

Verification of Annotated Models from Executions

Parasara Sridhar Duggirala,

Sayan Mitra, Mahesh Viswanathan I L L I N O I S

Motivation

- Embedded Systems interact with physical environment, controlled by computer
- Deployed in many safety critical applications

- Continuous dynamics involves nonlinear ODEs and several modes of operation
- Requires that the system is always <u>safe</u>

Motivation

- Testing: Most common technique for *checking* functional properties of embedded systems.
- Problem: Testing can only take us so far!
- Can we obtain *formal guarantees* from sample executions?

Motivation

- Testing: Most common technique for *checking* functional properties of embedded systems.
- Problem: Testing can only take us so far!
- Can we obtain *formal guarantees* from sample executions?
- Dealing with continuous executions?
- Can we use additional information from the system designer?
- Annotations for embedded systems spirit of code contracts and loop invariants

Contributions

- Propose a notion of annotations called as *discrepancy function*
- Show how discrepancy function subsumes other proof theoretic notions used in control theory
- Given a model of switching system and annotations, give a <u>sound</u> and <u>relatively</u> <u>complete</u> algorithm for safety verification.

Contributions

- Propose a notion of annotations called as *discrepancy function*
- Show how discrepancy function subsumes other proof theoretic notions used in control theory
- Given a model of switching system and annotations, give a <u>sound</u> and <u>relatively</u> <u>complete</u> algorithm for safety verification.

Outline

- Motivation & Contributions
- Discrepancy function as annotation and its relation to other notions
- ε error bound execution
- Sound and relative complete verification algorithms
- Experimental results
- Conclusions and future work

Related work

- Verification using Simulations [Girard et. al. 06]
- Sensitivity Analysis and Systematic Simulations Breach [Donze et.al. 06,09]
- Symbolic analysis of Simulink/Stateflow models [Kanade et.al. 09]
- Monte-Carlo falsification techniques [Nghiem et.al. 10]
- Statistical Model Checking [Clarke et.al. 11]
- Bounded Reach Sets [Huang et.al. 11]

Annotations

- Annotations in software
- Annotations for continuous variables
- Continuous behavior $\dot{x} = f_i(x, t)$, $x \in \mathbb{R}^n$, $t \in \mathbb{R}^{\ge 0}$, $I, \{f_i\}_{i \in I}$, $\Theta \subseteq \mathbb{R}^n$

Annotations

- Annotations in software
- Annotations for continuous variables
- Continuous behavior $\dot{x} = f_i(x, t)$, $x \in \mathbb{R}^n$, $t \in \mathbb{R}^{\ge 0}$, $I, \{f_i\}_{i \in I}$, $\Theta \subseteq \mathbb{R}^n$

 x_0

- Solution or trajectory for each mode i
 - $\xi_i: \mathbb{R}^n \times \mathbb{R}^{\geq 0} \to \mathbb{R}^n$

• $\xi_i(\mathbf{x}_0, \mathbf{t})$: state of the system from $x_0 \in \Theta$ after time t

Annotation would involve states and trajectories

 $\xi_i(\mathbf{x}_0, \mathbf{t})$

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x, t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2: \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1, t), \xi(x_2, t)) \le \beta(x_1, x_2, t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{\ge 0} \to \mathbb{R}^{\ge 0}$ and $\beta \to 0$ as $x_1 \to x_2$

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x, t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2: \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1, t), \xi(x_2, t)) \leq \beta(x_1, x_2, t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ and $\beta \to 0$ as $x_1 \to x_2$

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x, t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2: \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1, t), \xi(x_2, t)) \leq \beta(x_1, x_2, t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ and $\beta \to 0$ as $x_1 \to x_2$

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x, t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2: \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1,t),\xi(x_2,t)) \leq \beta(x_1,x_2,t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ and $\beta \to 0$ as $x_1 \to x_2$
 - x_{2} $\xi(x_{2},t)$ $\xi(x_{1},t)$ $\beta(x_{1},x_{2},t)$

- $(\alpha_1, \alpha_2, \beta)$ is a witness for *V*
- Stability not required

RLC Circuit as example

• RLC Circuit: $\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$

$$\begin{bmatrix} \dot{u} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}, say A \coloneqq \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}$$

