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Motivation

= Embedded Systems — interact with physical environment, controlled by computer

= Deployed in many safety critical applications

= Continuous dynamics involves nonlinear ODEs and several modes of operation

= Requires that the system is always safe
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Motivation

= Testing: Most common technique for checking functional properties of embedded
systems.

= Problem: Testing can only take us so far!

= Can we obtain formal guarantees from sample executions?
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Motivation

= Testing: Most common technique for checking functional properties of embedded
systems.

= Problem: Testing can only take us so far!

= Can we obtain formal guarantees from sample executions?

= Dealing with continuous executions?

= Can we use additional information from the system designer?

= Annotations for embedded systems — spirit of code contracts and loop invariants
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Contributions

v Propose a notion of annotations called as discrepancy function

v Show how discrepancy function subsumes other proof theoretic notions used in
control theory

v Given a model of switching system and annotations, give a sound and relatively
complete algorithm for safety verification.
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Contributions

v Propose a notion of annotations called as discrepancy function

v Show how discrepancy function subsumes other proof theoretic notions used in
control theory

v Given a model of switching system and annotations, give a sound and relatively
complete algorithm for safety verification.

Scalable, Sound
and Relative Complete
Verification Technique

Annotated Sample —
Models Executions
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Outline

v" Motivation & Contributions

= Discrepancy function as annotation and its relation to other notions
= € — error bound execution

= Sound and relative complete verification algorithms

= Experimental results

= Conclusions and future work

Verification of Annotated Models from Executions 7



Related work

= Verification using Simulations [Girard et. al. 06]

= Sensitivity Analysis and Systematic Simulations — Breach [Donze et.al. 06,09]
= Symbolic analysis of Simulink/Stateflow models [Kanade et.al. 09]

= Monte-Carlo falsification techniques [Nghiem et.al. 10]

= Statistical Model Checking [Clarke et.al. 11]

= Bounded Reach Sets [Huang et.al. 11]
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Annotations

= Annotations in software
= Annotations for continuous variables

= Continuous behavior x = f;(x,t) ,x E R, t € R®, ,{ f;};¢; ,0 S R"
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Annotations

Annotations in software

Annotations for continuous variables

Continuous behavior x = f;(x,t) ,x € R, t € R*°, ,{ f;};¢; ,0 € R"

Solution or trajectory for each mode i
« & R" X R*® - R"

* &(xp,1): state of the system from x, € 0 after time t

X0

= Annotation would involve states and trajectories

fi (XOJ t)
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Annotations: Discrepancy function

= Definition. A smooth function V : R - R*?is a discrepancy function for x = f(x, t) if
for any x; and x, € R*

1. (static bound) 3 ay, ay: a;(|x; — x3]) < V(xq, x5) < ay(|x; — x31)

2. (dynamic bound) V(& (x, t), €(x;, t)) < B(xy, x5, t) Where f: R2" x R0 - R0
and g - 0as x; = x,
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2. (dynamic bound) V(& (x, t), €(x;, t)) < B(xy, x5, t) Where f: R2" x R0 - R0
and g - 0as x; = x,

Verification of Annotated Models from Executions 12



) csaunos ) CSL: mmmee

Annotations: Discrepancy function

= Definition. A smooth function V : R - R*?is a discrepancy function for x = f(x, t) if
for any x; and x, € R*

1. (static bound) 3 ay, ay: a;(|x; — x3]) < V(xq, x5) < ay(|x; — x31)

2. (dynamic bound) V(& (x, t), €(x;, t)) < B(xy, x5, t) Where f: R2" x R0 - R0
and g - 0as x; = x,
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Annotations: Discrepancy function

= Definition. A smooth function V : R - R*?is a discrepancy function for x = f(x, t) if
for any x; and x, € R*

1. (static bound) 3 ay, ay: a;(|x; — x3]) < V(xq, x5) < ay(|x; — x31)

2. (dynamic bound) V(& (x, t), €(x;, t)) < B(xy, x5, t) Where f: R2" x R0 - R0
and g - 0as x; = x,
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. . ::\hs:\\ f(XZl t)
* (ay,a,, B) is a witness for V 2 N

