
Safety Verification for Linear Systems

Parasara Sridhar Duggirala∗
University of Illinois at Urbana Champaign

duggira3@illinois.edu

Ashish Tiwari∗†
SRI International

tiwari@csl.sri.com

ABSTRACT
An embedded software controller is safe if the composition of
the controller and the plant does not reach any unsafe state
starting from legal initial states (in an unbounded time hori-
zon). Linear systems – specified using linear ordinary differ-
ential or difference equations – form an important class of
models for such control systems. We present a new decid-
ability result for safety verification of linear systems. Our de-
cidability result assumes that the set of initial states and the
set of unsafe states satisfy some conditions. When the set of
initial and unsafe states do not satisfy these conditions, they
can be overapproximated by sets that do satisfy the condi-
tions. We thus get a counterexample guided abstraction re-
finement (CEGAR) procedure for the unconstrained safety
verification of linear systems. Our new procedure performs
abstraction-refinement on the initial and unsafe region, and
not on the system itself. We present the new procedure and
describe experimental results that demonstrate its effective-
ness.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.2.4 [Software verifi-
cation]: Formal methods

General Terms
Design, Verification

Keywords
Hybrid Systems, Formal Methods, Verification, Abstraction

∗Supported in part by NSF grants CSR-0917398 and
SHF:CSR-1017483.
†Supported in part by DARPA under contract FA8750-
12-C-0284 and under subcontract VA-DSR 21806-S4 under
prime contract FA8650-10-C-7075.

1. INTRODUCTION
Safety is one of the central requirements for engineered

systems. A system is deemed safe if it can never reach an
undesirable (bad) state. Safety verification is one of the
core problems that define the field of formal methods. It is
a challenging problem and a wide variety of techniques exist
for automatically proving safety.

A system’s dynamics can be specified in continuous-time,
discrete-time, or on a combination (hybrid time). Embed-
ded control systems are often modeled as either continuous
or hybrid dynamical systems. For hybrid dynamical sys-
tems, the classical approach for safety verification is based
on iterative computation of the set of all reachable states
of the system, but the procedure is typically exponential in
the dimension of the state space. An alternate approach for
safety verification, explicitly designed to deal with the large
state space, is based on constructing abstractions of the sys-
tem. An abstraction is created by defining an equivalence
relation on the state space and merging states in one equiv-
alence class to define one abstract state, and the dynamics
are lifted to the abstract space. If the abstraction fails to
prove safety, then it has to be refined into a finer abstraction.
Analyzing the cause of failure usually suggests a possible re-
finement step. The refinement steps can be repeated until
either we find an abstraction sufficient to prove safety, or
we find a counterexample. This methodology is nicknamed
counter-example guided abstraction refinement (CEGAR).

A safety verification problem has three components: a
system defined by its state space and dynamics, an initial
set, and an unsafe set. Existing abstraction-refinement tech-
niques have focused only on the first component, namely the
system. In this paper, we pursue a new technique that fo-
cuses on abstracting and refining only the second and third
components of the safety verification problem. In our ap-
proach, the state space of the system is not abstracted. In-
stead, the initial set and the unsafe set are abstracted, and
iteratively refined.

Let Reach(Init ,Sys, [0,∞)) denote the set of states reach-
able from the set Init of initial states following the dynamics
of the system Sys in time interval [0,∞). The safety verifi-
cation problem is about checking if

Reach(Init ,Sys, [0,∞)) ∩ Unsafe = ∅ (1)

Our approach for safety verification starts with constructing
a coarse abstraction of the initial set and the unsafe set
(Figure 1). We then check if the overapproximation of the
unsafe set is unreachable from the overapproximation of the

System
Init Unsafe

System

Unsafe
Init

a
a

Figure 1: Our approach is based on over-
approximating the initial and unsafe set in a care-
ful way so that the safety verification problem for
the abstract initial and unsafe set becomes decid-
able (for any linear system).

initial set; that is, if

Reach(Inita,Sys, [0,∞)) ∩ Unsafea = ∅ (2)

If we fail, then we analyze the cause of failure. We use that
information to refine either the overapproximation of the
unsafe set, or the overapproximation of the initial set. We
repeat the process until either the safety property is proved,
or it is disproved, or we run out of resources.

There are two key insights in our procedure that are cru-
cial for its success. First, the over-approximation for the
initial and unsafe sets are very carefully chosen (Figure 1).
In fact, they are chosen to guarantee that the safety verifi-
cation problem on the abstract initial set and the abstract
unsafe set, namely Equation 2, becomes efficiently decidable
for any linear system. In the CEGAR loop, when we have
to refine the abstraction, we refine the abstractions of the
initial and unsafe sets.

The second key insight, which is used in the decision pro-
cedure for the abstract problem, is that we compute the
intersection of the reachable states and the unsafe region on
the time axis, and not on the original state space. That is,
we compute a time interval [tmin, tmax] such that

Reach(Inita,Sys, [0,∞)) ∩ Unsafea = ∅ iff

Reach(Inita,Sys, [tmin, tmax]) ∩ Unsafea = ∅

Why is the computation of [tmin, tmax] important? The
reason is that, whereas the set

Reach(Init ,Sys, [0,∞))

is difficult to compute (it can be nonconvex), the set

Reach(Init ,Sys, T),

for a fixed T , is easy to describe symbolically. We use the
abstraction to identify a promising fixed value for T , and for
this value of T , we compute reachability at time T on the
concrete (un-abstracted) system. This enables us to detect
if abstract counter-examples are genuine or spurious. Con-
cretization of abstract counter-examples is one of the main
challenges when implementing CEGAR for continuous and
hybrid systems.

In this paper, we illustrate our new approach for safety
verification on linear dynamical systems. We realize that
this is a significant restriction – since the path from linear

systems to hybrid systems is nontrivial. However, our in-
vestigation here is motivated by the following reasons. (i)
Safety verification of linear systems is not a trivial problem.
It has been studied before, and there are even some decid-
ability results for classes of linear systems [1]. But, very few
of the linear dynamics we come across in practice ever fall
in the known decidable classes. (ii) A particularly impor-
tant class of hybrid systems are those that contain linear
dynamics in each mode. Before we can develop improved
techniques for safety verification of such hybrid systems, it
is important to fully understand the base case – when there
is just one mode in the system. (iii) The idea of performing
abstraction-refinement on the initial and unsafe set, and not
on the system itself, is new. Hence, it is useful to first eval-
uate its effectiveness, and identify the challenges and issues,
on a simple class of systems.

The main contributions of this work are as follows:

• We present a new decidability result. Specifically, we
present a set of (sufficient) conditions under which the
safety verification problem for linear (affine) systems
becomes decidable (Section 4).

