
Lyapunov Abstractions for Inevitability of Hybrid Systems∗

Parasara Sridhar Duggirala
Department of Computer Science

University of Illinois at Urbana Champaign
Urbana, IL

duggira3@illinois.edu

Sayan Mitra
Coordinate Science Laboratory

University of Illinois at Urbana Champaign
Urbana, IL

mitras@illinois.edu

ABSTRACT
A set of states S is said to be inevitable for a hybrid automa-
ton A if every behavior of A ultimately reaches S within
bounded time. Inevitability captures various commonly oc-
curring liveness properties. In this paper, we present an algo-
rithm for verifying inevitability of Linear Hybrid Automata
(LHA). The algorithm combines (a) Lyapunov function-based
relational abstractions for the continuous dynamics with (b)
automated construction of well-founded relations for the
loops of the hybrid automaton. The algorithm is complete
for automata that are symmetric with respect to the chosen
Lyapunov functions. The algorithm is implemented in a pro-
totype tool (LySHA) which is integrated with a Simulink/S-
tateflow frontend for modeling hybrid systems. The experi-
mental results demonstrate the effectiveness of the method-
ology in verifying inevitability of hybrid automata with up
to five continuous dimensions and forty locations.

Keywords
Stability; Switching Systems; Abstraction; Formal Methods;

1. INTRODUCTION
In this paper, we present a technique for verifying a type

of liveness property called inevitability [21, 3] for systems in-
volving both discrete and continuous dynamics. The hy-
brid system formalisms [1, 13] provide a convenient math-
ematical framework for modeling such systems. A behavior
or an execution of a hybrid automaton is an alternating se-
quence of discrete state transitions and continuous trajecto-
ries, where the latter are often specified by differential and
algebraic equations. A set of states S is said to be inevitable
for a hybrid automaton (HA) A if starting from arbitrary ini-
tial states, every execution of A reaches S within bounded
time. Inevitability captures practical liveness requirements

∗This research is supported by a research grant from the Na-
tional Science Foundation (CNS-1016791).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hybrid Systems Computation and Control ’12 Beijing, China
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

such as: a robot must arrive within a neighborhood of a way-
point, a traffic control algorithm must allow vehicles to make
progress along all intersecting routes, and a routing protocol
must arrive at a valid forwarding scheme after some nodes
fail.

The switched system model (see, for example the books [15]
and [25] and the references therein) can be viewed as an ab-
straction of hybrid automata. Here the guards and resets
are abstracted by exogenous switching signals. Naturally,
the problem of verifying inevitability for hybrid automata is
connected to the problem of analyzing stability of switched
systems. Research on the latter problem has focused on es-
tablishing necessary and sufficient conditions for stability.
These conditions typically assume (a) existence of common
or multiple Lyapunov functions and (b) timing-dependent
restrictions on families of switching signals for guaranteeing
stability [5, 12]. Although, there are some examples of ver-
ification algorithms which build upon these results (for ex-
ample [19]), in general, a systematic framework for liveness
verification of hybrid systems is still missing. In this paper,
we propose such a framework which combines Lyapunov
functions with program analysis techniques. We present an
instance of this framework as an abstraction-refinement al-
gorithm for inevitability verification of Linear Hybrid Au-
tomata. Our prototype implementation of the algorithm au-
tomatically verifies inevitability and suggests counterexam-
ples for HA with upto five continuous variables and forty
locations.

1.1 Overview
Throughout this paper we will assume that the system

model A is nonblocking, that is, it allows time to diverge.
For reactive systems which are expected to run for long pe-
riods of time this assumption is reasonable. Now, suppose
we want to prove the inevitability of hybrid automaton A
to the set S. Let B be the automaton obtained by remov-
ing the set S from A. In [9], we observed that A inevitably
reaches S if and only if the automaton B is blocked within
finite time. In other words, time cannot diverge to infinity in
B if and only if S is inevitable for A. This suggests that in-
evitability can be verified by verifying the blocking property.
This blocking property is related to termination of programs
and we will leverage available and recently developed tech-
niques for program termination verification.

The standard technique for proving program termination
involves finding a well-founded relation which subsumes the
transitions of the program. A well-founded relation has no
infinite chains, and hence, the program cannot have infinite
executions. Unlike programs, however, HA have uncount-

able states which evolve both through discrete transitions
and continuous trajectories. Furthermore, a single continu-
ous trajectory can be decomposed into arbitrarily many small
steps and seemingly violate the well-foundedness criteria.
The first step in our approach is to define a new transition re-
lation (called hybrid step relation (HSR)) which combines the
continuous trajectories and the discrete transitions. Through
the lens of program analysis, then, verifying inevitability of
A becomes equivalent to proving well-foundedness of B’s
HSR.

The HSR captures detailed information about the state-
evolution. For linear dynamics it involves real arithmetic for-
mulas with exponentials and trigonometric functions. There-
fore, the above methodology faces computational barriers
from two directions: first in computing HSRs and in com-
puting the composition of these HSRs, second in checking
the well-foundedness of HSRs. To address these issues, we
abstract the HSR with a collection of Lyapunov-like functions
for the individual locations. A wide variety of standard tech-
niques based on semidefinite and convex optimization are
available for finding Lyapunov functions [14, 4, 22]. For in-
stance, for linear HA, the focus of this paper, Lyapunov func-
tions for the individual modes are obtained by solving the
(linear) Lyapunov equations. We abstract the state space of
the system using Lyapunov-like functions and this defines
a Lyapunov Step Relation(LSR) which overapproximates the
HSR. We show how LSR can be computed effectively for time-
triggered linear HA. We also identify a class of HA for which
there is no loss of precision in abstracting the HSR with Lya-
punov abstractions.

Even with the Lyapunov abstractions, proving
well-foundedness of the LSR of complex hybrid systems can
become intractable. Leveraging recent results in program ter-
mination analysis which have led to effective new tools for
termination analysis of realistic software systems [8, 6], we
show that it suffices to find well-founded relations for the
LSRs corresponding to individual loops of the HA. Roughly,
if all the loops of B are well-founded, then none of them can
be sustained forever, and we can conclude that the B is block-
ing, and that A inevitably reaches S.

One final barrier to the above approach is that the num-
ber of loops of B can be infinite. To address this, we ab-
stract the individual loop LSRs with finitely many transition
predicates. This guarantees termination of our algorithm,
even though it may sometimes fail to prove inevitability or
the blocking property. Putting it all together, we obtain a
new abstraction-refinement based framework for verifying
inevitability of HA. Based on our experimental results with a
prototype implementation of the algorithm for linear HA, the
method appears to scale to system models with more than
forty locations and five or so continuous states.

