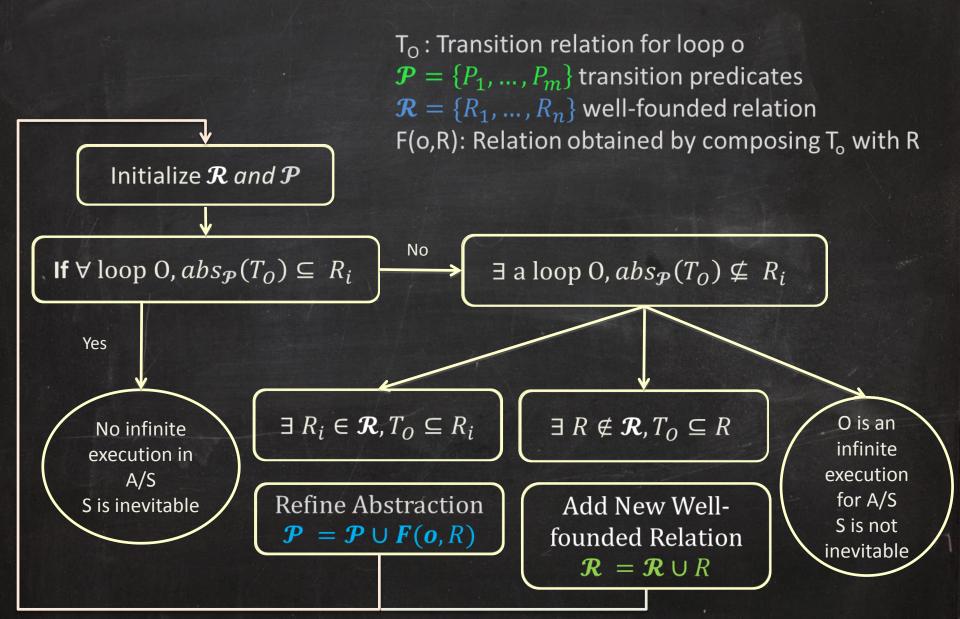


Abstracting Loop HSRs with Transition Predicates

X

- Given $\mathcal{P} = \{P_1, \dots, P_m\}$ a collection of transition predicates, i.e., each $P_i \subseteq Q \times Q$
- $abs_{\mathcal{P}}(T_O) \supseteq T_O$ is the smallest superset of T_O constructed by intersecting P_i 's
- Observe. If *P* is finite, *abs_P* has finite range; even with infinitely many loops there are a finite number of *abs_P*(T_o)'s to check
- Theorem 3. S inevitable for A if there exist (1) predicates $\mathcal{P} = \{P_1, \dots, P_m\}$ and (2) well-formed relations $\mathcal{R} = \{R_1, \dots, R_n\}$ such that for every loop O

Abstraction-Refinement Algorithm



Bringing it all together

- Inevitability of HA A to set S
- Prove well-foundedness of T_{A/S}
- Prove well-foundedness of abstract loop transition relations abs_P(T_o) that constitute T_{A/S}
- Completeness
 - For rectangular initialized HA, guaranteed to terminate
 - Linear TTHA symmetric with respect to the k Lyapunov functions: if $x T_L x'$, then for all $q \in Abs^{-1}v(x)$ there exists $q' \in Abs^{-1}v(x')$ such that $q T_A q'$

		Unstable	
	Problem	locations	Time
	(n, L)		(sec)
	(2,5)	2	0.01
	(2,10)	3	0.14
	(2,20)	5	1.88
	(2,40)	8	88.94
ł	(2,50)	9	392.85
	(3,20)	5	2.02
	(3,40)	8	38.11
	(4,20)	5	100.49
	(4,40)	8	110.34

q

P'

a

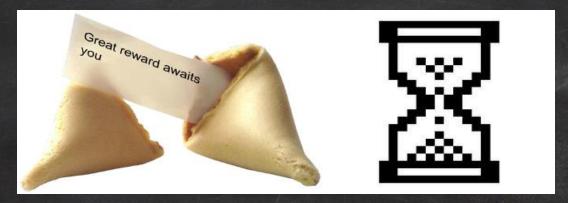
 $V_1(q) = 1 V_2(q) = 3$ $V_1(q') = 2 V_2(q) = 5$

 \langle (1,3), (2,5) $\rangle \in \mathsf{T}_{\mathsf{L}}$

Ongoing and future directions

- What additional (robustness) assumption are needed for completeness of inevitability verification?
- Nonlinear Ranking Functions
- Invariant generation + Ranking
- Extension to networked and distributed hybrid systems

Questions?



Acknowledgment

The presented research is funded by

 National Science Foundation
 John Deere Co.