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Motivation

▪ Embedded Systems – interact with physical environment, controlled by computer

▪ Deployed in many safety critical applications

▪ Continuous dynamics involves nonlinear ODEs and several modes of operation

▪ Requires that the system is always safe
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Motivation

▪ Testing: Most common technique for checking functional properties of embedded 
systems.

▪ Problem: Testing can only take us so far!

▪ Can we obtain formal guarantees from sample executions?
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Motivation

▪ Testing: Most common technique for checking functional properties of embedded 
systems.

▪ Problem: Testing can only take us so far!

▪ Can we obtain formal guarantees from sample executions?

▪ Dealing with continuous executions?

▪ Can we use additional information from the system designer?

▪ Annotations for embedded systems – spirit of code contracts and loop invariants
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Contributions

 Propose a notion of annotations called as discrepancy function

 Show how discrepancy function subsumes other proof theoretic notions used in 
control theory

 Given a model of switching system and annotations, give a sound and relatively 
complete algorithm for safety verification.
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Contributions

 Propose a notion of annotations called as discrepancy function

 Show how discrepancy function subsumes other proof theoretic notions used in 
control theory

 Given a model of switching system and annotations, give a sound and relatively 
complete algorithm for safety verification.

Annotated 
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and Relative Complete
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Outline

 Motivation & Contributions

▪ Discrepancy function as annotation and its relation to other notions

▪ ε – error bound execution

▪ Sound and relative complete verification algorithms

▪ Experimental results

▪ Conclusions and future work
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Related work

▪ Verification using Simulations [Girard et. al. 06]

▪ Sensitivity Analysis and Systematic Simulations – Breach [Donze et.al. 06,09]

▪ Symbolic analysis of Simulink/Stateflow models [Kanade et.al. 09]

▪ Monte-Carlo falsification techniques [Nghiem et.al. 10]

▪ Statistical Model Checking [Clarke et.al. 11]

▪ Bounded Reach Sets [Huang et.al. 11]
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Annotations

▪ Annotations in software

▪ Annotations for continuous variables

▪ Continuous behavior  𝑥 = 𝑓𝑖 𝑥, 𝑡 , 𝑥 ∈ ℝ𝑛, 𝑡 ∈ ℝ≥0, 𝐼, 𝑓𝑖 𝑖 ∈𝐼 , Θ ⊆ ℝ𝑛
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Annotations

▪ Annotations in software

▪ Annotations for continuous variables

▪ Continuous behavior  𝑥 = 𝑓𝑖 𝑥, 𝑡 , 𝑥 ∈ ℝ𝑛, 𝑡 ∈ ℝ≥0, 𝐼, 𝑓𝑖 𝑖 ∈𝐼 , Θ ⊆ ℝ𝑛

▪ Solution or trajectory for each mode 𝑖

• 𝜉𝑖: ℝ
𝑛 ×ℝ≥0 → ℝ𝑛

• 𝜉𝑖 x0, t : state of the system from 𝑥0 ∈ Θ after time 𝑡

 Annotation would involve states and trajectories
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Annotations: Discrepancy function

▪ Definition. A smooth function V ∶ ℝ2𝑛 → ℝ≥0 is a discrepancy function for  𝑥 = 𝑓 𝑥, 𝑡 if 
for any 𝑥1 and 𝑥2 ∈ ℝ𝑛

1. (static bound) ∃ 𝛼1, 𝛼2: 𝛼1 𝑥1 − 𝑥2 ≤ 𝑉 𝑥1, 𝑥2 ≤ 𝛼2 𝑥1 − 𝑥2

2. (dynamic bound) V 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 ≤ 𝛽 𝑥1, 𝑥2, 𝑡 where 𝛽:ℝ2𝑛 × ℝ≥0 → ℝ≥0

and 𝛽 → 0 as 𝑥1 → 𝑥2
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Annotations: Discrepancy function

▪ Definition. A smooth function V ∶ ℝ2𝑛 → ℝ≥0 is a discrepancy function for  𝑥 = 𝑓 𝑥, 𝑡 if 
for any 𝑥1 and 𝑥2 ∈ ℝ𝑛

1. (static bound) ∃ 𝛼1, 𝛼2: 𝛼1 𝑥1 − 𝑥2 ≤ 𝑉 𝑥1, 𝑥2 ≤ 𝛼2 𝑥1 − 𝑥2

2. (dynamic bound) V 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 ≤ 𝛽 𝑥1, 𝑥2, 𝑡 where 𝛽:ℝ2𝑛 × ℝ≥0 → ℝ≥0

and 𝛽 → 0 as 𝑥1 → 𝑥2
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Annotations: Discrepancy function