1.2 Related Work
Abstractions over the state space of dynamical systems have

been used to prove safety properties in [24, 16]. Both, of these
approaches, use timed automaton for abstracting the behav-
ior of dynamical system. In [24], however, Lyapunov func-
tions were used for creating the timers in the timed automa-
ton abstraction. This paper shows how similar Lyapunov-
based abstractions can be applied to linear HA for verifying
inevitability.

In [23], transitional abstractions (relational abstractions) were
used to prove safety properties of the systems. These transi-

tional abstractions capture the relation among the state vari-
ables from the beginning to the end of a trajectory (i.e. con-
tinuous evolution of the system). These transitional abstrac-
tions are computed from the eigenstructure of the relevant
matrices and by performing quantifier elimination. In con-
trast, our abstractions differ from this approach primarily in
two ways, First, we require the transitional abstractions to
also capture the discrete behavior of the system by defining
the Hybrid Step Relation which captures both the continuous
trajectories and the discrete transitions of the system. Sec-
ondly, we require explicit Laypunov functions for abstrac-
tion of the state space of the system. The techniques of [23]
may provide effective means of computing abstractions of
the type we need for inevitability. This direction will be ex-
plored in the future.

A different algorithm for stability of a linear HA which
relies on finiteness of certain sequences called snapshot se-
quences has been presented in [21]. In [21], stability of a
linear hybrid system is characterized as finiteness of certain
sequences called snapshot sequences . Three types of snapshot
sequences are identified and a new hybrid automaton repre-
senting the execution of these three snapshot sequences are
created. Further, by analyzing the unary reachability of these
automaton using reachability tools like PHAVer [10], finite-
ness of these sequences is determined and hence stability of
the given automaton is verified. Our approach of first com-
puting Lyapunov abstractions could be combined with this
analysis of snapshot sequences.

2. PRELIMINARIES
We briefly introduce the basic concepts of the hybrid au-

tomaton framework and refer the reader to [1, 13, 18] for de-
tails. For a vector x in Rk then we denote its components by
x[1], x[2], . . . , x[k]. A relation R ⊆ S × S on a set S is well-
founded if it does not contain any infinite sequence of pair-
wise related elements. A set of variables, say V , is used to
define the state of a hybrid automaton. Each variable v ∈ V
is associated with a type, denoted by type(v), which defines
the set of values it can take. A valuation v for a set of vari-
ables V maps each v ∈ V to an element in type(v). We use
the standard v.v notation to refer to the valuation of a vari-
able v ∈ V at v. The set of all valuations of V is denoted by
val(V).

The state of a hybrid automaton, that is, the valuation of
its variables can change through instantaneous discrete tran-
sitions and continuously over an interval of time by following
a trajectory. A trajectory for a set of variables V is a function
τ : [0, t] → val(V), where either t ∈ R≥0 or ∞. The do-
main of τ is denoted by τ.dom. The first state of τ , denoted
by τ.fstate, is τ(0). A trajectory is closed if t is finite and in
this case we define τ.ltime

Δ
= t, τ.lstate Δ

= τ(t), and we write
τ.fstate

τ→ τ.lstate.

Definition 1. A Hybrid Automata (HA) A is a tuple
〈V, Loc,A,D, T 〉 where

(a) V = X ∪ {loc} is a set of variables. Here loc is a discrete
variable of finite type Loc. Elements of Loc are called lo-
cations. Each x ∈ X is a continuous variable of type R.
Elements of val(V) are called states.

(b) A is a finite set of actions or transition labels.

(c) D ⊆ val(V)×A×val(V) is the set of discrete transitions.

A transition (v, a,v′) ∈ D is written as v
a→ v′. The

discrete transitions are specified by finitely many guards and
reset maps involving V .

(d) T is a set of trajectories for X which is closed under suffix,
prefix and concatenation (see [13, ?] for details). For each
l ∈ Loc, a set of trajectories Tl for location l are specified
by differential equations El and an invariant Il ⊆ val(X).
Over any trajectory τ ∈ Tl, loc remains constant and the
variables in X evolve according to El such that for all t ∈
τ.dom, τ(t) ∈ Il. T Δ

= ∪l∈LocTl.

Later in this paper, we introduce a class of HA called time-
triggered hybrid automaton which have a special timer vari-
able now that tracks the time spent in each location.

2.1 Semantics of Hybrid Automata
An execution of a hybrid automaton A records all the in-

formation (about variables) over a particular run. Formally,
an execution is an alternating sequence τ0a1τ1... where each
τi (except possibly the last) is a closed trajectory and
τi.lstate

ai+1→ τi+1.fstate. Note that executions may start from
any state of the automaton. The first state of α is denoted by
α.fstate = τ0.fstate. The duration of α is defined as α.ltime =∑

i τi.ltime. The property of interest in this paper is inevitabil-
ity: A set of states S ⊆ val(V) is said to be inevitable for A if
every execution of A reaches S in finite time.

An execution is finite if it is a finite sequence, otherwise it
is infinite. An execution α is said to be nonblocking if its du-
ration is infinite or if along all its infinite extensions time di-
verges to infinity; otherwise α is said to be blocking. A hybrid
automata A is blocking (nonblocking) if all its executions are
blocking (nonblocking, respectively). A hybrid automaton is
said to be Zeno if there exists an execution of finite duration
with infinitely many transitions.

The notion of a simulation relation will be used later in our
development.

Definition 2. A relation R ⊆ val(V)× val(V) is a simulation
relation if for every v1,v2,v

′
1 ∈ val(V) and v1 R v2, (a) if

v1
a→ v′

1 then there exists v′
2 such that v′

1 R v′
2,v2

a→ v′
2, and

(b) if v1
τ→ v′

1 then there exists v′
2 such that v′

1 R v′
2,v2

τ→ v′
2.

2.2 Three Assumptions
We assume that the hybrid automata to be verified is non-

blocking. This is a natural assumption for systems which are
expected to run for long time periods.

A hybrid automaton may be non-blocking because it stays
in one location forever. In such cases, the verification prob-
lem reduces to the well-studied problem of analyzing the sta-
bility of the differential equations of that location with re-
spect to the target set. Our goal is to study the hybrid as-
pect of inevitability verification, and therefore, we assume
that the automaton is locally blocking. That is, time cannot
diverge within a single location.

Finally, we will assume that the automaton does not have
Zeno executions. Systems can be designed to be non-Zeno
with built-in dwell times. Furthermore, several techniques
have been developed for checking Zenoness and dwell time
properties [2, 19].