• We present a new approach for safety verification of
arbitrary linear systems. When the (sufficient) con-
ditions for decidability are violated, we abstract the
original safety verification problem into a problem that
falls in the decidable class identified above. Further-
more, if the abstraction is too coarse, we iteratively re-
fine the abstraction, guided by counter-examples. We
argue that our CEGAR approach is effective for solv-
ing certain “robust” instances of the safety verification
problem (Section 5).

• We implemented a tool that implements the above
procedure. We also present some performance results
(Section 6).

2. AN EXAMPLE
We introduce a small and simple example here to illustrate

the technical results in this paper. We will illustrate the de-
cision procedure, and the abstraction-refinement procedure
on this example.

Consider a system over two variables x, y given by:

dynamics : dx
dt

= x; dy
dt

= 1;
initial states Init : 2 ≤ x ≤ 3 and y = 0
safe set Safe1 : x > 5 or y < 1
safe set Safe2 : x > 7 or y < 1

The variable x is exponentially increasing, and the variable
y is a clock that keeps track of the time elapsed. Initially,
x is in the interval [2, 3] and y is 0. The safety sets define
limits on the value of x when at least one time unit has
elapsed. The set Safe1 says that when y ≥ 1, then x > 5.
The set Safe2 says that when y ≥ 1, then x > 7.

The example is chosen to be this simple to enable the
reader to immediately observe that, if the system starts in
the initial region Init specified above, it will remain inside
the safety region Safe1 always in the future; however, it will
not always remain inside the Safe2 set.

Our goal is to automatically prove (or disprove) that the
system always remains inside some given safe set when start-
ing from the given initial region.

One way to check safety is as follows: Consider the initial
set 2 ≤ x ≤ 3∧0 ≤ y ≤ 0, and the first unsafe set Unsafe1 :=

¬Safe, which is x ≤ 5 ∧ y ≥ 1. Consider the value of y.
Initially, it is 0, and it is atleast 1 in the unsafe region.
Since dy/dt = 1, it follows y(t) = y(0) + t. Hence, if the
system reaches the unsafe region at time T , then T should
lie in the interval [tlby, tuby], where

tlby := 1−0
1

= 1 tuby := +∞−0
1

= +∞

Hence, T must be in the interval [1,+∞]. Now, consider
the value of x. Initially, 2 ≤ x ≤ 3 and in the unsafe region
−∞ ≤ x ≤ 5. Since dx/dt = x, it follows that x(t) =
x(0) ∗ et. Hence, if the system reaches the unsafe region at
time T , then T should lie in the interval [tlbx, tubx], where

tlbx := 0 tubx := ln(5
2
)/1 = 0.91629

Hence, T must be in the interval [0, 0.91629]. Therefore, T
must be in the intersection of the two time intervals. But,
the intersection is empty. Therefore, there can be no such
T . Hence, the system is proved safe.

If we repeat the procedure on the second unsafe set Unsafe2 :=
(x ≤ 7 ∧ y ≥ 1), then we get the following interval for the
time T of possible intersection with unsafe region:

[1,+∞] ∩ [0, ln(
7

2
)/1] = [1, 1.25]

Hence, the reach set intersects the unsafe region at time T
in [1, 1.25], and we declare the system unsafe.

In the above example, the linear forms being constrained
in the Init and Unsafe formula, namely x and y, have a spe-
cial property that makes it easy for us to compute the time
interval (for intersection with unsafe region) above. Specif-
ically, the variables x and y are monotonically changing.
When the Init and Unsafe set are specified using such forms,
we call the verification problem aligned. Aligned safety ver-
ification for linear system turns out to be decidable and the
procedure used above is a decision procedure.

In case the initial set Init and the unsafe set Unsafe are
not aligned, then we cannot use the procedure above: how-
ever, we can over-approximate (abstract) to an aligned prob-
lem and use the above procedure.

3. SAFETY FOR LINEAR SYSTEMS
In this section, we will formally define the safety verifica-

tion problem for linear systems.
A linear system is a tuple 〈X, f〉 where X is a finite set of

n real-valued variables whose dynamics are given by dX
dt

=
f(X), where f is a n-dimensional vector of affine functions
from <n to <. A trajectory is a mapping ~x from time [0,∞)
to the state space <n that satisfies the system of differential

equations d~x(t)
dt

= f(~x(t)) for all t ≥ 0.

Definition 1. [Safety Verification Problem] Given a linear
system 〈X, f〉, an initial set Init ⊆ <n, and a safe set
Safe ⊆ <n, the safety verification problem seeks to deter-
mine if there is a trajectory ~x(t) of the system and a time
instance T ≥ 0 such that ~x(0) ∈ Init and ~x(T) 6∈ Safe.

4. A DECIDABILITY RESULT
In this section, we present a sufficient condition under

which the safety verification problem becomes decidable. A
key novelty here is that the sufficient condition will put re-
strictions on the initial and unsafe sets, but not on the (dy-
namics of the) linear system.

Let dX
dt

= AX + b denote the dynamics of the linear sys-
tem. An eigenform of such a system is a mapping from the
state space <X to < that changes monotonically along the
trajectories of the system.

Definition 2. [Eigenform] An eigenform for a linear sys-
tem dX

dt
= AX + b is a mapping V : <X 7→ < such that

either

• dV
dt

is a constant λ in <, or

• dV
dt

is equal to λV for some λ ∈ <

where dV
dt

is
∑
xi∈X

∂V
∂xi

dxi
dt

. In both cases, we call the con-

stant λ an eigenvalue for the eigenform V .

An eigenform V will be written as an arithmetic expres-
sion over the state variablesX. For the example in Section 2,
V (X) := x is an eigenform and so is V (X) := y.

A linear system dX/dt = AX + b has several eigenforms.
Every left eigenvector of A corresponding to a nonzero real
eigenvalue of A gives an eigenform: let ~c be a left eigenvector
of A, that is,

~cTA = λ~cT

and now consider the function V (X) := ~cTX+ (~cT b)/λ. We
have,

dV

dt
= ~cT (AX + b) = λ~cTX + ~cT b = λV

Similarly, left eigenvectors of A corresponding to 0 eigen-
value also generate an eigenform: let ~c be a left eigenvector
of A corresponding to eigenvalue 0, and consider the func-
tion V (X) := ~cTX. We have,

dV

dt
= ~cT (AX + b) = ~cT b ∈ <

Note that the eigenforms V (X) defined above are all linear
functions. A linear system also has quadratic eigenforms.
For simplicity, consider the linear system dX/dt = AX. If

~c + ι~d is a left eigenvector of A corresponding to the com-
plex eigenvalue λ+ ιω, then consider the function V (X) :=

(~cTX)2 + (~dTX)2. We have,

dV

dt
= 2~cTX~cT (AX) + 2~dTX~dT (AX)

= 2~cTX(λcT − ωdT)X + 2~dTX(λdT + ωcT)X

= 2λ(~cTX)2 + 2λ(~dTX)2 = 2λV

Thus, there exist several linear and quadratic eigenforms for
a given linear system.