N, -
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= Stability not required % -
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RLC Circult as example

s d?i R di i
RLC Circuit: w1t =0 R

W= on Zalfp]savas= 5 2]

<
O
—

‘ C
Initially : 3 < i <58& 5 =0,whichis3<u<5&v=0 T

Property : after 1 time unit, current should be less or equal to 3 units Example RLC Circuit
t>1=>i<3unsafesetisU 2¢t>1&i>3

Look at different possible annotations for this system and then verify the property
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Lipschitz dynamics

Definition. System x = f(x, t) is said to be Lipschitz continuous if

IL € ]RZO,Vxl,xz € Rn,f(xl, t) _f(xZ,t) <L |X1 Y le

Proposition. If L is the Lipschitz constant for the function f(x, t) then V(xq,x,) =
|x; — x,| is a discrepancy function with g := elt|x; — x,|.

Worst case estimate : Exponential divergence.

For the Example RLC Circuit, Lipchitz constant L = |A| = 3, |x; — x| is a discrepancy
function with § = elf|x; — x,|
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Incremental Stability

= Definition. The system is incrementally stable if there is a KL function y such that for
any two initial states x;and x, |E(xy,t) — E(x,, )] < ¥(Ix1 — x5, 0).

= Theorem. [Angeli 2000]. If the system is incrementally stable then there exists a smooth
function (incremental Lyapunov function) V: R*" — R=%and a: R - R s.t.

V(g(xli t)r E(xZI t)) - V(xli XZ) =< j _a(lf(xlrr) T E(xZJ T)l)dT
0

= Proposition. Incremental Lyapunov function is a discrepancy function with
t
ﬂ(xlixZJ t) = V(xlr xZ) + fO _a(lf(xlr T) - f(xZJT)l)dT'

= For the Example RLC circuit, with P = [2;,__)5 '755],V = (x; —x)TP(x; —xy) isa

discrepancy function with S(x4,x,,t) = V(xq,x,) + f(f —a(|é(xqy, T) — E(xy, T)|)dT Where
a=(x; — xz)T(x1 — X3)
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About Annotations

= Comparing different annotations:
U Lipschitz Constant : Exponential divergence
U Contraction Metric : Exponential Convergence
U Incremental Stability : Convergence

U Extension of Incremental Stability called Incremental Forward Completeness

 Discrepancy function does not require convergence
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About Annotations

= How are annotations useful : computing sound over approximations
VxE€ B6(x0)1 f(x, T) € Bé“/(f(XOJ T)) where € = SUPy €Bg(xo),0st<T {B(X, X0, t)}

B (x) = {x'| V(x,x") < €}

f(xOJ t)
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About Annotations

= How are annotations useful : computing sound over approximations
VxE€ B6(x0)1 f(x, T) € B&“/(f(XOJ T)) where € = SUPy €Bg(xo),0st<T {ﬂ(X, X0, t)}

B (x) = {x'| V(x,x") < €}

f(xOJ t)
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About Annotations

= How are annotations useful : computing sound over approximations
VxE€ B6(x0)1 f(x, T) € Bé“/(f(XOJ T)) where € = SUPy €Bg(xo),0st<T {B(X, X0, t)}

B (x) = {x'| V(x,x") < €}

B! (f(xO' T)) &8
f(xOJ t)
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About Annotations

= How are annotations useful : computing sound over approximations
VxE€ B6(x0)1 f(x, T) € Bé“/(f(XOJ T)) where € = SUPy €Bg(xo),0st<T {B(X, X0, t)}

B (x) = {x'| V(x,x") < €}

Bg(f(in T)) &8
f(xOJ t)

= How to store the trajectory?
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Execution Trace

= Analytical solution for ODE, &(x,, t) need not exist, rely on numerical methods

= Validated ODE solver (VNODE-LP)

Verification of Annotated Models from Executions 23
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Execution Trace

= Analytical solution for ODE, &(x,, t) need not exist, rely on numerical methods