▪ Definition. A smooth function V ∶ ℝ2𝑛 → ℝ≥0 is a discrepancy function for  𝑥 = 𝑓 𝑥, 𝑡 if 
for any 𝑥1 and 𝑥2 ∈ ℝ𝑛

1. (static bound) ∃ 𝛼1, 𝛼2: 𝛼1 𝑥1 − 𝑥2 ≤ 𝑉 𝑥1, 𝑥2 ≤ 𝛼2 𝑥1 − 𝑥2

2. (dynamic bound) V 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 ≤ 𝛽 𝑥1, 𝑥2, 𝑡 where 𝛽:ℝ2𝑛 × ℝ≥0 → ℝ≥0

and 𝛽 → 0 as 𝑥1 → 𝑥2
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Annotations: Discrepancy function

▪ Definition. A smooth function V ∶ ℝ2𝑛 → ℝ≥0 is a discrepancy function for  𝑥 = 𝑓 𝑥, 𝑡 if 
for any 𝑥1 and 𝑥2 ∈ ℝ𝑛

1. (static bound) ∃ 𝛼1, 𝛼2: 𝛼1 𝑥1 − 𝑥2 ≤ 𝑉 𝑥1, 𝑥2 ≤ 𝛼2 𝑥1 − 𝑥2

2. (dynamic bound) V 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 ≤ 𝛽 𝑥1, 𝑥2, 𝑡 where 𝛽:ℝ2𝑛 × ℝ≥0 → ℝ≥0

and 𝛽 → 0 as 𝑥1 → 𝑥2

▪ 𝛼1, 𝛼2, 𝛽 is a witness for 𝑉

▪ Stability not required
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𝑥1

𝑥2
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𝜉 𝑥1, 𝑡
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RLC Circuit as example

▪ RLC Circuit:
d2𝑖

dt2
+

𝑅

𝐿

d𝑖

dt
+

𝑖

𝐿𝐶
= 0

 𝑢
 𝑣
=

0 1
− 1
𝐿𝐶

−𝑅
𝐿

𝑢
𝑣
, 𝑠𝑎𝑦 𝐴 ≔

0 1
−2 −2

▪ Initially : 3 ≤ 𝑖 ≤ 5 &
𝑑𝑖

dt
= 0, which is 3 ≤ 𝑢 ≤ 5 & 𝑣 = 0

▪ Property  : after 1 time unit, current should be less or equal to 3 units
𝑡 > 1 ⇒ 𝑖 ≤ 3, unsafe set is U ≜ 𝑡 > 1 & 𝑖 > 3

▪ Look at different possible annotations for this system and then verify the property
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Lipschitz dynamics

▪ Definition. System  𝑥 = 𝑓 𝑥, 𝑡 is said to be Lipschitz continuous if 

∃ 𝐿 ∈ ℝ≥0, ∀𝑥1, 𝑥2 ∈ ℝ𝑛, 𝑓 𝑥1, 𝑡 − 𝑓 𝑥2, 𝑡 ≤ 𝐿 |𝑥1 − 𝑥2|

▪ Proposition. If L is the Lipschitz constant for the function 𝑓 𝑥, 𝑡 then 𝑉 𝑥1, 𝑥2 =
𝑥1 − 𝑥2 is a discrepancy function with 𝛽 ≔ 𝑒𝐿𝑡 𝑥1 − 𝑥2 .

▪ Worst case estimate : Exponential divergence.

▪ For the Example RLC Circuit, Lipchitz constant 𝐿 = |𝐴| ≈ 3, 𝑥1 − 𝑥2 is a discrepancy 
function with 𝛽 = 𝑒𝐿𝑡 𝑥1 − 𝑥2

Verification of Annotated Models from Executions 16



Incremental Stability

▪ Definition. The system is incrementally stable if there is a 𝐾𝐿 function 𝛾 such that for 
any two initial states 𝑥1and 𝑥2 𝜉 𝑥1, 𝑡 − 𝜉 𝑥2, 𝑡 ≤ 𝛾 𝑥1 − 𝑥2 , 𝑡 .

▪ Theorem. [Angeli 2000]. If the system is incrementally stable then there exists a smooth 
function (incremental Lyapunov function) V:ℝ2𝑛 → ℝ≥0 and 𝛼:ℝ → ℝ≥0 s.t.

V 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 − 𝑉 𝑥1, 𝑥2 ≤  

0

𝑡

−𝛼 𝜉 𝑥1, 𝜏 − 𝜉 𝑥2, 𝜏 𝑑𝜏.

▪ Proposition. Incremental Lyapunov function is a discrepancy function with

𝛽 𝑥1, 𝑥2, 𝑡 = 𝑉 𝑥1, 𝑥2 +  0
𝑡
−𝛼 𝜉 𝑥1, 𝜏 − 𝜉 𝑥2, 𝜏 𝑑𝜏.