We next introduce a sufficient condition for decidability
of the safety verification problem. The condition restricts
the sets Init and Safe. The restriction is as follows: the
sets Init and Safe are assumed to be specified as a Boolean
combination of atomic predicates of the form V ≤ 0 or V ≥
0, where V is an eigenform of the linear system. Instances
of the safety verification problem that satisfy this restriction
are called aligned safety verification problems.

Definition 3. [Aligned safety verification problem] A safety
verification problem is aligned if there exists a finite set
{V1, . . . , Vm} of eigenforms of the linear system such that
the initial set Init and the unsafe set Unsafe (unsafe set is

1: procedure checkSafety(X, f, ~V ,~λ,~l0, ~u0,~l1, ~u1)
2: Input: Linear system 〈X, f〉
3: Input: Vector ~V of eigenforms with eigenvalues ~λ

4: Input: Init set ~l0 ≤ ~V ≤ ~u0

5: Input: Unsafe set ~l1 ≤ ~V ≤ ~u1

6: Output: ”Valid” if Unsafe is not reachable from Init
7: Output: ”Invalid” if Unsafe is reachable from Init
8: tmin = 0, tmax = +∞
9: for each eigenform V in ~V do

10: let l0 ≤ V ≤ u0 be the constraint in Init
11: let l1 ≤ V ≤ u1 be the constraint in Unsafe
12: if dV

dt
= λ then

13: [tlb,tub] = ([l1, u1]− [l0, u0])/λ
14: else if dV

dt
= λV then

15: [tlb,tub] = (ln [l1,u1]
[l0,u0]

)/λ

16: end if
17: tmax = min(tmax, tub)
18: tmin = max (tmin, tlb)
19: end for
20: if tmax < tmin then
21: return ”Valid”
22: else
23: return ”Invalid”, tmin, tmax
24: end if
25: end procedure

Figure 2: Procedure used to solve the aligned safety
verification problem.

the complement of the safe set Safe) can be written as a
(finite) formula of the form∨

i

m∧
j=1

(lij ≤ Vj(X) ≤ uij),

where lij and uij are either fixed bounds (in <) or ±∞.

The set of states that satisfy a constraint of the form∧
j(lij ≤ Vj(X) ≤ uij) will be called a “box”. (Geometri-

cally, it is a box that is aligned with the eigenforms. Aligned
sets have been used before for controller synthesis of linear
systems [2].) Since the initial region Init and the unsafe
region Unsafe are both finite unions of boxes, we can solve
the aligned safety verification problem by separately solving
it for each choice of the initial box and the unsafe box. Us-
ing vector notation, we will compactly write the constraint∧
j(lj ≤ Vj(X) ≤ uj) simply as ~l ≤ ~V ≤ ~u.

Example 1 (Aligned safety verification problem).
The safety verification problem defined in Section 2 is an
instance of the aligned safety verification problem. This is
because both the initial set and the unsafe set is specified by
bounds on x and y, and both x and y are eigenforms.

We now present a procedure to solve the aligned safety
verification problem for the case when the initial set is a sin-
gle box, and the unsafe set is also a single box. Subsequently,
we will state and prove the correctness of the procedure, and
thus obtain our decidability result.

The procedure for solving the aligned safety verification
when the initial and unsafe set are both single boxes is given
in Figure 2. The procedure uses computation over real num-
bers. We will discuss related computability issues later; for

now, view the procedure in Figure 2 as a conceptual proce-
dure.

The key idea in Procedure checkSafety is to compute
the time interval when the system can potentially reach the
unsafe region. Each eigenform will provide one estimate
for when the system reaches the unsafe region. In detail,
Procedure checkSafety works as follows: separately for each
eigenform V , if the initial box has the bounds l0 ≤ V ≤ u0

for V , and the unsafe box has the bounds l1 ≤ V ≤ u1

for V , then we compute the time interval required for the
value of V to change from [l0, u0] to [l1, u1]. Since Vi changes
monotonically, we can easily compute this time interval, say
[tlb, tub], using interval arithmetic (Line 13 and Line 15). We
do not describe here all the details about how the interval
arithmetic computation on Line 13 and Line 15 is performed,
since it is all well known and (in any case) easily worked
out. Just for illustration, for example, when λ > 0 and
dV/dt = λ, the computation on Line 13 is performed as
follows:

tub = (u1 − l0)/λ (3)

tlb = (l1 − u0)/λ (4)

For each eigenform, we get a different time interval [tlb, tub].
We finally intersect all these time intervals to get the final
interval [tmin, tmax] (Lines 17 and 18). If this final interval
is nonempty, then we know that there is a time instant when
the unsafe box is reached.

We next state and prove the correctness of the procedure
checkSafety. The soundness of Procedure checkSafety fol-
lows from the soundness of interval arithmetic computation.
Hence, we first state the latter as a lemma.

Lemma 1. Let V be an eigenform and ~x(t) be a trajectory
such that V (~x(0)) ∈ [l0, u0] and V (~x(T)) ∈ [l1, u1]. Then,

• if [tlb, tub] = [l1,u1]−[l0,u0]
λ

is computed using interval
arithmetic (as on Line 13), and if dV/dt = λ, then
T ∈ [tlb, tub].

• if [tlb, tub] =
ln(

[l1,u1]
[l0,u0]

)

λ
is computed using interval arith-

metic (as on Line 15), and if dV/dt = λV , then T ∈
[tlb, tub].

Proof. We present the proof of one special case: when
dV/dt = λ and λ > 0. For this case, the interval arithmetic
computation is worked out in Equations 3 and 4. Let Y be
a fresh copy of the variables X. We prove that T ∈ [tlb, tub]
by observing that the formula

∀X,Y : V (X) ∈ [l0, u0] ∧ V (Y) ∈ [l1, u1] ∧
V (Y) = V (X) + λ ∗ T ∧ λ > 0 =⇒

l1 − u0

λ
≤ T ≤ u1 − l0

λ

is valid in the theory of reals. The proof can be similarly
worked out for all other cases.

We can use Lemma 1 to now state and prove soundness
of Procedure checkSafety.

Lemma 2. [Soundness] If the procedure checkSafety re-
turns “Valid”, then the Unsafe box is not reachable from the
Init box.