3. VERIFYING INEVITABILITY

We begin this section by setting up inevitability verifica-
tion as a problem of checking well-foundedness of a certain
relation which we call the Hybrid Step Relation (HSR). Next,
we introduce Lyapunov function-based abstractions for over-
approximating HSRs. We show that for a special class of HA
which conform to the symmetries of the Lyapunov functions,
Lyapunov abstractions provide a complete method for prov-
ing well-foundedness of HSR. Finally, we show how Lya-
punov abstractions can be computed for time-triggered or
periodically-controlled hybrid automata.

3.1 Inevitability to Well-Foundedness
Unlike programs which evolve in atomic discrete transi-

tions, a trajectory can be split into infinitely many small tra-
jectories. The relation relating all these intermediate states
in a trajectory is not well-founded. The hybrid step rela-
tion combines a trajectory with a following transition, and
thereby relates a state v with the maximal state v′ that can
follow a trajectory from v.

Definition 3. For HA A, the hybrid step relation (HSR) Γ ⊆
val(V) × val(V) is defined as: (v,v′) ∈ Γ iff there exist v′′ ∈
val(V), a ∈ A, τ ∈ T such that v = τ.fstate,v′′ = τ.lstate and
v′′ a→ v′.

In other words, from v there is a trajectory followed by a
transition which takes it to v′.

A key observation from [9] (restated as Theorem 1 below)
relates inevitability to blocking: A set of states S is inevitable
for HA A if an only if ASc is blocking, where ASc is obtained
by (1) removing the states S from the state-space of A (2) re-
moving the transitions into S from the transitions of A and
(3) removing the non-trivial trajectories in S from the trajec-
tories of A.

Theorem 1. (from [9]) A locally blocking, non-Zeno HA A is
blocking iff Γ is well-founded.

Proof. Suppose that A is not blocking, i.e. there exists an ex-
ecution α in which time diverges. Since A is locally closed,
the execution α is of the form τ0, a1, Let β = v0,v1, . . .,
where vi = τi.fstate. Hence, we have that ∀i, (vi,vi+1) ∈ Γ.
Thus β is an infinite sequence and Γ is not well-founded.

Suppose that the HSR Γ is not well-founded. Hence, we
have an infinite sequence β = v0,v1, . . ., where (vi,vi+1) ∈
Γ. From β and Γ, we can construct a sequence β′ = v0,
v′
0,v1,v′

1,. . . such that ∀i, ∃τi, ai such that vi = τi.fstate,v
′
i =

τi.lstate and v′
i

ai+1−−−→ vi+1. Thus we have that α = τ0, a1, τ1, . . .
is an admissible execution of the system. Since A is non-
Zeno, it means that time diverges along execution α and thus
A is not blocking.

For rectangular hybrid automata [11] the hybrid step re-
lation can be computed exactly and a concrete algorithm is
presented in our previous work in [9]. For general hybrid
automata, computing the hybrid step relation is undecidable.
For this purpose, we compute the abstractions of hybrid step
relation with respect to an abstraction β over the state space
of the system. The next theorem illustrates the utility of ab-
stractions for proving well-foundedness.

Definition 4. Given a HSR Γ, an abstract domain D, and a func-
tion β : val(V) → D, we define β(Γ) ⊆ D × D as the rela-
tion (y, y′) ∈ β(Γ) iff ∃v,v′ ∈ val(V), such that (v,v′) ∈ Γ,
y = β(v) and y′ = β(v′).

Theorem 2 follows from Theorem 1 in [7]

Theorem 2. If β(Γ) is well-founded then Γ is also well-founded.

Theorem 2 will be useful, for example, in the case of time-
triggered linear hybrid automata, where computing the hy-
brid step relation involves real arithmetic with exponentials
while computing the abstraction of the HSR will involve only
linear real arithmetic.

3.2 Lyapunov Abstractions
We assume that all the locations of the hybrid automata

are either asymptotically stable or asymptotically unstable.
In the case of linear systems, this implies that we can effec-
tively compute Lyapunov-like functions that exponentially
decay or grow along the trajectories. Formally, for every
location, l ∈ Loc, we have k such functions, denoted by
Ll,1, Ll,2, . . . , Ll,k. If the location l is stable, then for each
i ∈ {1, . . . , k}, ∃λl,i < 0 and Bl,i > 0, such that for every tra-
jectory τ ∈ Tl, Ll,i(τ(t)) ≤ Bl,ie

λl,itLl,i(τ(0)). If the location
l is unstable, then ∃λl,i > 0 and Bl,i > 0, such that for every
trajectory τ ∈ Tl, Ll,i(τ(t)) ≤ Bl,ie

λl,itLl,i(τ(0)).

Definition 5 (Lyapunov Abstraction). Let L = {L�,i}, � ∈
Loc, i ∈ {1, . . . , k} be an ordered collection of k|Loc| Lyapunov
functions. The Lyapunov Abstraction is a function L : val(V) →
Loc× Rk defined as:

L(v) = 〈v.loc, Lv.loc,1(v.X), . . . , Lv.loc,1(v.X)〉.
For convenience, we also define L(v).loc = v.loc and

L(v).X = (Lv.loc,1(v.X), . . . , Lv.loc,k(v.X)).

L(Γ) ⊆ (Loc× Rk)× (Loc× Rk) is called the Lyapunov Step
Relation(LSR).

It follows from Theorem 2 that if a LSR L(Γ) is well-founded
then the corresponding HSR Γ is also well-founded. For com-
puting LSR, we need to construct Lyapunov-like functions
for each location. For linear hybrid systems, for asymptot-
ically stable modes, a quadratic Lyapunov function xT P x
can be effectively computed by solving the Lyapunov equa-
tions in the matrix form: AP+PAT = −Q, where Q is a posi-
tive semidefinite matrix. Similarly, for asymptotically unsta-
ble modes, a quadratic Lyapunov-like function xT P x can
be obtained by solving the matrix equation AP + PAT = Q,
where Q is a positive semidefinite matrix.

Definition 6 (Symmetric States). Given a HA A and a Lya-
punov abstraction L, we define the relation SL as (v,v′) ∈ SL iff
L(v) = L(v′). We say that two SL-related states are symmetric
with respect to L.

Definition 7 (Symmetric Hybrid Automata). Given a HA A
and a Lyapunov abstraction L, A is said to be symmetric with re-
spect to L iff SL is a simulation relation for A.