- Initially : $3 \le i \le 5 \& \frac{di}{dt} = 0$, which is $3 \le u \le 5 \& v = 0$
- Property : after 1 time unit, current should be less or equal to 3 units
 t > 1 ⇒ i ≤ 3, unsafe set is U ≜ t > 1 & i > 3

Example RLC Circuit

Look at different possible annotations for this system and then verify the property

Lipschitz dynamics

• Definition. System $\dot{x} = f(x, t)$ is said to be Lipschitz continuous if

 $\exists L \in \mathbb{R}^{\geq 0}, \forall x_1, x_2 \in \mathbb{R}^n, f(x_1, t) - f(x_2, t) \leq L |x_1 - x_2|$

• Proposition. If L is the Lipschitz constant for the function f(x, t) then $V(x_1, x_2) = |x_1 - x_2|$ is a discrepancy function with $\beta \coloneqq e^{Lt}|x_1 - x_2|$.

• Worst case estimate : Exponential divergence.

• For the Example RLC Circuit, Lipchitz constant $L = |A| \approx 3$, $|x_1 - x_2|$ is a discrepancy function with $\beta = e^{Lt}|x_1 - x_2|$

Incremental Stability

• Definition. The system is incrementally stable if there is a *KL* function γ such that for any two initial states x_1 and $x_2 |\xi(x_1, t) - \xi(x_2, t)| \le \gamma(|x_1 - x_2|, t)$.

Theorem. [Angeli 2000]. If the system is incrementally stable then there exists a smooth function (incremental Lyapunov function) V: ℝ²ⁿ → ℝ^{≥0} and α: ℝ → ℝ^{≥0} s.t.

$$V(\xi(x_1,t),\xi(x_2,t)) - V(x_1,x_2) \le \int_0^{\infty} -\alpha(|\xi(x_1,\tau) - \xi(x_2,\tau)|)d\tau.$$

• Proposition. Incremental Lyapunov function is a discrepancy function with $\beta(x_1, x_2, t) = V(x_1, x_2) + \int_0^t -\alpha(|\xi(x_1, \tau) - \xi(x_2, \tau)|)d\tau.$

• For the Example RLC circuit, with $P = \begin{bmatrix} 2.5 & .5 \\ .5 & .75 \end{bmatrix}$, $V = (x_1 - x_2)^T P(x_1 - x_2)$ is a discrepancy function with $\beta(x_1, x_2, t) = V(x_1, x_2) + \int_0^t -\alpha(|\xi(x_1, \tau) - \xi(x_2, \tau)|)d\tau$ where $\alpha = (x_1 - x_2)^T (x_1 - x_2)$

- Comparing different annotations:
 - Lipschitz Constant : Exponential divergence
 - Contraction Metric : Exponential Convergence
 - Incremental Stability : Convergence
 - Extension of Incremental Stability called Incremental Forward Completeness
- Discrepancy function does not require convergence

- How are annotations useful : computing sound over approximations

 $\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$

- How are annotations useful : computing sound over approximations

 $\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$

- How are annotations useful : computing sound over approximations

 $\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$

- How are annotations useful : computing sound over approximations
 - $\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$

How to store the trajectory?

Execution Trace

- Analytical solution for ODE, $\xi(x_0, t)$ need not exist, rely on numerical methods
- Validated ODE solver (VNODE-LP)

Execution Trace

- Analytical solution for ODE, $\xi(x_0, t)$ need not exist, rely on numerical methods
- Validated ODE solver (VNODE-LP)
- Definition: $(x_0, T, \varepsilon, \tau) simulation$ is a sequence $\varphi = (R_0, t_0), (R_1, t_1), \cdots, (R_k, t_k)$ s.t.
 - $1. \quad t_i t_{i+1} \le \tau$
 - $2. \quad \forall t \in [t_i, t_{i+1}], \xi(x_0, t) \in R_i$
 - 3. $diameter(R_i) \leq \varepsilon$

 Validated ODE solvers can indeed produce such enclosures using implicit and explicit methods for numerical integration

 χ_0

 $\xi(x_0,t)$

Partition, Simulate, Bloat, Check

$$\begin{split} \dot{x} &= f_i(x,t) \\ \xi_i \colon \mathbb{R}^n \times \mathbb{R}^{\geq 0} \to \mathbb{R}^n \end{split}$$