Proof. Suppose that the procedure checkSafety returns
“Valid”, but the system is unsafe. Since the system is unsafe,
there is a time instance T and a trajectory ~x(t) s.t. ~x(0) ∈
Init and ~x(T) ∈ Unsafe. We claim that T will always be in
the interval [tmin, tmax]. This is clearly true initially. Now,
consider an execution of the loop (Line 9) and let V be the
eigenform being considered. Since ~x(0) ∈ Init , it follows
that V (~x(0)) ∈ [l0, u0]. Similarly, since ~x(T) ∈ Unsafe, it
follows that V (~x(T)) ∈ [l1, u1]. If tlb, tub are the bounds
for time interval computed (on Line 13 or on Line 15), then
we need to prove that T ∈ [tlb, tub]. This, however, follows
from Lemma 1.

Hence, after each iteration T will continue to remain in the
interval [tmin, tmax]. Hence, the procedure checkSafety

will return “Invalid”, contradicting our assumption that is
returns “Valid”.

Having proved that procedure always returns sound an-
swers, we now move to completeness. We need the converse
of the soundness lemma for interval arithmetic for proving
completeness.

Lemma 3. If [tlb, tub] = [l1,u1]−[l0,u0]
λ

is computed using
interval arithmetic (as on Line 13), then for any T ∈ [tlb, tub],
there is a value v0 and a value v1 such that v0 ∈ [l0, u0],
v1 ∈ [l1, u1], and v1 = v0 + λ ∗ T .

Similarly, if [tlb, tub] =
ln(

[l1,u1]
[l0,u0]

)

λ
is computed using inter-

val arithmetic (as on Line 15), then for any T ∈ [tlb, tub],
there is a value v0 and a value v1 such that v0 ∈ [l0, u0],
v1 ∈ [l1, u1], and v1 = v0 ∗ eλ∗T .

Proof. We present a proof for the second claim, since
the proof of the first claim follows similar reasoning. Let

[tlb, tub] =
ln(

[l1,u1]
[l0,u0]

)

λ
. The interval computation above is

performed differently depending on the sign of l0, u0, l1, u1

and λ. Here, we present the proof for just one case: suppose
l0, u0, l1, u1 and λ are all positive. For this case, the above
interval computation is carried out as follows:

tlb = ln(
l1
u0

)/λ (5)

tub = ln(
u1

l0
)/λ (6)

Since T ∈ [tlb, tub], using monotonicity of the exponential
function, we conclude that eλ∗T is in the interval [eλtlb, eλtub].
Using the definition of tlb, tub in Equation 5 and 6 above,
we conclude that the interval [eλtlb, eλtub] is contained in the
interval [l1/u0, u1/l0]. Together, we get eλT ∈ [l1/u0, u1/l0].
Hence, we can find v0 ∈ [l0, u0] and v1 ∈ [l1, u1] such that
v0 ∗ eλT = v1. This completes the proof for this case. We
prove the result similarly for all other cases.

Before we state and prove completeness, we need an ad-
ditional technical assumption on the set Init . We say a
box ∧i(li ≤ Vi ≤ ui) is completely feasible if the constraint
∧iVi = ai is feasible (that is, has a solution) for every
possible ai ∈ [li, ui]. For example, the box (1 ≤ x ≤
2) ∧ (2 ≤ x + y ≤ 3) is completely feasible, whereas the
box (1 ≤ x ≤ 2) ∧ (2 ≤ x ≤ 3) is not completely feasible
(since x = 1 ∧ x = 2 is not feasible).

Now we state and prove the completeness of Procedure check-
Safety.

Lemma 4. [Completeness] If the Unsafe box is not reach-
able from the Init box, then the procedure checkSafety re-
turns “Valid”, assuming Init is completely feasible.

Proof. Suppose not. Then, the system is safe, but the
procedure returns“Invalid”. Since the procedure returns“In-
valid”, there must be a T in the final time interval [tmin, tmax]
computed by the procedure. Using the assumption that Init
is completely feasible, we will find an initial point ~x(0) ∈ Init
s.t. starting from ~x(0), the state reached at time T , namely
the state ~x(T), is in Unsafe. This will yield a contradiction.

To find ~x(0), we first find values for V (~x(0)) for each eigen-
form V . Consider an eigenform V . Let l0 ≤ V ≤ u0 be the
constraint in Init and let l1 ≤ V ≤ u1 be the constraint in
Unsafe corresponding to this eigenform.

Now, let [tlb, tub] be the time interval computed in the
procedure checkSafety for this eigenform (on Line 13 or
Line 15). Since T ∈ [tmin, tmax], and since [tmin, tmax] is
contained in the interval [tlb, tub], we have that T ∈ [tlb, tub].

If [tlb, tub] is computed on Line 15, then using Lemma 3,
we conclude that there is a v0 ∈ [l0, u0] and a v1 ∈ [l1, u1]
s.t. v1 = v0 ∗ eλ∗T .

If [tlb, tub] is computed on Line 13, then using Lemma 3,
we conclude that there is a v0 ∈ [l0, u0] and a v1 ∈ [l1, u1]
s.t. v1 = v0 + λ ∗ T .

Thus, we can find a value v0 ∈ [l0, u0] and a value v1 ∈
[l1, u1] for each eigenform V . Let Vi be the i-th eigenform,
and let v0i, v1i be the two values we find for Vi. Using the
assumption that the initial set of states Init is completely
feasible, we know there exists a concrete point, say ~x0, s.t.
Vi(~x0) = v0i for all i.

The point ~x0 will serve as our initial point. Consider
the trajectory starting from this point. (All linear ordi-
nary differential equations satisfy the Lipschitz condition,
and hence, there exists a unique trajectory starting from any
concrete initial point). At time T , this trajectory will reach
some state, say ~x1. It is easy to see that the value of the
eigenform Vi at the state ~x1 will be v1i. Hence, ~x1 will be a
state in the set Unsafe. Hence, we conclude that the system
is not safe, contradicting our original assumption.

Combining the results in Lemma 2 and Lemma 4, we get
the following decidability result for safety verification.

Theorem 1. The aligned safety verification problem is
decidable under the following assumptions:

• Init is a finite union of completely feasible aligned boxes

• The bounds ~l0, ~u0 that specify the set Init are rational
(or more generally computable reals)

• The bounds ~l1, ~u1 that specify the set Unsafe are ratio-
nal (or more generally computable reals)

• The eigenvalues corresponding to the eigenforms are
rational (or more generally algebraic numbers, or just
computable reals)

Proof. Putting together Lemma 2 and Lemma 4, we
conclude that the Procedure checkSafety in Figure 2 cor-
rectly solves the aligned safety verification problem. The
only thing remaining to prove is that each step of Proce-
dure checkSafety can be effectively computed. Note that
the checks (in the conditions) on Line 12 and Line 14 are not

performed: we assume we are given the type of each eigen-
form. We only need to argue that the computation over
real numbers being performed on Line 13, Line 15, Line 17,
Line 18, and Line 20 can be effectively performed. Since
computable real numbers form a real closed field, it follows
that the result of Line 13 is computable. For Line 15, we
additionally note that the result of taking a natural log-
arithm of a computable real results in a computable real.
Lines 17,18 and 20 require comparison on computable real
numbers. Thus, all operations on reals in Procedure check-

Safety can be effectively performed. This completes the
proof of the theorem.

