Static and Dynamic Analysis of **Timed Distributed Traces** Parasara Sridhar Duggirala, Taylor T Johnson, Adam Zimmerman and Sayan Mitra **Coordinated Science Laboratory** University of Illinois at Urbana Champaign

33rd IEEE Real-Time Systems Symposium, San Juan, Puerto Rico

Detecting global properties from local data recordings

How to infer global properties from independently recorded local data logs or traces of a distributed cyber-physical system?

Related Work

- Inferring global properties from independently recorded local traces in a distributed cyber-physical systems
 - [Babaoglu & M. Raynal 93], [Garg et al. 962005], [Cooper and K. Marzullo 91]
 - Lattice of "happens before" relation on events, exponential algorithms for traversing the lattice, polynomial for special classes of predicates

CPS Challenges

- Programs generate events
- Clocks, albeit imperfectly synchronized
- Discrete data but continuous evolution

Traces and Consistent Executions

- An observation $\langle x_i, clk_i \rangle$ of age - x_i : recorded state
 - clk_i : Timestamp from local clock
- A trace $\beta_i = \langle x_{i1}, clk_{i1} \rangle, \langle x_{i2}, clk_{i2} \rangle$
- System trace β is a collection of β

Model **A** comes from modeler or from static analysis.

.0)

- A: x_i is Lipchitz
- A: Polynomial
- on of A: Hybrid automaton
- ConExec(β, A): Given a system model A, this is the set of behaviors of A that is consistent with β
- Property : predicates on states of individual agents
 E.g., Did robots ever get closer than r ?

Traces, Executions and Properties

Given a system trace β , a system model A, and a global property P does every consistent execution satisfy P at *all times* ?

Approach & outline

Bounds on observation times from clocks and messages in

- Reachable states between observations from static analysis β

Experiments with mobile robots on StarL

Real-time bounds from local time stamps

• A trace β is σ -synchronized if for every observation $\langle x, clk \rangle$, every consistent execution visits x some time in $[clk_i - \sigma, clk_i + \sigma]$

A trace β is tightly σ-synchronized if (1) and for every time in the interval [clk – σ, clk + σ] there is a consistent witness execution which visits x at the time

Real-time bounds from messages

- L(x): Greatest lower bound on real-time for occurrence of x,
- $L(x) = max(clk \sigma, \max_{y \leftarrow x} U(y))$
- U(x): Least upper bound = $min(clk + \sigma, mix_{x \leftarrow y} L(y))$

y ← x in β if and only if
1) same agent and x recorded after y or
2) y = send(m) and x = receive(m) or
3) y ← w and w ← x

Inferring Global Predicates from Traces

- When did the observations occur?
- For observation (x, clk) we have (tight) observation intervals [L(x), U(x)]
- What happens between observations ?
- How to over-approximate the set of states reachable through ConExe(β, A)? Use static analysis

 $\overline{\langle a_1, [0.9, 1.0] \rangle}$

 $\langle a_2, [1,1.4] \rangle$

(*b*₂, [1,1.2]

 $\langle b_{\rm h}, [1,1.1] \rangle$

 $\langle b_3, [1,1.2] \rangle$

Symbolic Over-approximation

A: Model from static analysis A: $\dot{x} = Ax$ $Post(\mathbf{A}, x_j, t) = x_j e^{At}$

 $Post(\mathbf{A}, x_j, t)$: Reach from x_j in t time $Pre(\mathbf{A}, x_j, t)$: Reach to x_j in t time

Reach($\{x_1, ..., x_m\}, t$): Reachable through $x_1, ..., x_m$ at t

 x_{j+1}

 $\mathbf{A}: \dot{x} \in [a, b] \\ x_j + at \le Post(\mathbf{A}, x_j, t) \le x_j + bt$

 $Reach(\{x_1, \dots, x_m\}, t) = \exists t_1 < \dots < t_m:$ $\bigwedge_{\substack{j=1\\m-1}} L(x_j) \leq t_j \leq U(x_j)$ $\bigwedge_{\substack{j=1\\m-1}} [t_j \leq t \leq t_{j+1} \Rightarrow$ $(Post(x_j, t - t_j) \land Pre(x_{j+1}, t_{j+1} - t))]$

Soundness and Precision

- Fix a trace β and a time t
 - (sound) At time t any consistent execution satisfies $Reach(\beta, t)$
 - (precision) If *Post()* and *Pre()* are exact, observation intervals are disjoint, and σ -synchronization is tight, then every state in *Reach*(β , t) is visited by some consistent execution at time t
- Check property (separation, deadlock) over *Reach*(β, t)

Experiments: Debugging robot apps!

• StarL: API for distributed robotics

- Primitive functions, e.g., mutual exclusion, leader election, motion control, ...
- Logs traces
- Simulator
- Test bed: iRobot Create, Android Smartphone, Bluetooth, Vision-based indoor positioning
- Applications & properties
 - Waypoint following
 - GeoCast
 - Light painting

Experiments 1: Diversity and Scaling

Ν	x = 75	150	250	500
	ms	ms	ms	ms
4	42	24	10	5
8	92	48	22	10
12	246	114	34	16
16	10 m	4 m	49	24
20	20 m	8 m	67	34

Always separation (d = 10 cm) for 5 mins @ x ms

Property	N	Sat?	Ana Time (sec)	Mem (Mb)	Frmla size (Kb)
Always	4	Yes	1.5	3.07	3.9
Separation	12	Yes	14	8.66	14.9
(d = 25)	20	Yes	81	18.6	31.6
Always	4	Yes	1.5	3.07	3.9
Separation	12	No	14	8.66	14.9
(d = 10)	20	No	81	18.6	31.6
Always	4	Yes	1	1.24	3.2
Georecv	12	Yes	1.7	3.67	9.5
	20	Yes	1.9	8.35	16

Experiments 2: Impact of Precision of Static Analysis

- System model precision
 - VB: velocity bounds
 - OI: observation intervals
- Lower precision model (±20ms) produces more conservative answers than the higher precision models (±5ms)

	VB = <u>+</u> 0 cm/s	VB = <u>+</u> 20 cm/s	$VB = \pm 20$ cm/s		
	Separation (d=10 cm)				
$OI = \pm 5ms$	yes	yes	no		
$OI = \pm 10ms$	yes	no	no		
$OI = \pm 20ms$	no	no	no		
	Georeceive				
delay = 0ms	yes	yes	yes		
delay = 20ms	yes	yes	no		
delay = 50ms	no	no	no		

Summary and Future Directions

Future directions:

- Investigate static vs. dynamic analysis trade-off
- Close the loop from the output of the Engine to the generation of traces

We gratefully acknowledge the support of NSF and AFOSR for this research

Conclusions and Future Work

- Sound algorithm for analyzing traces of distributed real time systems
- Completeness in some cases

• Future work:

 Accuracy vs Sampling
 Generalization of Completeness results
 Application to other domains like Power-Grid systems or UAV navigation