▪ For the Example RLC circuit, with P =
2.5 .5
.5 .75

, 𝑉 = 𝑥1 − 𝑥2
𝑇𝑃 𝑥1 − 𝑥2 is a 

discrepancy function with 𝛽 𝑥1, 𝑥2, 𝑡 = 𝑉 𝑥1, 𝑥2 +  0
𝑡
−𝛼 𝜉 𝑥1, 𝜏 − 𝜉 𝑥2, 𝜏 𝑑𝜏 where 

𝛼 = 𝑥1 − 𝑥2
𝑇 𝑥1 − 𝑥2
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About Annotations

▪ Comparing different annotations: 

 Lipschitz Constant : Exponential divergence

 Contraction Metric : Exponential Convergence

 Incremental Stability : Convergence

 Extension of Incremental Stability called Incremental Forward Completeness

• Discrepancy function does not require convergence
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About Annotations

▪ How are annotations useful : computing sound over approximations

∀ 𝑥 ∈ 𝐵𝛿 𝑥0 , 𝜉 𝑥, 𝑇 ∈ 𝐵𝜀
𝑉 𝜉 𝑥0, 𝑇 𝑤ℎ𝑒𝑟𝑒 𝜀 = sup𝑥 ∈𝐵𝛿 𝑥0 ,0≤𝑡≤𝑇 {𝛽 𝑥, 𝑥0, 𝑡 }
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About Annotations

▪ How are annotations useful : computing sound over approximations

∀ 𝑥 ∈ 𝐵𝛿 𝑥0 , 𝜉 𝑥, 𝑇 ∈ 𝐵𝜀
𝑉 𝜉 𝑥0, 𝑇 𝑤ℎ𝑒𝑟𝑒 𝜀 = sup𝑥 ∈𝐵𝛿 𝑥0 ,0≤𝑡≤𝑇 {𝛽 𝑥, 𝑥0, 𝑡 }
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About Annotations

▪ How are annotations useful : computing sound over approximations

∀ 𝑥 ∈ 𝐵𝛿 𝑥0 , 𝜉 𝑥, 𝑇 ∈ 𝐵𝜀
𝑉 𝜉 𝑥0, 𝑇 𝑤ℎ𝑒𝑟𝑒 𝜀 = sup𝑥 ∈𝐵𝛿 𝑥0 ,0≤𝑡≤𝑇 {𝛽 𝑥, 𝑥0, 𝑡 }
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About Annotations

▪ How are annotations useful : computing sound over approximations

∀ 𝑥 ∈ 𝐵𝛿 𝑥0 , 𝜉 𝑥, 𝑇 ∈ 𝐵𝜀
𝑉 𝜉 𝑥0, 𝑇 𝑤ℎ𝑒𝑟𝑒 𝜀 = sup𝑥 ∈𝐵𝛿 𝑥0 ,0≤𝑡≤𝑇 {𝛽 𝑥, 𝑥0, 𝑡 }

▪ How to store the trajectory?
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Execution Trace

▪ Analytical solution for ODE, 𝜉 𝑥0, 𝑡 need not exist, rely on numerical methods

▪ Validated ODE solver (VNODE-LP)
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Execution Trace

▪ Analytical solution for ODE, 𝜉 𝑥0, 𝑡 need not exist, rely on numerical methods

▪ Validated ODE solver (VNODE-LP)

▪ Definition: 𝑥0, 𝑇, 𝜀, 𝜏 − 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is a sequence 𝜑 = 𝑅0, 𝑡0 , 𝑅1, 𝑡1 , ⋯ , 𝑅𝑘, 𝑡𝑘 s.t.

1. 𝑡𝑖 − 𝑡𝑖+1 ≤ 𝜏

2. ∀𝑡 ∈ 𝑡𝑖 , 𝑡𝑖+1 , 𝜉 𝑥0, 𝑡 ∈ 𝑅𝑖

3. 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑅𝑖 ≤ 𝜀

▪ Validated ODE solvers can indeed produce such enclosures using implicit and explicit 
methods for numerical integration
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Basic Algorithm

▪ Partition, Simulate, Bloat, Check
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Initial Set

 𝑥 = 𝑓𝑖 𝑥, 𝑡

𝜉𝑖: ℝ
𝑛 × ℝ≥0 → ℝ𝑛

Unsafe 

set



Basic Algorithm

▪ Partition, Simulate, Bloat, Check
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Initial Set