We make a few remarks about the procedure checkSafety.
First, the procedure can be easily modified to handle the case
when some bounds are −∞ or ∞. Second, the assumption
that the initial set Init be completely feasible is typically
true: if the eigenforms are left eigenvectors, then since eigen-
vectors are linearly independent, it follows that the Init set
specified using these eigenforms will be completely feasible.

The decidability result above is an important and signifi-
cant observation for many reasons.

• Recall that there are seminal results on decidability of
safety for linear systems [1], but they apply to systems
dX/dt = AX + b where the matrix A satisfies one of
the following three conditions; either (a) all eigenval-
ues of A are rational, or (b) all eigenvalues of A are
imaginary rationals, or (c) A is nilpotent. However,
these are strong assumptions. Our result does not put
any restriction on the dynamics of the linear system;
though, the effectiveness of our procedure improves as
the number of (rational/real) eigenvalues increases.

• Another popular method for safety verification is based
on the use of so-called barrier certificates. It proves
safety by showing that the initial set of states can be
separated from the unsafe set by a “barrier” that the
dynamics of the system cannot cut across. A barrier
certificate is an inductive invariant (in computer sci-
ence terminology). In our procedure, we do not com-
pute a single polynomial function as a barrier, but
more generally a conjunction of functions as a bar-
rier. Moreover, using the CEGAR procedure described
later, we get a CEGAR version of barrier certificate
based methods.

• For timed automata, the forms that describe the faces
of zones/regions are eigenforms. Linear eigenforms
also exist for dynamics used in (each mode of a) lin-
ear hybrid automata. Even for more complicated dy-
namics, our result clearly suggests that one should use
eigenforms of the dynamics in each mode to perform
analysis, such as symbolic model checking [3].

• The fact that aligned safety verification problem is ef-
ficiently decidable is not very useful by itself. This is
because it will almost never be the case that the ini-
tial set and the unsafe set are aligned to eigenforms.
But, the decidability result can be used in different
ways. One promising approach for the general safety
verification problem is based on abstracting the gen-
eral problem to the aligned problem, and then using
the decision procedure in possibly a CEGAR loop to
efficiently answer the general problem. We discuss this
approach next.

5. A CEGAR ALGORITHM
In this section, using the decision procedure for the aligned

safety verification problem, we present a counter-example
guided abstraction-refinement (CEGAR [4]) procedure for
the general safety verification problem.

The key idea behind solving the general safety verifica-
tion problem is that arbitrary initial set Init and unsafe set
Unsafe can be over-approximated using boxes over eigen-
forms. Furthermore, these over-approximations can be re-
fined iteratively “as-needed”. Figure 3 explains the complete
procedure using illustrations.

The first step in solving the general safety verification
problem consists of finding as many eigenforms of the linear
system as possible. In Section 4, we had mentioned that a
linear system has lots of eigenforms. Recall that these eigen-
forms can be obtained by computing left eigenvectors and
eigenvalues. Assuming that the A matrix contains only ra-
tional values, the left eigenvectors and eigenvalues of A will
have only algebraic reals, which are computable. Figure 3
assumes that there are two eigenforms, namely x and y.

The second step consists of computing over-approximations
of the set of initial states, Init , and the set of unsafe states,
Unsafe, using lower and upper bounds along the computed
eigenforms. In Figure 3 (top-middle), the over-approximations
are shown using dotted lines.

Having computed an over-approximation of Init and Unsafe,
we now have an instance of the aligned safety verification
problem. We use the decision procedure presented in Sec-
tion 4 to solve the abstract problem. If the decision pro-
cedure returns “Valid” (indicating that the system is safe),
then we can conclude that the original problem is also safe.
If the decision procedure returns “Invalid” (indicating that
the abstraction is not safe), then we cannot conclude any-
thing yet.

When the decision procedure checkSafety returns “In-
valid”, we know there exists a trajectory from an initial state
to an unsafe state. This trajectory is a potential counter-
example to the safety claim. We can, in fact, compute
this potential counter-example. We compute it as a pair
of states: an initial state and a final state.

There are two possible cases now: either the potential
counter-example is also a valid counter-example for the origi-
nal (concrete) problem, or it is spurious. There are two ways
in which the counter-example can be spurious.

1. The final state of the counter-example is in the over-
approximation of Unsafe, but it is not in Unsafe. This
is illustrated in Figure 3 (top-right).

2. The initial state of the counter-example is in the over-
approximation of Init , but it is not in Init . This is
illustrated in Figure 3 (bottom-middle).

In the first case, we refine the over-approximation of Unsafe
by removing the final state. A very important point here is
that we remove not just one state, but a large subset (aligned
box) of states. Figure 3 (bottom-left) illustrates this process.
As a result of refinement, the over-approximation of Unsafe
becomes a finite union of smaller aligned boxes. In Figure 3
(bottom-left), the over-approximation of Unsafe is now a
union of two box regions (marked 1 and 2).

In the second case, we similarly refine the overapproxima-
tion of Init . As illustrated in Figure 3 (bottom-right), the
over-approximation of Init is now a union of two box regions
(marked 1 and 2).

Init

Unsafe

Init

Unsafe

Over−Init

Over−Unsafe

Init

Unsafe

Over−Init

Over−Unsafe

Init

Over−Init

Unsafe

Over−Unsafe

1

2

Init

Over−Init

Unsafe

Over−Unsafe

1

2

Init

Over−Init

Unsafe

Over−Unsafe

1

2

1

2

Figure 3: Illustrating the CEGAR procedure: (Top-left) An example initial set Init and an unsafe set Unsafe.
(Top-middle) Abstract Init and Unsafe using boxes over eigenforms, say, x, y. (Top-right) Counter-example
obtained using the decision procedure on the aligned instance, which is spurious since the end state is not
in Unsafe. (Bottom-left) Refine the over-approximation of Unsafe by eliminating the spurious end state. The
refined over-approximation of Unsafe is a disjoint union of two aligned boxes. (Bottom-middle) New counter-
example obtained by the decision procedure over the refined problem, which is again spurious since it starts
from a state that is not in Init. (Bottom-right) Refine over-approximation of Init into a disjoint union of two
aligned boxes by removing the spurious initial state.

Once we have refined the over-approximation of the initial
set Init or the over-approximation of the unsafe set Unsafe,
we repeat the whole process again: for all possible choices
of the initial box and for all possible choices of the unsafe
box (boxes marked 1 and 2 in Figure 3(bottom-right)). The
process is repeated until either safety is proved, or a valid
counter-example is found, or refinement fails (i.e., the result
of refinement is the same as its input). The procedure fails
in the last case.