= Validated ODE solver (VNODE-LP)

= Definition: (x,, T, &, T) — simulation is a sequence ¢ = (R, ty), (R1,t1), -+, (R, ty) S.t.
1. ti - ti+1 <7
2. Vtel[t, tiy1],§(x0t) ER;

3. diameter(R;) < ¢

= Validated ODE solvers can indeed produce such enclosures using implicit and explicit
methods for numerical integration

Verification of Annotated Models from Executions 24



Basic Algorithm

= Partition, Simulate, Bloat, Check

x = fi(x,t)
&: R"x R - R

O

Initial Set

Unsafe
set
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Basic Algorithm

= Partition, Simulate, Bloat, Check

x = fi(x,t)
&: R"x R - R

(5Q)
NN
)

Initial Set

Unsafe
set
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Basic Algorithm

= Partition, Simulate, Bloat, Check, Refine

x = fi(x,t)
&: R"x R - R

Initial Set

Unsafe
set
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Basic Algorithm

= Partition, Simulate, Bloat, Check, Refine

Initial Set

Unsafe
set
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Basic Algorithm

= Partition, Simulate, Bloat, Check, Refine

Initial Set

Unsafe
set

Switch to new mode

X = fiyr(x, 1)
&4 R? X R0 > R™

Switching time interval [¢tq , t;]
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Basic Algorithm

= Partition, Simulate, Bloat, Check, Refine

Unsafe
set
Switch to new mode

SR . X = fir1(x,1)
' {1t R" X R0 5 R®

Switching time interval [¢tq , t;]

Initial Set

Unknown:

+ Exactinitial set for mode i + 1

Known:

*  Overapproximation of the set

*  Upper bound on the order of overapproximation
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Basic Algorithm

= Partition, Simulate, Bloat, Check, Refine

Unsafe
set

Switch to new mode

X = fiyr(x, 1)
&4 R? X R0 > R™

Switching time interval [¢tq , t;]

Initial Set

Unknown:
New building block: «  Exact initial set for mode i + 1
Provide guarantees for all executions from a set Known:

only from a known overapproximation of it 0 OUEEIE I 571 BE e
*  Upper bound on the order of overapproximation
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Building block algorithm

Input to the algorithm
= Dynamics x = f(x, t) with annotation VV and witness

= Initial partitioning §, time step t, time bound T},
= Are all executions from set I are safe?

= [ € 0 and ©is an w — Over approximation of I

Verification of Annotated Models from Executions 32
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Building block algorithm

Input to the algorithm
= Dynamics x = f(x, t) with annotation VV and witness
= Initial partitioning §, time step t, time bound T},

= Are all executions from set I are safe?

= [ € 0 and ©is an w — Over approximation of I

While © = @

X « cover(0,6)

~ Forx, € X

=N =

. % € < sup B(x,y,t) x,y € Bs(xg)

N m € < sup f(x,y,t) X,y € Bsye(X0)

N — ¢ <« simulate(xg, Ty, €, T)
© [N ©) T « BZ((p)

. l

© @

TNU=0?

BY(R)CSU
BY(R) S U
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COMPUTER SCIENCE

Building block algorithm

Input to the algorithm
= Dynamics x = f(x, t) with annotation VV and witness
= Initial partitioning §, time step t, time bound T},

= Are all executions from set I are safe?

= [ € 0 and 0 is an w — Over approximation of I

While © = @

X « cover(0,6)

~ Forx, € X

=N =

. \é € < sup B(x,y,t) x,y € Bs(xg)

N m € < sup f(x,y,t) X,y € Bsye(X0)

N — ¢ <« simulate(xg, Ty, €, T)
© [N ©) T « BZ((p)

. l

© @

TNU=0?

BY(R)CSU
BY(R) S U
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COMPUTER SCIENCE

Building block algorithm

Input to the algorithm
= Dynamics x = f(x, t) with annotation VV and witness
= Initial partitioning §, time step t, time bound T},

= Are all executions from set I are safe?