 𝑥 = 𝑓𝑖 𝑥, 𝑡

𝜉𝑖: ℝ
𝑛 × ℝ≥0 → ℝ𝑛

Unsafe 

set



Basic Algorithm

▪ Partition, Simulate, Bloat, Check, Refine
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Initial Set

 𝑥 = 𝑓𝑖 𝑥, 𝑡

𝜉𝑖: ℝ
𝑛 × ℝ≥0 → ℝ𝑛

Unsafe 

set



Basic Algorithm

▪ Partition, Simulate, Bloat, Check, Refine
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Initial Set

 𝑥 = 𝑓𝑖 𝑥, 𝑡

𝜉𝑖: ℝ
𝑛 × ℝ≥0 → ℝ𝑛

Unsafe 

set



Basic Algorithm

▪ Partition, Simulate, Bloat, Check, Refine
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Initial Set

 𝑥 = 𝑓𝑖 𝑥, 𝑡

𝜉𝑖: ℝ
𝑛 × ℝ≥0 → ℝ𝑛

Unsafe 

set

Switch to new mode  

 𝑥 = 𝑓𝑖+1 𝑥, 𝑡

𝜉𝑖+1: ℝ
𝑛 ×ℝ≥0 → ℝ𝑛

Switching time interval [𝑡1 , 𝑡2]



Basic Algorithm

▪ Partition, Simulate, Bloat, Check, Refine
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Initial Set

 𝑥 = 𝑓𝑖 𝑥, 𝑡

𝜉𝑖: ℝ
𝑛 × ℝ≥0 → ℝ𝑛

Unsafe 

set

Switch to new mode  

 𝑥 = 𝑓𝑖+1 𝑥, 𝑡

𝜉𝑖+1: ℝ
𝑛 ×ℝ≥0 → ℝ𝑛

Switching time interval [𝑡1 , 𝑡2]

Unknown:

• Exact initial set for mode 𝑖 + 1
Known:

• Overapproximation of the set

• Upper bound on the order of overapproximation



Basic Algorithm

▪ Partition, Simulate, Bloat, Check, Refine
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Initial Set

 𝑥 = 𝑓𝑖 𝑥, 𝑡

𝜉𝑖: ℝ
𝑛 × ℝ≥0 → ℝ𝑛

Unsafe 

set

Switch to new mode  

 𝑥 = 𝑓𝑖+1 𝑥, 𝑡

𝜉𝑖+1: ℝ
𝑛 ×ℝ≥0 → ℝ𝑛

Switching time interval [𝑡1 , 𝑡2]

Unknown:

• Exact initial set for mode 𝑖 + 1
Known:

• Overapproximation of the set

• Upper bound on the order of overapproximation

New building block:

Provide guarantees for all executions from a set 

only from a known overapproximation of it



Building block algorithm

Input to the algorithm

▪ Dynamics  𝑥 = 𝑓(𝑥, 𝑡) with annotation 𝑉 and witness 𝛽

▪ Initial partitioning 𝛿, time step 𝜏, time bound 𝑇𝑏

▪ Are all executions from set 𝐼 are safe?

▪ 𝐼 ⊆ Θ and Θ is an 𝜔 − Over approximation of 𝐼
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Building block algorithm

Input to the algorithm

▪ Dynamics  𝑥 = 𝑓(𝑥, 𝑡) with annotation 𝑉 and witness 𝛽

▪ Initial partitioning 𝛿, time step 𝜏, time bound 𝑇𝑏

▪ Are all executions from set 𝐼 are safe?

▪ 𝐼 ⊆ Θ and Θ is an 𝜔 − Over approximation of 𝐼
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𝛿
←
𝛿 2
;
𝜏
←
𝜏 2

𝑊ℎ𝑖𝑙𝑒 Θ ≠ ∅
𝑋 ← 𝑐𝑜𝑣𝑒𝑟 Θ, 𝛿

Θ
←
Θ
\B

𝛿
𝑥
0

𝑇 ∩ 𝑈 = ∅ ?

𝐵𝜖
𝑉 𝑅𝑖 ⊆ 𝑈

𝐵𝜖′
𝑉 𝑅𝑖 ⊆ 𝑈

𝜖 ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝑦 ∈ 𝐵𝛿(𝑥0)
𝜖′ ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝒚 ∈ 𝐵𝛿+𝜔(𝑥0)

𝜑 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑥0, 𝑇𝑏, 𝜖, 𝜏
𝑇 ← 𝐵𝜖

𝑉 𝜑

For 𝑥0 ∈ 𝑋

UnsafeSafe𝜔 𝑡𝑜𝑜 𝑙𝑎𝑟𝑔𝑒

𝑥0
𝜉 𝑥0, 𝑡

𝜑

𝑇

Unsafe 

set

Safe



Building block algorithm

Input to the algorithm

▪ Dynamics  𝑥 = 𝑓(𝑥, 𝑡) with annotation 𝑉 and witness 𝛽

▪ Initial partitioning 𝛿, time step 𝜏, time bound 𝑇𝑏

▪ Are all executions from set 𝐼 are safe?