There are three important subtasks that are required to
implement the CEGAR procedure described above:

1. Over-approximating the sets Init and Unsafe

2. Checking if an abstract counterexample is spurious

3. Refining an over-approximation

5.1 Over-approximating Init and Unsafe

Let φ be a finite intersection (conjunction) of linear half-

spaces (or convex spaces). Given a set ~V of eigenforms, we
compute an aligned overapproximation of φ as∧

i

(li ≤ Vi ≤ ui)

where for each Vi ∈ ~V , li is found by minimizing Vi subject
to the constraint φ; and ui is found by maximizing Vi subject
to the constraint φ using a linear programming (LP) solver
(or a convex optimization solver).

5.2 Checking if abstract counterexample is spu-
rious

We check if an abstract counterexample is spurious by
generating a constraint that will be satisfiable if the abstract
counterexample is not spurious.

Recall that the procedure checkSafety, which is used to
solve the abstract problem, returns a time interval [tmin, tmax]
where an initial state can potentially reach an unsafe state.
Let us assume that the initial set is φ0, but restricted to the

box φbox0 given as ~l0 ≤ ~V ≤ ~u0. Similarly, the unsafe set is

φ1, but restricted to the box φbox1 given as ~l1 ≤ ~V ≤ ~u1.
To determine if there is a concrete trajectory from the ini-

tial set to the unsafe set with time duration in [tmin,tmax],
we pick a fixed time instant T from the interval [tmin, tmax].

We then compute a relation ψtra on variablesX,X ′, where
X ′ is a primed copy of X, that relates an initial state (value
of X) to the state reached at time T (value of X ′) from that
initial state. This relation has been called timed relational
abstraction before [5, 6]. The relation ψtra is computed as
a conjunction of equality constraints. Specifically, for each
eigenform V , we generate one equation that relates the value
of V at time T to the value of V at time 0. For eigenform
V s.t. dV/dt = λV , the equation is V (X ′) = V (X) ∗ eλ∗T ,
whereas for eigenform V s.t. dV/dt = λ, the equation is
V (X ′) = V (X) + λ ∗ T (note that λ and T are fixed con-
stants). Let ψtra denote this conjunction of equations over
X,X ′. If there are n = |X| linearly independent eigenforms,
then we can use ψtra as the timed relational abstraction. If
not, then we have to find the relationship between X ′ and X
using matrix exponentiation. The key observation is that for
a fixed T , the relationship between X and X ′ can be com-
puted, and the procedure checkSafety returns an interval
that helps in fixing T .

Finally, we check if an unsafe state is reachable from an
initial state in time T by checking feasibility of the following
constraint ψ over variables X,X ′:

ψ := (ψtra ∧ φ0 ∧ φbox0 ∧ φ1[X 7→ X ′] ∧ φbox1[X 7→ X ′])

where the notation φ[X 7→ X ′] denotes the formula obtained

by replacing X by X ′ in φ. If the constraint ψ is feasible,
then we get a concrete counter-example.

If the constraint ψ is infeasible, then we drop φ1 from it
and recheck feasibility. If the modified constraint is feasible,
then its solution is a state in the unsafe box φbox1, which is
not present in the unsafe region φ1, but which is reachable
from some initial state. This indicates that the unsafe set
needs refinement.

Similarly, by solving another constraint, we can determine
if the initial set needs to be refined.

For proving the correctness of the above procedure for
checking if an abstract counterexample is spurious, we have
to assume that the relationship ψtra computed between X
and X ′ is complete. This is required to establish the claim
that the computed counter-examples indeed correspond to
actual trajectories of the system.

5.3 Refining an over-approximation
The refinement procedure improves the over-approximation

by removing spurious points from it. The key observation
here is that rather than removing a single (given) point, we
remove a large subspace (with nonzero volume). The rea-
son is to expedite convergence of the iterative refinement
procedure.

The refinement procedure is given a formula φ represent-

ing some region of the state space, a box ψ := (~l ≤ ~V ≤ ~u),
and a point ~x. The point lies inside the box ψ, but it
lies outside φ. The goal is to construct an improved over-
approximation of the region φ ∧ ψ as a union of boxes by
removing (a small box around the) point ~x from it.

The refinement procedure works by first “fattening” the
point ~x into a box ϕ that is guaranteed to remain outside
the region φ ∧ ψ. Initially, the box ϕ is initialized to the
degenerate box

∧
V ∈~V (V = V (~x)), where V (~x) denotes the

real number resulting from evaluating V at ~x. In each iter-
ation, an eigenform V from ~V is picked and the constraint
V = V (~x) in ϕ is replaced by a weaker constraint l ≤ V ≤ u,
where l , u are computed by solving two different optimiza-
tion problems. The lower-bound l for V is computed as the
result of following optimization problem:
maximize V s.t. φ ∧ ψ ∧ ϕ[V = V (~x) 7→ V ≤ V (~x)]
The notation ϕ[V = V (~x) 7→ V ≥ V ~x] denotes the con-
straint obtained from ϕ by replacing in ϕ the constraint
before 7→ by the constraint after 7→. The calculation of the
upper bound u is done similarly.

The box ϕ is updated by replacing the equality constraint
V = V (~x) by the constraint (l + V (~x))/2 ≤ V ≤ (u +
V (~x))/2. We use the average of l and V (~x) in place of l as a
heuristic to ensure that the final box ϕ has nonzero volume.

Once the fattened box ϕ has been computed, we return
(disjoint) boxes that make up the (topological closure of the)
space ψ − ϕ, where − denotes set difference. We note here
that if the fattened box ϕ is of lower dimension than the box
ψ (i.e., if l = u = V (~x) is true, but l0 = u0 is not true, where
l0 ≤ V ≤ u0 is the constraint in ψ), then the refinement
procedure fails. This can happen, for example, when there
are not enough eigenforms available to truly refine an over-
approximation.

The correctness of Procedure refine follows from the ob-
servation that the box ϕ computed in the procedure is always
outside the region φ ∧ ψ.

Due to space constraints, we have described the overall
CEGAR procedure only informally.

Note that the CEGAR procedure can fail in two ways:
either the refinement step can fail because there are fewer
eigenforms than needed to refine an overapproximation, or
the number of refinements can become unbounded and cause
nontermination. However, under some assumptions, the CE-
GAR approach is sound and complete for solving robust in-
stances of the safety verification problem.

5.4 Robust Instances of the Safety Verification
Problem

We first define robust instances of the safety verification
problem.

Definition 4. [Robust Safety Verification Problems] An in-
stance of the safety verification problem – consisting of a lin-
ear system Sys, an initial set Init , and an unsafe set Unsafe
is robust if, it is safe

Reach(Init ,Sys, [0,∞)) ∩ Unsafe = ∅

iff there exists an ε > 0 s.t.