Informally, an automaton is symmetric with respect to a
collection of Lyapunov functions if any two states with iden-
tical valuation of those Lyapunov functions behave indistin-
guishably. Since the transitions and the trajectories of the HA
preserve any simulation relation between states, it follows
that the hybrid step relation also preserves symmetry.

Proposition 3. Given a HA A that is symmetric with respect
to a Lyapunov abstraction L, for any v1,v

′
1,v2 ∈ val(V), if

(v1,v
′
1) ∈ Γ and (v1,v2) ∈ SL then there exists v′

2 ∈ val(V),
and (v′

1,v
′
2) ∈ SL such that (v2,v

′
2) ∈ Γ.

Example 1 We illustrate the Lyapunov step relation using a
simple example. Consider the HA in Figure 1. At location
i ∈ {1, 2, 3}, the dynamics of the system is defined by ẋ =
Aix. Notice that all the invariants depend only on the timer
now. Suppose

A1 =

(
−1 0

5 −3

)
A2 =

(
2 1

0 −1

)
A3 =

(
−4 −2

0 −9

)
.

Eigenvalues for A1 and A3 are negative and those of A2 are
positive, therefore, locations 1 and 3 are asymptotically sta-
ble while 2 is unstable. Consider an execution starting from

Figure 1: Linear hybrid automaton with 3 locations.

the state v where v.loc = 1,v.x1 = 2,v.x2 = 5. Initially,
the system will evolve according to the continuous dynam-
ics ẋ = A1x. After 5 time units, the location changes to
2. By solving the differential equation for mode A1, we ob-
tain that v

τ→ v′′ where v′′.loc = 1,v′′.x1 = 0.0135 and
v′′.x2 = 0.0337, and τ.ltime = 5. Further, the system changes
its location from 1 to 2, i.e. v′′ → v′, we have v′.loc =
2,v′.x1 = 0.0135 and v′.x2 = 0.0337. Therefore, we get that
(v,v′) ∈ Γ.

The two Lyapunov functions for locations 1 and 2 are ob-
tained as

L1,1 = 0.5x2
1 + 1.25x1x2 + 1.2083x2

2

L1,2 = 0.5x2
1 + 1.75x1x2 + 1.625x2

2

L2,1 = x2
1/3− x1x2/3 + x2

2/2, and
L2,2 = x2

1/6 + x1x2/3 + x2
2/2.

Let y = L(v) = 〈1, L1,1(v), L1,2(v)〉 = 〈1, 44.7705, 60.1250〉.
Let y′ = L(v′) = 〈2, L2,1(v

′), L2,2(v)〉= 〈2, 4.7691×10−4, 7.4991×
10−4〉. Hence, we have (y, y′) ∈ L(Γ).

3.3 Refinement and Completeness
In general, the abstract relation L(Γ) may not be well-founded

even if the HSR Γ is. In other words, L(Γ) may contain an in-
finite chain σ = y1, y2, . . . such that there is no concrete exe-
cution of A corresponding to the infinite sequence of concrete
states L−1(σ)

Δ
= L−1(y1),L−1(y2), Such sequences are

called potential counterexamples. If any one of these executions
is indeed an execution of HA, then the system is not blocking
. Otherwise, the counterexample is said to be spurious. In
such cases, we would like to refine the abstraction to L′, such
that, the set of potential counterexample L′−1(σ) decreases by
some measure. Ideally, we would like this sequence of refine-
ments to terminate. That is, proving the well-foundedness of

some kLSR should suffice for proving well-foundedness of
the concrete HSR. In this section, we present a technique for
refining Lyapunov abstractions and identify a class of hybrid
automata for which this procedure is guaranteed to termi-
nate.

Definition 8 (Distinguishing Lyapunov function). For a given
set of k Lyapunov-like functions L1, . . . , Lk, a (k + 1)st function
Lk+1 is said to be distinguishing if ∀x1, x2, . . . , xk ∈ R≥0, if⋂k

i=1 L
−1
i (xi) �= ∅, then there exists xk+1 ∈ R≥0 such that

k+1⋂
i=1

L−1
i (xi) �

k⋂
i=1

L−1
i (xi).

Informally, the (k+1)st function is able to distinguish points
in any subspace defined by the intersection of level-sets of
all the other k Lyapunov functions. We now prove that the
number of potential counterexamples decrease when a distin-
guishing Lyapunov function is added to each location for the
Lyapunov abstraction.

Proposition 4. Given L = {L�,i}, � ∈ Loc, i ∈ {1, . . . , k} de-
fine a Lyapunov abstraction L, a refinement of this abstraction L′

can be obtained by adding a distinguishing Lyapunov function for
each location.

Proof. Suppose that σ = y1, y2, . . . be a counterexample for
the abstraction L where yi ∈ Loc × Rk and let v1,v2, . . . be
the set of potential counterexamples L−1(σ). Now, consider
the counterexample σ′ = (y1, z1), (y2, z2), . . . of L′ where
(yi, zi) ∈ Loc × Rk+1 and v′

1,v
′
2, . . . be the set of potential

counterexamples L−1(σ′). Let Vi = {vi} and V ′
i = {v′

i} From
Definitions 5 8, we have that whenever Vi is non-empty, we
have that V ′

i � Vi, in which case, the number of potential
counter examples decreases. If Vi is an empty set, then the se-
quence y1, y2, . . . is not an abstract counter example as (yi−1, yi)
cannot be in L(Γ).

We observe that Lyapunov function xTPk+1x is distinguish-
ing from xTP1x, . . . , x

TPkx only when P1, . . . , Pk+1 are lin-
early independent . In practice, we follow this strategy to add
distinguishing Lyapunov functions during refinement of Lya-
punov abstractions.

Example 2 To illustrate the refinement process, we consider
the hybrid automata in Example 1. Consider the execution of
the system starting from v where v.loc = 1,v.x1 = 2,v.x2 =
5. We have established in Example 1 that v will evolve ac-
cording to continuous dynamics for 5 time units and reaches
the state v′′ where v′′.loc = 1,v′′.x1 = 0.0135 and v′′.x2 =
0.0337 and then takes a discrete transition to v′ where v′.loc =
2,v′.x1 = 0.0135 and v′.x2 = 0.0337. Therefore, we get that
vΓv′.