▪ 𝐼 ⊆ Θ and Θ is an 𝜔 − Over approximation of 𝐼
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𝛿
←
𝛿 2
;
𝜏
←
𝜏 2

𝑊ℎ𝑖𝑙𝑒 Θ ≠ ∅
𝑋 ← 𝑐𝑜𝑣𝑒𝑟 Θ, 𝛿

Θ
←
Θ
\B

𝛿
𝑥
0

𝑇 ∩ 𝑈 = ∅ ?

𝐵𝜖
𝑉 𝑅𝑖 ⊆ 𝑈

𝐵𝜖′
𝑉 𝑅𝑖 ⊆ 𝑈

𝜖 ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝑦 ∈ 𝐵𝛿(𝑥0)
𝜖′ ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝒚 ∈ 𝐵𝛿+𝜔(𝑥0)

𝜑 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑥0, 𝑇𝑏, 𝜖, 𝜏
𝑇 ← 𝐵𝜖

𝑉 𝜑

For 𝑥0 ∈ 𝑋

UnsafeSafe𝜔 𝑡𝑜𝑜 𝑙𝑎𝑟𝑔𝑒

𝑥0
𝜉 𝑥0, 𝑡

𝜑

𝑇

Unsafe 

set

Safe

Unsafe

𝜔-too large



Building block algorithm

Input to the algorithm

▪ Dynamics  𝑥 = 𝑓(𝑥, 𝑡) with annotation 𝑉 and witness 𝛽

▪ Initial partitioning 𝛿, time step 𝜏, time bound 𝑇𝑏

▪ Are all executions from set 𝐼 are safe?

▪ 𝐼 ⊆ Θ and Θ is an 𝜔 − Over approximation of 𝐼

Soundness

1. ∀ 𝑥 ∈ 𝐵𝛿 𝑥0 , 𝜉 𝑥, 𝑡 ∈ 𝐵𝜀
𝑉 𝜑

2. 𝑇 ∩ 𝑈 = ∅ implies all executions in 𝐵𝛿 𝑥0 are safe

3. 𝐵𝛿+𝜔(𝑥0) contains at least one state from initial set

4. 𝐵𝜖′
𝑉 𝑅𝑖 contains at least one reachable state

5. 𝐵𝜖′
𝑉 𝑅𝑖 ⊈ 𝑈, 𝐵𝜖

𝑉 𝑅𝑖 ⊆ 𝑈 then the initial over approximation 𝜔
is too large for inferring safe/unsafe. 

6. 2𝜀 + 𝜀′ is the upper bound on the over approximationVerification of Annotated Models from Executions 35

𝛿
←
𝛿 2
;
𝜏
←
𝜏 2

𝑊ℎ𝑖𝑙𝑒 Θ ≠ ∅
𝑋 ← 𝑐𝑜𝑣𝑒𝑟 Θ, 𝛿

Θ
←
Θ
\B

𝛿
𝑥
0

𝑇 ∩ 𝑈 = ∅ ?

𝐵𝜖
𝑉 𝑅𝑖 ⊆ 𝑈

𝐵𝜖′
𝑉 𝑅𝑖 ⊆ 𝑈

𝜖 ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝑦 ∈ 𝐵𝛿(𝑥0)
𝜖′ ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝒚 ∈ 𝐵𝛿+𝜔(𝑥0)

𝜑 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑥0, 𝑇𝑏, 𝜖, 𝜏
𝑇 ← 𝐵𝜖

𝑉 𝜑

For 𝑥0 ∈ 𝑋

UnsafeSafe𝜔 𝑡𝑜𝑜 𝑙𝑎𝑟𝑔𝑒

𝑥0
𝜉 𝑥0, 𝑡

𝜑

𝑇

Unsafe 

set

Safe

Unsafe

𝜔-too large



Relative Completeness (when 𝜔 = 0)

1. 𝛿 → 0, 𝜏 → 0 implies 𝜀 → 0, 𝜀′ → 0

2. If system is robustly safe, ∃𝛿, 𝜏 such that all tubes are safe

3. Hence algorithm returns safe.

4. If system is unsafe, since 𝑈 is unsafe, 
∃ 𝑥, 𝑡, 𝜀1, 𝐵𝜀1 𝜉 𝑥, 𝑡 ⊆ 𝑈

5. Hence ∃𝛿, 𝜏, such that 𝐵𝜖
𝑉(𝑅𝑖) ⊆ 𝑈 and 𝐵𝜖′

𝑉(𝑅𝑖) ⊆ 𝑈

6. Hence algorithm returns unsafe.

Also holds when 𝜔 → 0
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U

𝑥 𝜉 𝑥, 𝑡

Building block algorithm

Input to the algorithm

▪ Dynamics  𝑥 = 𝑓(𝑥, 𝑡) with annotation 𝑉 and witness 𝛽

▪ Initial partitioning 𝛿, time step 𝜏, time bound 𝑇𝑏

▪ Are all executions from set 𝐼 are safe?