= [ € 0 and 0 is an w — Over approximation of I

While © = @

X « cover(0,6)

~ Forx, € X

=N =

. \é € < sup B(x,y,t) x,y € Bs(xg)

N m € < sup f(x,y,t) X,y € Bsye(X0)

N — ¢ <« simulate(xg, Ty, €, T)
© [N ©) T « BZ((p)

. l

© @

TNU=0?

1

BY(R)CSU

BL(R)CU
3.
4.
5.

w too large

Verification of Annotated Models from Executions 6
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Soundness

V x € Bs(x),&(x,t) € BY ()

2. TnU =@ implies all executions in Bs(x,) are safe

Bs.. (x) contains at least one state from initial set
BY,(R;) contains at least one reachable state

BY(R;)) ¢ U, BY(R;) € U then the initial over approximation
is too large for inferring safe/unsafe.

. 2e + ¢’ is the upper bound on the over approximation %
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Building block algorithm

Input to the algorithm

= Dynamics x = f(x, t) with annotation VV and witness

= Initial partitioning §, time step t, time bound T},

= Are all executions from set I are safe?

= [ € 0 and 0 is an w — Over approximation of I

While © = ¢ x St )
X « cover(0,6)

= lN i:; € «sup B(x,y,t) x,y € Bs(x) Relative Completeness (when w = 0)
o m € < sup f(x,y,0) X,y € By (%) o .
. = @ « simulate(xg, Tp, €, T) 1. § >0, t—>0impliese -0, -0
ola| @ T « BY(¢) .
. l 2. If system is robustly safe, 35, T such that all tubes are safe
< @ 3. Hence algorithm returns safe.

TNU=07 . . .
4. If system is unsafe, since U is unsafe,
3 X, t; eliBel (E(x! t)) cU

BY(R) € U 5. Hence 36,7, such that BY (R;) € U and BY(R;) € U
BL(R) S U .
6. Hence algorithm returns unsafe.

Also holds when w — 0
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Building block algorithm

Input to the algorithm

= Dynamics x = f(x, t) with annotation VV and witness

= Initial partitioning §, time step t, time bound T},

= Are all executions from set I are safe?

= [ € 0 and 0 is an w — Over approximation of I

While © = ¢ x St )
X « cover(0,6)

= lN i:; € «sup B(x,y,t) x,y € Bs(x) Relative Completeness (when w = 0)
o m € < sup f(x,y,0) X,y € By (%) o .
. = @ « simulate(xg, Tp, €, T) 1. § >0, t—>0impliese -0, -0
ola| @ T « BY(¢) .
. l 2. If system is robustly safe, 35, T such that all tubes are safe
< @ 3. Hence algorithm returns safe.

TNU=07 . . .
4. If system is unsafe, since U is unsafe,
3 X, t; eliBel (E(x! t)) cU

BY(R) € U 5. Hence 36,7, such that BY (R;) € U and BY(R;) € U
BL(R) S U .
6. Hence algorithm returns unsafe.

Also holds when w — 0
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Building block algorithm

Input to the algorithm
= Dynamics x = f(x, t) with annotation VV and witness

= Initial partitioning §, time step t, time bound T},

= Are all executions from set I are safe?

- 1 € ©and0Ois an w — Over approximation of I BI(Ry)

While © = ¢ x St )
X « cover(0,6)

= lN i:; € «sup B(x,y,t) x,y € Bs(x) Relative Completeness (when w = 0)
o m € < sup f(x,y,0) X,y € By (%) o .
. = @ « simulate(xg, Tp, €, T) 1. § >0, t—>0impliese -0, -0
ola| @ T « BY(¢) .
. l 2. If system is robustly safe, 35, T such that all tubes are safe
< @ 3. Hence algorithm returns safe.

TNU=07 . . .
4. If system is unsafe, since U is unsafe,
3 X, t; eliBel (E(x! t)) cU

BY(R) € U 5. Hence 36,7, such that BY (R;) € U and BY(R;) € U
BL(R) S U .
6. Hence algorithm returns unsafe.