Now consider the abstraction L of the system where we
have one Lyapunov function associated with each location,
i.e. L1,1 for location 1 and L2,1 for location 2. Now in this ab-
straction, the Lyapunov step relation would be y = 〈1, L1,1(v)〉
and y′ = 〈2, L2,1(v

′)〉. Thus we have that y = 〈1, 44.7705〉
and y′ = 〈2, 4.7691× 10−4〉. Hence (y, y′) ∈ L(Γ). However,
this approximation is too coarse because this abstract transi-
tion corresponds to all the states on the level set of L1,1 =
44.7705, related to all the states on the level set of L2,1 =
4.7691× 10−4. To make the abstraction finer we add 2 more
Lyapunov functions L1,2 and L2,2 to L and obtain L′. The

kLSR for L′ corresponding to the refined Lyapunov abstrac-
tion is (y, y′) ∈ L(Γ), where y = L′(v) = 〈1, L1,1(v), L1,2(v)〉 =
〈1, 44.7705, 60.1250〉, y′ = L′(v′) = 〈2, L2,1(v

′), L2,2(v)〉 =
〈2, 4.7691× 10−4, 7.4991× 10−4〉. It can be observed that by
adding a new Lyapunov function for each location, one can
eliminate a lot of spurious transitions. In this example, this
corresponds to eliminating some of the transitions where the
states in level set L1,1 = 44.7705 are not related to L2,1 =
4.7691× 10−4.

Theorem 5. For a symmetric hybrid automaton A w.r.t. a Lya-
punov abstraction L, we have that Γ is well-founded iff L(Γ) is
well-founded.

Proof. From Theorem 2 we have that whenever L(Γ) is well-
founded, Γ is also well-founded. Now, we need to prove that
when L(Γ) is not well-founded, Γ is also not well-founded.
We prove this as follows: we consider an infinite chain L(Γ)
and from this chain, we prove that there exists an infinite
chain in Γ.

Let y1, y2, . . . be an infinite chain in L(Γ). Now, since (y1, y2) ∈
L(Γ), by Definition 5, we have that ∃(v1,v2) ∈ Γ such that
L(v1) = y1,L(v2) = y2. Now, since (y2, y3) ∈ L(Γ), we have
that ∃(v′

2,v
′
3) ∈ Γ such that L(v′

2) = y2 and L(v′
3) = y3.

Further since L(v2) = L(v′
2), we have that v2SLv′

2. From
Theorem 3, we have that Γ is also symmetric and hence ∃v3

such that L(v3) = L(v′
3) = y3 and (v2,v3) ∈ Γ. Similarly,

we get (v3,v4) ∈ Γ. Hence, one can construct an infinite
chain v1,v2, . . . such that (vi,vi+1) ∈ Γ and thus Γ is not
well-founded.

Figure 2: A Symmetric Linear hybrid automaton with 2 lo-
cations.

Next, we now look at examples of hybrid automata that
are symmetric and asymmetric.

Example 3 Consider the automaton shown in Figure 2. It
consists of two continuous variables variables x1, x2, where

A1 =

(
−2 0

1 −3

)
and A2 =

(
−1 2

1 −3

)
. Let L1(x1, x2)

Δ
=

0.25x2
1 + 0.1x1x2 + (0.55/3)x2

2 and L2(x1, x2)
Δ
= 1.75x1

2 +
1.25x1x2 + 0.375x2

2. The guards and reset maps are de-
fined as G1(x1, x2)

Δ
= L1(x1, x2) = 6.25, R1(x1, x2, x

′
1, x

′
2)

Δ
=

L2(x
′
1, x

′
2) = 175, G2(x1, x2)

Δ
= L2(x1, x2) = 25R1(x1, x2, x

′
1, x

′
2)

Δ
=

L1(x
′
1, x

′
2) = 2. We can observe that L1 is a Lyapunov func-

tion for location 1 and L2 is a Lyapunov function for location
2. Hence for a Lyapunov abstraction L with the set of Lya-
punov function L = {L1, L2}, we get that the system is sym-
metric. In Section 5, we observe how to prove inevitability
for this system using L.

Example 4 Now consider the trivial hybrid system shown in
Figure 3. It consists of only one location and only one con-

Figure 3: An asymmetric Linear hybrid automaton with 1
location.

tinuous variable. A quadratic Lyapunov function for the sys-
tem is L1,1 = x2. We can see that the system is not symmetric
with respect to the Lyapunov abstraction because of the dis-
crete transitions. We observe that the state where the value
of x = −5 is symmetric with respect to x = 5. However,
the state x = 5 can take a discrete transition and go to state
x = −10 whereas x = −5 cannot have such a transition.
Later, in Section 5, we observe that even though the given
system satisfies inevitability, since the Lyapunov abstraction
is not complete, we cannot prove it using Lyapunov abstrac-
tions.

3.4 Time-Triggered Hybrid Automata
In this section, we will derive the LSR for Time-Triggered

Hybrid Automata. In Time-Triggered Hybrid Automata, the
transition guards are always predicated on the timer variable
now and may also depend on other variables.

Definition 9. A time-triggered hybrid automaton A is a HA
with (a) a guard G : A → 2val(V) which associates each ac-
tion a ∈ A with an enabling predicate, (b) a special clock variable
called now, and (c) a constraint function C : Loc → R+ which
associates a timing constraint for each location. In addition, the
following axioms are satisfied:

(i) For a discrete transition v
a→ v′, v ∈ G(a) and v′.X =

v.X . Further, if v.loc is stable, then v.now ≥ C(v.loc)
and v′.now = 0. If v.mode is unstable, then v.now ≤
C(v.loc) and v′.now = 0.

(ii) For any trajectory τ in a stable location l, either τ.ltime ≥
C(l) or there exists a τ ′ for which τ is a prefix and τ ′.ltime ≥
C(l).

(iii) For any trajectory τ in an unstable location l, τ.ltime ≤
C(l).

A hybrid system is called strictly time-triggered when all the
switching conditions involve only the clock variable now. An
example of such a hybrid system is given in Figure 1. We
assume that one can come up with {Ll,i}, l ∈ Loc, i ≤ i ≤ k
Lyapunov functions which decays (grows) exponentially for
stable (unstable) locations.

Now, compute the LSR for time-triggered HA. Consider
(v,v′) ∈ Γ where v.loc = l and v′.loc = m. Let μl,m be
a constant such that ∀v a→ v′,L(v′).X[i] ≤ μl,mL(v′).X[i].
Let maxG(a) and minG(a) be arrays of real numbers such that
1 ≤ i ≤ k, minG(a)[i] and maxG(a)[i] are the least upper
bound and greatest lower bound of the set Si = {y|∃v ∈
G(a), y = L(v).X[i]}.