▪ 𝐼 ⊆ Θ and Θ is an 𝜔 − Over approximation of 𝐼

𝛿
←
𝛿 2
;
𝜏
←
𝜏 2

𝑊ℎ𝑖𝑙𝑒 Θ ≠ ∅
𝑋 ← 𝑐𝑜𝑣𝑒𝑟 Θ, 𝛿

Θ
←
Θ
\B

𝛿
𝑥
0

𝑇 ∩ 𝑈 = ∅ ?

𝐵𝜖
𝑉 𝑅𝑖 ⊆ 𝑈

𝐵𝜖′
𝑉 𝑅𝑖 ⊆ 𝑈

𝜖 ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝑦 ∈ 𝐵𝛿(𝑥0)
𝜖′ ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝒚 ∈ 𝐵𝛿+𝜔(𝑥0)

𝜑 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑥0, 𝑇𝑏, 𝜖, 𝜏
𝑇 ← 𝐵𝜖

𝑉 𝜑

For 𝑥0 ∈ 𝑋

UnsafeSafe𝜔 𝑡𝑜𝑜 𝑙𝑎𝑟𝑔𝑒



Relative Completeness (when 𝜔 = 0)

1. 𝛿 → 0, 𝜏 → 0 implies 𝜀 → 0, 𝜀′ → 0

2. If system is robustly safe, ∃𝛿, 𝜏 such that all tubes are safe

3. Hence algorithm returns safe.

4. If system is unsafe, since 𝑈 is unsafe, 
∃ 𝑥, 𝑡, 𝜀1, 𝐵𝜀1 𝜉 𝑥, 𝑡 ⊆ 𝑈

5. Hence ∃𝛿, 𝜏, such that 𝐵𝜖
𝑉(𝑅𝑖) ⊆ 𝑈 and 𝐵𝜖′

𝑉(𝑅𝑖) ⊆ 𝑈

6. Hence algorithm returns unsafe.

Also holds when 𝜔 → 0
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𝜀1
U

𝑥 𝜉 𝑥, 𝑡

Building block algorithm

Input to the algorithm

▪ Dynamics  𝑥 = 𝑓(𝑥, 𝑡) with annotation 𝑉 and witness 𝛽

▪ Initial partitioning 𝛿, time step 𝜏, time bound 𝑇𝑏

▪ Are all executions from set 𝐼 are safe?

▪ 𝐼 ⊆ Θ and Θ is an 𝜔 − Over approximation of 𝐼

𝛿
←
𝛿 2
;
𝜏
←
𝜏 2

𝑊ℎ𝑖𝑙𝑒 Θ ≠ ∅
𝑋 ← 𝑐𝑜𝑣𝑒𝑟 Θ, 𝛿

Θ
←
Θ
\B

𝛿
𝑥
0

𝑇 ∩ 𝑈 = ∅ ?

𝐵𝜖
𝑉 𝑅𝑖 ⊆ 𝑈

𝐵𝜖′
𝑉 𝑅𝑖 ⊆ 𝑈

𝜖 ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝑦 ∈ 𝐵𝛿(𝑥0)
𝜖′ ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝒚 ∈ 𝐵𝛿+𝜔(𝑥0)

𝜑 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑥0, 𝑇𝑏, 𝜖, 𝜏
𝑇 ← 𝐵𝜖

𝑉 𝜑

For 𝑥0 ∈ 𝑋

UnsafeSafe𝜔 𝑡𝑜𝑜 𝑙𝑎𝑟𝑔𝑒



Relative Completeness (when 𝜔 = 0)

1. 𝛿 → 0, 𝜏 → 0 implies 𝜀 → 0, 𝜀′ → 0

2. If system is robustly safe, ∃𝛿, 𝜏 such that all tubes are safe

3. Hence algorithm returns safe.

4. If system is unsafe, since 𝑈 is unsafe, 
∃ 𝑥, 𝑡, 𝜀1, 𝐵𝜀1 𝜉 𝑥, 𝑡 ⊆ 𝑈

5. Hence ∃𝛿, 𝜏, such that 𝐵𝜖
𝑉(𝑅𝑖) ⊆ 𝑈 and 𝐵𝜖′

𝑉(𝑅𝑖) ⊆ 𝑈

6. Hence algorithm returns unsafe.

Also holds when 𝜔 → 0
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𝜀1

𝐵𝜖
𝑉(𝑅𝑖)

U

𝑥 𝜉 𝑥, 𝑡

Building block algorithm

Input to the algorithm

▪ Dynamics  𝑥 = 𝑓(𝑥, 𝑡) with annotation 𝑉 and witness 𝛽

▪ Initial partitioning 𝛿, time step 𝜏, time bound 𝑇𝑏

▪ Are all executions from set 𝐼 are safe?