Also holds when w — 0
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Verification of Switched System

Input to the algorithm
= Initial set ©
= Dynamics { f;}; ¢; and annotations with witness V;, B;
= Switching interval sequence p = qq,q4, ", k-
= Initial partitioning &, time step

Initialize
w<00,710

For Each q; inp

w —too large

CheckDS(0, fqi, Vawr 6,T,q;-ub)

© « ProjectReachSet(q;.lb, g;.ub)
we2e+ &
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Verification of Switched System

Input to the algorithm

= Initial set © Q

= Dynamics { f;}; ¢; and annotations with witness V;, B; ,f(xo, t
= Switching interval sequence p = qq,q4, ", k- T

= Initial partitioning &, time step

Initialize
w<00,710

ProjectReachset(q;.lb, q;. ub)

For Each q; inp

w —too large

CheckDS(0, fqi, Vawr 6,T,q;-ub)

© « ProjectReachSet(q;.lb, g;.ub)
we2e+ &
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Verification of Switched System

Input to the algorithm
= Initial set ©
= Dynamics { f;}; ¢; and annotations with witness V;, B;
= Switching interval sequence p = qq,q4, ", k-
= Initial partitioning &, time step

Initialize
w<00,710

For Each q; inp

w —too large

CheckDS(0, fqi, Vawr 6,T,q;-ub)

© « ProjectReachSet(q;.lb, g;.ub)
we2e+ &

Verification of Annotated Models from Executions

Unsafe
set

E(XO, b
T

ProjectReachset(q;.lb, q;. ub)

Soundness
1. Eachcallto CheckDS(®, fg,,Vy,, 6,7, q;-ub) is sound
2. If the algorithm returns safe, all modes in p are safe

3. If algorithm returns unsafe, there is one mode in p
that exhibits unsafe behavior

Relative Completeness

1. Order of over approximation for each subroutine call
is bounded by 2¢ + ¢

2. Asd§->0,t-0,w—-0
3. If all the modes are safe, 3 6,7’ that will prove safety

4. If at least one mode is unsafe, as w — 0, the
algorithm should return unsafe

41
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Experimental Results

Moore-G.
Jet Engine 1.56 10.54 56.57

Brussellator 2 10 33 115 5.26 16.77 72.75

VanDerPol 2 10 5 17 0.75 8.93 98.36

Coupled
VanDerPol 4 10 10 62 1.43 90.96 270.61

Sinusoidal
Tracking 6 10 12 84 3.68 48.63 763.32

Linear
Adaptive 3 6 8 16 0.47 NA NA

Nonlinear
Adaptive 2 10 16 32 1.23 NA NA

Nonlinear
Disturbance 3 10 22 48 1.52 NA NA
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Experimental Results

12 fluid

Moore-G. tanks (ft) 16 2.74
Jet Engine 1.56 10.54 56.57 18 ft 76 15.28
Brussellator 2 10 33 115 5.26 16.77 72.75 o 100 2212
VanDerPol 2 10 5 17 0.75 8.93 98.36

VanDerPol 4 10 10 62 1.43 90.96 270.61 3 vehicles

Sinusoidal 12 vars 32 5.68

T[?cking 6 10 12 84 3.68 48.63 763.32 16 vars 64 12.23

inear

Adaptive 3 6 8 16 0.47 NA NA 20 vars 128 25.14

Nonlinear 24vars 256 54.23

Adaptive 2 10 16 32 123 NA NA

Nonlinear ) )
Disturbance 3 10 22 48 152 NA NA Switched-Nonlinear models
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Conclusions

Presented a notion of annotations for embedded systems.

Sound and relative complete verification technique for nonlinear systems using
executions

Works for models with unknown parameters (adaptive control examples)

Shows promise in scaling to higher dimensions

Verification of Annotated Models from Executions 44



) csaunos ) CSL: mmmee

Future Work

= Extension to Hybrid Systems

= Automatically obtaining annotations from sample executions, Taylor Models or
Lagrangian remainders.

= Approximate bisimulations from annotations.
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