Reach(Bε(Init),Sys, [0,∞)) ∩ Bε(Unsafe) = ∅

where the epsilon-ball Bε(S) around a set S is defined as
{~x ∈ <n | ‖~x− ~y‖ ≤ ε for some ~y ∈ S}.

A set {V1, . . . , Vm} of eigenforms is complete for a set
S ⊆ <n if for every point ~x ∈ S, the only solution of the
constraint ∧iVi = Vi(~x) is the point ~x. Intuitively, a set
of eigenforms is complete for a set if the value of all the
eigenforms at any point in the set uniquely identify that
point. If we have n eigenforms that are linearly independent,
then they will be complete for any set S.

Theorem 2. Given a robust instance of the safety ver-
ification problem, if Init ,Unsafe are compact, and if there
exists a set {V1, . . . , Vm} of eigenforms that is complete for
Init and Unsafe, then there exists a (finite) execution of the
CEGAR procedure that correctly solves the safety verifica-
tion problem.

Proof. Let ε > 0 be the constant that defines the robust
instance of the safety verification problem. By definition of
completeness of the set of eigenforms for Init , we have

Init =
∨

~x∈Init

(
∧
i

Vi = Vi(~x))

Let δ > 0. We can now cover Init by open sets,

Init ⊂
∨

~x∈Init

(
∧
i

Vi(~x)− δ < Vi < Vi(~x) + δ)

Moreover, by picking δ small enough, we can ensure that
the right-hand side is contained in Bε(Init). Since Init is
compact, there is a finite cover; hence there is a finite subset

Ĩnit ⊂ Init s.t.

Init ⊂
∨

~x∈Ĩnit

(
∧
i

Vi(~x)− δ < Vi < Vi(~x) + δ) ⊂ Bε(Init)

Thus, we can overapproximate Init by finitely many aligned
boxes, and the overapproximation is still contained inBε(Init).
We can do the same for the Unsafe set. We use the CEGAR
procedure to create exactly these finitely many aligned boxes
as an overapproximation for Init and as an overapproxima-
tion for Unsafe. Due to robustness assumption, the answer
of the safety verification problem for this overapproximation
is the same as the answer for the original problem. This con-
cludes the proof.

6. EXPERIMENTS
We implemented a prototype of the counter-example guided

iterative refinement procedure for checking safety of linear
systems. HybridSal [8] is used as the language for specifying
the system and the safety property. We use finite precision
floating point numbers in our implementation. The imple-
mentation is in Python and uses GNU Linear Programming
Kit (GLPK) as the underlying solver, and the numpy,scipy

python packages for performing matrix functions.
Our tool takes two required arguments – a filename con-

taining the system description and a name of the property
in that file that needs to be verified. There are optional ar-
guments for setting values of various parameters. There is
a parameter to set a limit on the number of refinements the
tool considers. Since we use floating point arithmetic, there
is also a parameter to set the numerical tolerance. Needless
to say, values of these parameters influence the running time
of the tool.

Experimental evaluation of the implementation is ongo-
ing. We performed some preliminary evaluation on several
small and medium-sized examples, including an 8-dimensional
model of insulin metabolism [9], and a 28-dimensional heli-
copter model from the SpaceEx website [10, 11]. Since our
tool is not a reachability tool, but a verification tool, it re-
quires a safety property, and its running time depends cru-
cially on the safety property. Table 1 presents sample ex-
perimental results. For a fixed problem, running time (last
column) is proportional to the number of refinement steps
performed (column #r). The number of refinements depends
on the property. For the 28-dimension helicopter example,
a simple false property (called p2 in Table 1) is identified
as invalid in 2.6s, whereas a nontrivial valid property (called
p1) is proved valid after 5.7s. In all examples, the properties
describe bounds on the state variables.

Column params mentions two important parameters used
in the implementation. The first parameter under column
params is a user-provided budget for depth of the refine-
ment tree, and the program aborts (fails) if it ever exceeds
the provided budget. The second parameter under column
params sets the numerical tolerance of the procedure and
is crucial in determining the running time: a lower value,
say 0.001, improves accuracy and trust in the outcome, but
increases running time (Heli,p1 first two rows) – except in
cases when the user-defined budget causes the tool to abort
early (Heli,p1 third row).

The examples labeled Ex1-Ex6 in Table 1 are simple 2–6
dimensional problems created by hand to check correctness
of the implementation. In all cases, the output of the tool
(column result in Table 1) is sound.

7. DISCUSSION AND RELATED WORK
Reachability tools, such as SpaceEx [10], focus their ef-

fort on finding very high quality (bounded time) reach sets.
They completely ignore the safety property that the user
may be interested in proving. The CEGAR procedure for
safety verification is attractive since it is goal directed: it de-
termines what (refinement steps) to do based on the given
initial set and the unsafe set. However, there is no a-priori
bound on the number of refinements the program may need.
In fact, it can easily need unbounded number of refinements:
if dx/dt = 1, dy/dt = 1 and initially x = 2, y = 1, then
using x, y as the two eigenforms, the CEGAR procedure

Table 1: Performance of CEGAR implementation

Prob n params result #r d time(s)

Insulin 8 20,0.1 Proved 517 14 4.02

20,0.01 Abort 15089 20 104

24,0.001 Abort 532 24 5.12

Heli,p1 28 20,0.1 Proved 70 9 5.7

16,0.01 Abort 374 16 19.5

20,0.001 Abort 215 20 10.9

Heli,p2 28 20,0.1 CE 0 0 2.6

20,0.01 CE 0 0 2.6

20,0.001 CE 0 0 2.6

Ex1,p1 2 10,0.001 Proved 0 0 0.33

Ex2,p1 4 10,0.001 Proved 0 0 0.33

Ex3,p1 4 10,0.001 Proved 1 1 0.36

Ex4,p1 2 10,0.001 Proved 0 0 0.33

Ex5,p1 2 10,0.001 Proved 0 0 0.33

Ex6,p2 6 10,0.001 CE 0 0 0.36

Column Prob lists the problem instance (model,property
pair), column n contains the dimension, column params

contains the parameters used for running our tool, column
result shows the result produced by the tool, column #r

contains the total number of refinements performed by the
tool in that run, column d contains the maximum depth of
the refinement tree, column time shows the running (real)
time of the tool in seconds.

needs an infinite number of refinements to prove that x > y
always. (Our implementation aborts after exhausting the
user-provided budget for refinements.)