Theorem 6. We say that (y, y′) ∈ L(Γ) when (minG(a)[i] ≤
Bl,ie

λl,i×C(l)y.X[i]) ∧ (y′.X[i] ≤ μl,mBl,ie
λl,i×C(l)y.X[i])

where l = y.loc

Proof. Let (v,v′) ∈ Γ, then ∃v′′ such that ∃τ ∈ Tv.loc, τ.fstate =
v, τ.lstate = v′′ and ∃a ∈ D, (v′′, a,v′). Hence, we have that
v′′.X ∈ G(a) and since the reset map is identity, we have
v′.X ∈ G(a). Now, let y = L(v), y′ = L(v′), y′′ = L(v′′), l =
v.loc, l′ = v.loc. Since we have that the system should stay in
location l for at least C(l) time if l is stable, or else it should
stay at most for C(l) time in unstable modes, we have that
y.loc = l, y′′.loc = l and y′.loc = l′. Further, we have,

y′′.X[i] ≤ Bl,ie
λl,i×C(l)y.X[i] (1)

Further, since v′′ ∈ G(a), we have

minG(a)[i] ≤ y′′.X[i] ≤ maxG(a)[i] (2)

And by the value of μij , we also have

y′.X[i] ≤ μl,my′′.X[i] (3)

By combining equations 1, 2 and 3, we get that (y, y′) ∈ L(Γ)
when

(minG(a)[i] ≤ Bl,ie
λl,i×C(l)y.X[i]) ∧ (4)

(y′.X[i] ≤ μl,mBl,ie
λl,i×C(l)y.X[i]) (5)

Equation (4) represents the LSR relation for time-triggered
HA.

In this section we have seen how to obtain the Lyapunov
step relation L(Γ) for time-triggered hybrid systems. To prove
the blocking property, we need to prove the well-foundedness
of L(Γ) which we discuss next.

4. ABSTRACTION REFINEMENT FOR WELL-
FOUNDEDNESS

We have established that inevitability can be verified by
finding a well-founded relation R that contains the HSR Γ
or its Lyapunov abstraction L(Γ). In general, finding such a
well-founded relation R is difficult as it must subsume the
hybrid-steps along all possible paths or sequences of loca-
tions that can be visited by the hybrid automaton. Theorem 1
from [20] gives an alternative method for searching for such
relations by allowing us to come up with a well-founded re-
lation for each loop (sequence of locations starting and end-
ing at the same location). Restated in our context, this theo-
rem gives that Γ is well-founded iff its transitive closure Γ+

is contained in the disjunctive union of a finite collection of
well-founded relations. That is, Γ+ ⊆ ∪m

i=1Ri, where Ri is
a well-founded relation and m is a natural number. An al-
gorithm for verifying inevitability in rectangular hybrid sys-
tems based on this observation is presented in [9].

Applying the same algorithm for linear hybrid systems
poses two challenges. First, the HSR in the case of linear
hybrid systems involves exponentials. In order to overcome
this challenge, we prove the well-foundedness of LSR for the
loops. Second, the number of loops to be considered can be
possibly infinite. To overcome this challenge, we perform
standard predicate abstraction of the loop LSRs. Even if the
number of loops and hence the number of loop LSRs is infi-
nite, with respect to a finite collection of predicates, the set of
abstract loop LSRs becomes finite.

Proposition 7. The Lyapunov step relation L(Γ) is blocking if
and only if its transitive closure of (L(Γ))+ is contained in the
disjunctive union of finite well-founded relations. That is, there
exists a collection {R1, . . . , Rm} of well-founded relations such
that (L(Γ))+ ⊆ ∪m

i=1Ri.

For a given (y, y′) ∈ (L(Γ))+, it corresponds to an exe-
cution fragment α of A starting from v and ending at v′

such that L(v) = y and L(v′) = y′. If we can find a fi-
nite collection of well-founded relations containing the Lya-
punov abstractions of the first and last states of every exe-
cution, then we are done. First, observe that α is such that
v.loc = l1 and v′.loc = l2 and l1 �= l2, then the trivial re-
lation {(y, y′) | y.loc = l1 ∧ y′.loc = l2} proves the well-
foundedness of the relation {(y, y′)}. Since there are finitely
many locations, there are finite number of relations of this
type which cover all executions which do not start and end at
the same location. Hence, it suffices to consider (y, y′) pairs
with y.loc = y′.loc.

Next, to restrict the set of loops to be checked, we per-
form predicate abstractions over LSR. An abstraction with
respect to a collection of transition predicates P is a func-
tion that maps a relation ρ to another relation absP(ρ) where
ρ ⊆ absP(ρ). For every relation ρ ⊆ R≥0

k ×R≥0
k, we define

the abstraction of ρ with respect to the set of predicates P as
the conjunction of all the predicates that are weaker than ρ.
In other words, if p1, . . . , pn ∈ P such that ρ ⊆ pi, we have
that absP(ρ) = p1 ∧ . . . ∧ pn. For a relation σ = ρ1 ◦ . . . ◦ ρn,
obtained by composing several relations, we define absP(σ)
inductively as follows

abs(σ) = absP(ρ1 ◦ absP(σ1))

where σ1 = ρ2 ◦ . . . ◦ ρn
absP(σn−1) = absP(ρn)

Now we present the algorithm for proving well-foundedness.
The algorithm iteratively adds to a collection of predicates P
and a collection of well-founded relations R as it checks each
loop. For each loop of the hybrid automaton (say π), com-
pute the LSR L(Γ)π of the loop and its abstraction absP(L(Γ)π).
If this abstract relation is subsumed by one of the well-founded
relations in R then this loop cannot be sustained forever, and
we move on to the next loop. Otherwise, there are three pos-
sibilities: (1) If provably well-founded by a new relation R
(but not by any relation in R), then add R to R increasing the
arsenal of well-founded relations1. (2) Else if L(Γ)π is well-
founded (though its abstraction is not), then refine the ab-
straction by adding the path and loop predicated to P . (3) If
L(Γ)π is not well-founded then the π loop could be sustained
forever and it is suggested as a potential counter-example
to the inevitability/blocking property. If the automaton is
symmetric with respect to L, then π will indeed correspond
to an infinite execution that never satisfies the desired prop-
erty. For general automata, as a practical measure, we resort
to simulations for identifying real infinite executions corre-
sponding to a suggested counter-example loop.

4.1 Abstraction Refinement for Time-Triggered
Hybrid Automata

Checking well-foundedness of LSR for time-triggered LHA
can be performed using real arithmetic. Observe that Theo-
1The algorithm may fail if we are unable to infer well-
founded ness of this relation.