▪ 𝐼 ⊆ Θ and Θ is an 𝜔 − Over approximation of 𝐼

𝛿
←
𝛿 2
;
𝜏
←
𝜏 2

𝑊ℎ𝑖𝑙𝑒 Θ ≠ ∅
𝑋 ← 𝑐𝑜𝑣𝑒𝑟 Θ, 𝛿

Θ
←
Θ
\B

𝛿
𝑥
0

𝑇 ∩ 𝑈 = ∅ ?

𝐵𝜖
𝑉 𝑅𝑖 ⊆ 𝑈

𝐵𝜖′
𝑉 𝑅𝑖 ⊆ 𝑈

𝜖 ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝑦 ∈ 𝐵𝛿(𝑥0)
𝜖′ ← sup 𝛽 𝑥, 𝑦, 𝑡 𝑥, 𝒚 ∈ 𝐵𝛿+𝜔(𝑥0)

𝜑 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑥0, 𝑇𝑏, 𝜖, 𝜏
𝑇 ← 𝐵𝜖

𝑉 𝜑

For 𝑥0 ∈ 𝑋

UnsafeSafe𝜔 𝑡𝑜𝑜 𝑙𝑎𝑟𝑔𝑒



Verification of Switched System

Input to the algorithm

▪ Initial set Θ

▪ Dynamics 𝑓𝑖 𝑖 ∈𝐼 and annotations with witness 𝑉𝑖 , 𝛽𝑖

▪ Switching interval sequence 𝜌 = 𝑞0, 𝑞1, ⋯ , 𝑞𝑘 .

▪ Initial partitioning 𝛿, time step 𝜏
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𝐶ℎ𝑒𝑐𝑘𝐷𝑆(Θ, 𝑓𝑞𝑖 , 𝑉𝑞𝑖 , 𝛿, 𝜏, 𝑞𝑖 . 𝑢𝑏)

Initialize

𝜔 ← 0, 𝛿, 𝜏, Θ

𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑞𝑖 𝑖𝑛 𝜌

Θ ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑅𝑒𝑎𝑐ℎ𝑆𝑒𝑡 𝑞𝑖. 𝑙𝑏, 𝑞𝑖 . 𝑢𝑏
𝜔 ← 2𝜀 + 𝜀′

𝑖 = 0

Safe

𝜔
−

to
o
 l
a
rg

e

𝛿
←
𝛿 2
;
𝜏
←

𝜏 2

Unsafe

Safe
𝑖 > 𝑘

unsafe



Verification of Switched System

Input to the algorithm

▪ Initial set Θ

▪ Dynamics 𝑓𝑖 𝑖 ∈𝐼 and annotations with witness 𝑉𝑖 , 𝛽𝑖

▪ Switching interval sequence 𝜌 = 𝑞0, 𝑞1, ⋯ , 𝑞𝑘 .

▪ Initial partitioning 𝛿, time step 𝜏
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𝐶ℎ𝑒𝑐𝑘𝐷𝑆(Θ, 𝑓𝑞𝑖 , 𝑉𝑞𝑖 , 𝛿, 𝜏, 𝑞𝑖 . 𝑢𝑏)

Initialize

𝜔 ← 0, 𝛿, 𝜏, Θ

𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑞𝑖 𝑖𝑛 𝜌

Θ ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑅𝑒𝑎𝑐ℎ𝑆𝑒𝑡 𝑞𝑖. 𝑙𝑏, 𝑞𝑖 . 𝑢𝑏
𝜔 ← 2𝜀 + 𝜀′

𝑖 = 0

Safe

𝜔
−

to
o
 l
a
rg

e

𝛿
←
𝛿 2
;
𝜏
←

𝜏 2

Unsafe

Safe
𝑖 > 𝑘

unsafe

𝑥

𝜉 𝑥0, 𝑡

𝜑

𝑇

Unsafe 

set

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑅𝑒𝑎𝑐ℎ𝑠𝑒𝑡 𝑞𝑖 . 𝑙𝑏, 𝑞𝑖 . 𝑢𝑏



Verification of Switched System

Input to the algorithm

▪ Initial set Θ

▪ Dynamics 𝑓𝑖 𝑖 ∈𝐼 and annotations with witness 𝑉𝑖 , 𝛽𝑖

▪ Switching interval sequence 𝜌 = 𝑞0, 𝑞1, ⋯ , 𝑞𝑘 .