There are conditions under which the CEGAR procedures
exhibits good termination behavior. As indicated by Theo-
rem 2, the procedure performs better when the unsafe set is
compact, and it performs poorly when the unsafe set is un-
bounded. Again, as suggested by Theorem 2, the procedure
performs better when the unsafe region is “well-separated”
from the reachable set, and it performs poorly when the
reach set “almost touches” the unsafe region. Finally, the
procedure performs better when the linear system has many
different eigenforms. Note here that, in the limit, when the
linear system has n linearly independent linear eigenforms
(corresponding to rational eigenvalues), then the reachabil-
ity problem is known to be decidable [1].

The fact that our tool works better on compact unsafe sets
suggests several interesting strategies for proving safety. For
example, using our tool, rather than prove “always B”, it is
always easier to prove the equivalent conjunction “always
A implies B” and “always not(A) implies B”. This is be-
cause, while not(B) may not be compact, the sets A∧not(B)
and not(A) ∧ not(B) could be made bounded by choosing
A appropriately.

We believe the CEGAR procedure for safety verification
of linear systems is an important first step toward devising a
procedure for safety verification of hybrid systems. We plan
to extend our implementation to hybrid systems by handling
intersection with guards. In the future, we also plan to re-

place the linear programming solver in the implementation
by a complex optimization solver [12]. This will enable us
to handle quadratic eigenforms directly.

The idea of using iterative abstraction and refinement for
safety verification of hybrid systems has been used before by
several authors [13–19]. The first set of techniques [13–15,
17,20] use finite discrete transition systems as abstractions:
the unbounded state space is mapped (abstracted) into a fi-
nite state space by defining an equivalence relation on the
concrete states, and the dynamics is mapped into transi-
tions on equivalence classes of states. The partitioning of
the state space is often based on predicates (predicate ab-
straction). Constructing such abstractions is difficult since
it requires mapping of continuous dynamics to discrete tran-
sitions. Performing refinements (CEGAR) is challenging
since it requires discovering new predicates and concretiz-
ing abstract counterexamples. Termination of the CEGAR
loop is also an issue in these approaches. An alternative
approach for defining abstractions is based on hiding vari-
ables or merging locations to produce abstract timed and
hybrid systems [16,18,19]. However, this approach has been
limited to hybrid systems with very simple continuous dy-
namics, such as in timed and rectangular automata.

Relational abstraction is a new form of abstraction that
does not abstract the state space, but only abstracts (over-
approximates) the dynamics (the transition relation). It has
been used to perform safety verification [5,7], but there is no
refinement step and no CEGAR loop in [5]. Relational ab-
stractions, constructed using Lyapunov-like functions, have
been used to prove liveness properties [21,22], where the ap-
propriate well-founded relational abstraction (i.e., an over-
approximation of the transition relation) is generated using
a CEGAR procedure. In our work, it is the initial states
and the unsafe region that are abstracted and then itera-
tively refined.

8. CONCLUSION
Safety verification of continuous and hybrid systems is an

important problem. We presented a new counterexample
guided abstraction refinement procedure for safety verifica-
tion of linear systems. The main insight behind the proce-
dure is that of eigenforms: linear or quadratic functionals
that change monotonically along the trajectory of the sys-
tem. Even if the exact details of using them might vary, we
believe that all procedures for safety verification will ben-
efit by incorporating eigenforms in their computation. We
proved decidability of the aligned safety verification problem
for linear systems, and also showed that the CEGAR pro-
cedure can be effective for solving robust instances of the
safety verification problem.

9. REFERENCES
[1] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic

reachability computations for families of linear vector
fields,” J. Symbolic Computation, vol. 32, no. 3, pp.
231–253, 2001.

[2] P. Tabuada, Verification and control of hybrid
systems. Springer, 2009.

[3] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine,
“Symbolic model checking for real-time systems,” in
Proc. LICS, 1992, pp. 394–406.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in
Proc. CAV, 2000, pp. 154–169.

[5] S. Sankaranarayanan and A. Tiwari, “Relational
abstractions for continuous and hybrid systems,” in
Proc. CAV, ser. LNCS, vol. 6806, 2011, pp. 686–702.

[6] A. Zutshi, S. Sankaranarayanan, and A. Tiwari,
“Timed relational abstractions for sampled data
control systems,” in Proc. CAV, ser. LNCS, vol. 7358,
2012, pp. 343–361.

[7] S. Ratschan and Z. She, “Constraints for continuous
reachability in the verification of hybrid systems,” in
Proc. AISC, ser. LNCS, vol. 4120, 2006, pp. 196–210.

[8] A. Tiwari, “Hybridsal relational abstracter,” in Proc.
CAV, ser. LNCS, vol. 7358, 2012, pp. 725–731.

[9] S. Gulwani and A. Tiwari, “Constraint-based approach
for analysis of hybrid systems,” in Proc. CAV, ser.
LNCS, vol. 5123. Springer, 2008, pp. 190–203.

[10] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler, “Spaceex: Scalable verification of
hybrid systems,” in CAV, ser. LNCS, vol. 6806, 2011,
pp. 379–395.

[11] “Spaceex: State Space Explorer,” 2010,
http://spaceex.imag.fr/.

[12] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[13] R. Alur, T. Dang, and F. Ivancic, “Progress on
reachability analysis of hybrid systems using predicate
abstraction,” in Proc. HSCC, ser. LNCS, vol. 2623,
2003, pp. 4–19.

[14] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh,
O. Stursberg, and M. Theobald, “Verification of
hybrid systems based on counterexample-guided
abstraction refinement,” in Proc. TACAS, ser. LNCS,
vol. 2619, 2003, pp. 192–207.

[15] M. Sorea, “Lazy approximation for dense real-time
systems,” in Proc. FORMATS/FTRTFT, 2004, pp.
363–378.

[16] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M.
Clarke, “Reachability for linear hybrid automata using
iterative relaxation abstraction,” in Proc. HSCC.
Springer-Verlag, 2007.

[17] M. Segelken, “Abstraction and counterexample-guided
construction of omega -automata for model checking
of step-discrete linear hybrid models.” in Proc. CAV.
Springer, 2007, pp. 433–448.

[18] H. Dierks, S. Kupferschmid, and K. G. Larsen,
“Automatic abstraction refinement for timed
automata,” in Proc. FORMATS. Springer, 2007.

[19] P. Prabhakar, P. S. Duggirala, S. Mitra, and
M. Viswanathan, “Hybrid automata-based cegar for
rectangular hybrid systems,” in Proc. VMCAI, 2013.

[20] A. Tiwari and G. Khanna, “Series of abstractions for
hybrid automata,” in Proc. HSCC, ser. LNCS, vol.
2289. Springer, 2002, pp. 465–478.

[21] P. S. Duggirala and S. Mitra, “Lyapunov abstractions
for inevitability of hybrid systems,” in Proc. HSCC,
2012, pp. 115–124.

[22] ——, “Abstraction refinement for stability,” in Proc.
ICCPS, 2011, pp. 22–31.