1R ← ∅; P ← ∅
while

3if exists π = v1 . . .vn s.t. v1.loc = vn.loc, ∀i < n, (vi,vi+1) ∈ Γ

and absP(L(Γ)π) � R for any R ∈ R then
5if exists R ∈ R such that L(Γ)π ⊆ R then

Refine Abstraction
7Ppath ← ⋃

i∈0..n Preds(L(vi,vi+1) ◦ . . . ◦ L(vn−1,vn))

Ploop ← Preds(R)∪
9

⋃
i∈0..n Preds(L(vi,vi+1) ◦ . . . ◦ L(vn−1,vn) ◦ R)

P ← P ∪ Ppath ∪ Ploop

11else
if L(Γ)π is well-founded relation by a (new) ranking relation R then

13Weaken disjunctive well-founded relation
R ← R ∪ R

15else
return "Unable to infer the blocking property of A, v1 . . .vn"

17else
return "A is blocking"

19end

Figure 4: Algorithm 1. Abstraction refinement based ver-
ification algorithm for blocking properties of hybrid au-
tomata.

rem 6 gives the LSR for time-triggered HA as follows:

minGa [i] ≤ Ble
λl,i×C(l)y.X[i] ∧

y′.X[i] ≤ μl,mBle
λl,i×C(l)y.X[i]

We observe that the values of λl,i for linear system ẋ = Alx
are dependent on the eigenvalues of Al. Further, the val-
ues μl,m, Bl and minGa can be calculated given the dynamics
and guards of each of the modes. Note that computing these
values is simple only because we are dealing with polynomial
functions. Also, C(l) is provided along with the description
of hybrid automata. Hence, the above relation can be simpli-
fied to the form as shown:

y′.X[i] ≤ y.X[i]

Ki
∧ y.X[i] ≥ ci where ci ≥ 0,Ki > 0 (6)

A useful property of the above structure in Equation (6) is
that this structure is closed under composition. Hence, com-
position of several LSRs for each loop can be easily performed.
Further, such a relation is well-founded iff K > 1. Also,
we have that a relation R1

Δ
= {y′.X[i] ≤ y.X[i]

K1
∧ y.X[i] ≥

c1 where c1 ≥ 0,K1 > 0} is an abstraction of the relation
R2

Δ
= {y′ ≤ y.X[i]

K2
∧ y.X[i] ≥ c2 where c2 ≥ 0,K2 > 0}

whenever K1 ≥ K2 and c1 ≤ c2.
Hence all the required operations— composition, check-

ing well-foundedness, and abstraction with respect to a set of
predicates can be computed effectively using real arithmetic
for the relations described in Equation (6).

5. EXPERIMENTS
We have implemented a prototype tool LySHA in MAT-

LAB for verifying inevitability of hybrid automata. LySHA is
integrated with Mathworks’ Simulink/Stateflow (SLSF) mod-
eling environment through HyLink which translates SLSF
models to hybrid automata [17].

5.1 Case Studies
We have created a suite of linear time-triggered HA for

evaluating LySHA. These automata are similar to the one shown
in Figure 1. Each such HA consists of a set of locations Loc
and a certain number (n) of continuous variables. When the

Figure 5: Non-inevitable behavior of the system described
in Figure 1 discovered with LySHA . Four (of infinitely
many) executions over the two locations and the corre-
sponding values of x and y are shown.

system is in a location l ∈ Loc, the continuous variables
evolve according to the linear dynamics ẋ = Alx, where
x is n-dimensional vector. As shown in Table 6, some of
the locations are stable while others are unstable. The sys-
tem switches from one location to another based on the timer
variable now and state predicates. We verify the inevitabil-
ity property of the system for the set of states Bε—an ε ball
around origin with ε = 0.001. Given the description of the
system in SLSF, HyLink generates the intermediate hybrid
automaton representation, which is then used by LySHA .

LySHA computes the LSR for each loop and checks whether
its abstraction is well-founded. If not, we refine the Lyapunov
abstraction by adding a linearly independent Lyapunov func-
tion to each location and again compute LSR for the loop.
After adding n such Lyapunov functions (where n is the di-
mension of the system), it terminates with a ”failure to ver-
ify”. In such cases, we simulate the loop and check whether
the loop satisfies the inevitability property or not. For the hy-
brid automaton shown in Figure 1, LySHA was unable to in-
fer inevitability for the loop 1 → 2 → 1. Observe in Figure 5,
that the loop 1 → 2 → 1 does not satisfy the inevitability
property. The figure represents the evolution of the two con-
tinuous variables x and y for four different executions of the
loop 1 → 2 → 1. Observe that when the system enters into
location 2 (sharp change in execution near (0, 0)), there is a
very rapid growth in the values of x and y. Hence, for each
loop, the state of the execution moves farther from origin.
This is the reason for the non-inevitable behavior of the sys-
tem. Further, LySHA confirmed that the loop 1 → 2 → 3 → 1
satisfies the inevitability property. The well-founded relation
in this case is given by the relation:

y′ ≤ y

2
∧ y > 0.001 (7)

In general, the technique may produce spurious counter-
examples. For example, upon verification of the inevitabil-
ity property for the HA in Figure 3, LySHA returns an ab-
stract counter-example which does not correspond to any
real counter-example. However, since the algorithm is com-
plete for symmetric HA (HA of Figure 2), upon computing
the Lyapunov step relation for the loop 1 → 2 → 1, the tool

Model Unstable Time Taken Is Bε

(n, |L|) modes (sec) inevitable

(2,5) 2 0.01 Yes

(2,20) 5 1.88 No

(2,50) 9 391.85 Yes

(3,20) 5 2.02 Yes

(3,40) 8 100.49 No

(4,20) 5 2.34 No

(4,40) 8 110.34 Yes

(5,20) 5 2.98 No

(5,40) 8 146.28 Yes

Figure 6: Experimental results: (Columns left to right) con-
tinuous dimensions (n), number of locations (|L|), number
of unstable locations, execution time, and answer given by
LySHA .

computes the LSR as (y, y′) ∈ L(Γ) iff y.loc = y′.loc = 1 and
y.X > 6.25 ∧ y′.X ≤ 2. This relation is well-founded and
hence the system satisfies the inevitability property. Note
that the algorithm presented for verifying inevitability is sound,
i.e. whenever LySHA infers inevitability, it indeed holds.

We have tested LySHA for a variant of Navigation Bench-
mark with a different number of modes. The results are shown
in Table6. Model TTLHA_n_m denotes the time-triggered
linear hybrid automaton of n dimensions (i.e. continuous
variables) with m locations.

As expected, with a larger number of locations LySHA has
to analyze larger number of loops, and the running time in-
creases. Observe that LySHA could prove inevitability of sys-
tems even when some of the locations are unstable. When-
ever the LySHA inferred that the system does not satisfy in-
evitability, we checked the behavior of the system through
simulations and the results matched with LySHA . Typically,
in these examples, the HA fails inevitability because of a loop
with several unstable locations.