▪ Initial partitioning 𝛿, time step 𝜏

Soundness

1. Each call to 𝐶ℎ𝑒𝑐𝑘𝐷𝑆(Θ, 𝑓𝑞𝑖 , 𝑉𝑞𝑖 , 𝛿, 𝜏, 𝑞𝑖 . 𝑢𝑏) is sound

2. If the algorithm returns safe, all modes in 𝜌 are safe

3. If algorithm returns unsafe, there is one mode in 𝜌
that exhibits unsafe behavior

Relative Completeness

1. Order of over approximation for each subroutine call 
is bounded by 2𝜀 + 𝜀′

2. As 𝛿 → 0, 𝜏 → 0, 𝜔 → 0

3. If all the modes are safe, ∃ 𝛿′, 𝜏′ that will prove safety

4. If at least one mode is unsafe, as 𝜔 → 0, the 
algorithm should return unsafe
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𝐶ℎ𝑒𝑐𝑘𝐷𝑆(Θ, 𝑓𝑞𝑖 , 𝑉𝑞𝑖 , 𝛿, 𝜏, 𝑞𝑖 . 𝑢𝑏)

Initialize

𝜔 ← 0, 𝛿, 𝜏, Θ

𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑞𝑖 𝑖𝑛 𝜌

Θ ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑅𝑒𝑎𝑐ℎ𝑆𝑒𝑡 𝑞𝑖. 𝑙𝑏, 𝑞𝑖 . 𝑢𝑏
𝜔 ← 2𝜀 + 𝜀′

𝑖 = 0

Safe

𝜔
−

to
o
 l
a
rg

e

𝛿
←
𝛿 2
;
𝜏
←

𝜏 2

Unsafe

Safe
𝑖 > 𝑘

unsafe

𝑥

𝜉 𝑥0, 𝑡

𝜑

𝑇

Unsafe 

set

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑅𝑒𝑎𝑐ℎ𝑠𝑒𝑡 𝑞𝑖 . 𝑙𝑏, 𝑞𝑖 . 𝑢𝑏



Experimental Results
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Benchmark 
Varia
bles

Time

horizon Refs. Sims.

C2E2 

(sec)

Flow* 

(sec)

Ariadne 

(sec)

Moore-G. 
Jet Engine 2 10 12 36 1.56 10.54 56.57

Brussellator 2 10 33 115 5.26 16.77 72.75

VanDerPol 2 10 5 17 0.75 8.93 98.36
Coupled 

VanDerPol 4 10 10 62 1.43 90.96 270.61
Sinusoidal 
Tracking 6 10 12 84 3.68 48.63 763.32
Linear 

Adaptive 3 6 8 16 0.47 NA NA 
Nonlinear 
Adaptive 2 10 16 32 1.23 NA NA 
Nonlinear 

Disturbance 3 10 22 48 1.52 NA NA 



Experimental Results
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Benchmark 
Varia
bles

Time

horizon Refs. Sims.

C2E2 

(sec)

Flow* 

(sec)

Ariadne 

(sec)

Moore-G. 
Jet Engine 2 10 12 36 1.56 10.54 56.57

Brussellator 2 10 33 115 5.26 16.77 72.75

VanDerPol 2 10 5 17 0.75 8.93 98.36
Coupled 

VanDerPol 4 10 10 62 1.43 90.96 270.61
Sinusoidal 
Tracking 6 10 12 84 3.68 48.63 763.32
Linear 

Adaptive 3 6 8 16 0.47 NA NA 
Nonlinear 
Adaptive 2 10 16 32 1.23 NA NA 
Nonlinear 

Disturbance 3 10 22 48 1.52 NA NA 

Benchmark Sims. Time (sec) 

12 fluid
tanks (ft) 16 2.74

18 ft 76 15.28

24 ft 100 22.12

30 ft 124 28.82
3 vehicles 

12 vars 32 5.68

16 vars 64 12.23

20 vars 128 25.14

24 vars 256 54.23

Switched-Nonlinear models



Conclusions

▪ Presented a notion of annotations for embedded systems.

▪ Sound and relative complete verification technique for nonlinear systems using 
executions

▪ Works for models with unknown parameters (adaptive control examples)

▪ Shows promise in scaling to higher dimensions
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Future Work

▪ Extension to Hybrid Systems

▪ Automatically obtaining annotations from sample executions, Taylor Models or 
Lagrangian remainders.

▪ Approximate bisimulations from annotations.
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