5.2 Generating Timing Constraints for
Inevitability

LySHA can be used for designing strictly time-triggered sys-
tems, where the linear HA changes its location purely based
on the time spent at each location. Consider the scenario
where one desires to design a time-triggered LHA for which
Bε is inevitable. LySHA can aid in computing these timing
constraints. LySHA will produce a set of linear inequalities
on the time constraints for each location derived the from
well-foundedness of a LSR for a loop. If the system is de-
signed in such a way that these timing constraints are sat-
isfied, then the HA is guaranteed to satisfy the inevitability
property.

Give the time-triggered system shown in Figure 1, LySHA
displays the following set of constraints and the values of the
dwell-times of each of these modes:

−C(1) + 2C(2)− 4C(3) < −3.991

−C(1) + 2C(2) < −3.2582

The two constraints specified in the above equation corre-
spond to well-foundedness of loops 1 → 2 → 3 → 1 and
1 → 2 → 1 respectively. We observe that C(1) = 40, C(2) =
16 and C(3) = 10 satisfies these constraints and we can check
that the system satisfies the inevitability property. In general,
the set of constraints produced by the LySHA can be fed into
a linear programming solver to obtain (if feasible) the con-
straints for inevitability.

6. CONCLUSIONS & FUTURE WORK
Exploiting the relationship between inevitability, program

termination and asymptotic stability, in this paper, we have
presented a technique for automatic verification of the in-
evitability property of hybrid automata. We show how Lya-
punov function-based abstractions and automated construc-
tion of well-founded relations for loops can be combined.
The implementation of the resulting algorithm in a software
tool (integrated with Simulink/Stateflow) shows promising
results in analyzing time-triggered linear HA.

Instantiating the general verification for HA with nonlin-
ear dynamics is an obvious direction for future exploration.
For this, we have to use techniques for computing Lyapunov
functions for such systems and develop algorithms for com-
posing such Lyapunov relations.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.

Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138(1):3–34, 1995.

[2] A. D. Ames, P. Tabuada, and S. Sastry. On the stability
of zeno equilibria. In Hybrid Systems: Computation and
Control (HSCC), volume LNCS 3927, pages 34 Ű 48, page
3927. Springer-Verlag. 148, 2006.

[3] S. Bogomolov, C. Mitrohin, and A. Podelski.
Composing reachability analyses of hybrid systems for
safety and stability. In Proceedings of the 8th international
conference on Automated technology for verification and
analysis, ATVA’10, pages 67–81, Berlin, Heidelberg,
2010. Springer-Verlag.

[4] S. Boyd and C. Barratt. Linear controller design: limits of
performance. Citeseer, 1991.

[5] M. Branicky. Multiple lyapunov functions and other
analysis tools for switched and hybrid systems. IEEE
Transactions on Automatic Control, 43:475–482, 1998.

[6] A. Chawdhary, B. Cook, S. Gulwani, M. Sagiv, and
H. Yang. Ranking abstractions. In ESOP’08/ETAPS’08:
Proceedings of the Theory and practice of software, 17th
European conference on Programming languages and
systems, pages 148–162, Berlin, Heidelberg, 2008.
Springer-Verlag.

[7] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. ACM Trans. Program. Lang.
Syst., 16:1512–1542, September 1994.

[8] B. Cook, A. Podelski, and A. Rybalchenko. Termination
proofs for systems code. In PLDI ’06: Proceedings of the
2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 415–426, New
York, NY, USA, 2006. ACM.

[9] P. S. Duggirala and S. Mitra. Abstraction-refinement for
stability. In Proceedings of International Conference on

Cyber-physical systems (ICCPS 2011), Chicago, IL, April
2011.

[10] G. Frehse. Phaver: Algorithmic verification of hybrid
systems past hytech. In M. Morari and L. Thiele,
editors, HSCC, volume 3414 of LNCS, pages 258–273.
Springer, 2005.

[11] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata? In ACM
Symposium on Theory of Computing, pages 373–382, 1995.

[12] J. Hespanha and A. Morse. Stability of switched
systems with average dwell-time. In Proceedings of 38th
IEEE Conference on Decision and Control, pages
2655–2660, 1999.

[13] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.
The Theory of Timed I/O Automata. Synthesis Lectures on
Computer Science. Morgan Claypool, November 2005.
Also available as Technical Report MIT-LCS-TR-917.

[14] H. K. Khalil. Nonlinear Systems. Prentice Hall, New
Jersey, 3rd edition, 2002.

[15] D. Liberzon. Switching in Systems and Control. Systems
and Control: Foundations and Applications.
Birkhauser, Boston, June 2003.

[16] O. Maler and G. Batt. Approximating continuous
systems by timed automata. In Proceedings of the 1st
international workshop on Formal Methods in Systems
Biology, FMSB ’08, pages 77–89, Berlin, Heidelberg,
2008. Springer-Verlag.

[17] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo. A
step towards verification and synthesis from
simulink/stateflow models. In Hybrid Systems:
Computation and Control (HSCC 2011), 2011.

[18] S. Mitra. A Verification Framework for Hybrid Systems.
PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA 02139, September 2007.

[19] S. Mitra, D. Liberzon, and N. Lynch. Verifying average
dwell time of hybrid systems. ACM Trans. Embed.
Comput. Syst., 8(1):1–37, 2008.

[20] A. Podelski and A. Rybalchenko. Transition invariants.
In LICS ’04: Proceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science, pages 32–41,
Washington, DC, USA, 2004. IEEE Computer Society.

[21] A. Podelski and S. Wagner. Model checking of hybrid
systems: From reachability towards stability. In HSCC,
pages 507–521, 2006.

[22] S. Prajna, A. Papachristodoulou, and P. A. Parrilo.
Introducing SOSTOOLS: A general purpose sum of
squares programming solver. In In Proceedings of the
41st IEEE Conf. on Decision and Control, pages 741–746,
2002.

[23] S. Sankaranarayanan and A. Tiwari. Relational
abstractions for continuous and hybrid systems. In
CAV, 2011.

[24] C. Sloth and R. Wisniewski. Abstraction of continuous
dynamical systems utilizing lyapunov functions. In
Decision and Control (CDC), 2010 49th IEEE Conference
on, pages 3760 –3765, dec. 2010.

[25] A. van der Schaft and H. Schumacher. An Introduction
to Hybrid Dynamical Systems. Springer, London, 2000.