Initial Set

Unsafe set

Partition, Simulate, Bloat, Check

$$\dot{x} = f_i(x, t)$$

$$\xi_i \colon \mathbb{R}^n \times \mathbb{R}^{\ge 0} \to \mathbb{R}^n$$

Partition, Simulate, Bloat, Check, Refine

Partition, Simulate, Bloat, Check, Refine

Partition, Simulate, Bloat, Check, Refine

Switch to new mode $\dot{x} = f_{i+1}(x, t)$ $\xi_{i+1} \colon \mathbb{R}^n \times \mathbb{R}^{\ge 0} \to \mathbb{R}^n$ Switching time interval $[t_1, t_2]$

Partition, Simulate, Bloat, Check, Refine

Partition, Simulate, Bloat, Check, Refine

- Dynamics $\dot{x} = f(x, t)$ with annotation V and witness β
- Initial partitioning δ , time step τ , time bound T_b
- Are all executions from set *I* are safe?
- $I \subseteq \Theta$ and Θ is an ω Over approximation of I

- Dynamics $\dot{x} = f(x, t)$ with annotation V and witness β
- Initial partitioning δ , time step τ , time bound T_b
- Are all executions from set *I* are safe?
- $I \subseteq \Theta$ and Θ is an ω Over approximation of I

- Dynamics $\dot{x} = f(x, t)$ with annotation V and witness β
- Initial partitioning δ , time step τ , time bound T_b
- Are all executions from set I are safe?
- $I \subseteq \Theta$ and Θ is an ω Over approximation of I

Input to the algorithm

- Dynamics $\dot{x} = f(x, t)$ with annotation V and witness β
- Initial partitioning δ , time step τ , time bound T_b
- Are all executions from set *I* are safe?
- $I \subseteq \Theta$ and Θ is an ω Over approximation of I

Soundness

- 1. $\forall x \in B_{\delta}(x_0), \xi(x,t) \in B_{\varepsilon}^V(\varphi)$
- *2.* $T \cap U = \emptyset$ implies all executions in $B_{\delta}(x_0)$ are safe
- *3.* $B_{\delta+\omega}(x_0)$ contains at least one state from initial set
- 4. $B_{\epsilon'}^V(R_i)$ contains at least one reachable state
- 5. $B_{\epsilon'}^V(R_i) \not\subseteq U, B_{\epsilon'}^V(R_i) \subseteq U$ then the initial over approximation ω is too large for inferring safe/unsafe.
- 6. $2\varepsilon + \varepsilon'$ is the upper bound on the over approximation ³⁵

Input to the algorithm

- Dynamics $\dot{x} = f(x, t)$ with annotation V and witness β
- Initial partitioning δ , time step τ , time bound T_b
- Are all executions from set I are safe?
- $I \subseteq \Theta$ and Θ is an ω Over approximation of I

Relative Completeness (when $\omega = 0$)

- **1.** $\delta \to 0, \tau \to 0$ implies $\varepsilon \to 0, \varepsilon' \to 0$
- 2. If system is robustly safe, $\exists \delta, \tau$ such that all tubes are safe
- 3. Hence algorithm returns safe.
- 4. If system is unsafe, since U is unsafe, $\exists x, t, \varepsilon_1, B_{\varepsilon_1}(\xi(x, t)) \subseteq U$
- **5**. Hence $\exists \delta, \tau$, such that $B_{\epsilon}^{V}(R_{i}) \subseteq U$ and $B_{\epsilon'}^{V}(R_{i}) \subseteq U$
- 6. Hence algorithm returns unsafe.

Also holds when $\omega \rightarrow 0$

Input to the algorithm

- Dynamics $\dot{x} = f(x, t)$ with annotation V and witness β
- Initial partitioning δ , time step τ , time bound T_b
- Are all executions from set I are safe?
- $I \subseteq \Theta$ and Θ is an ω Over approximation of I

Relative Completeness (when $\omega = 0$)

- **1**. $\delta \to 0, \tau \to 0$ implies $\varepsilon \to 0, \varepsilon' \to 0$
- 2. If system is robustly safe, $\exists \delta, \tau$ such that all tubes are safe
- 3. Hence algorithm returns safe.
- 4. If system is unsafe, since U is unsafe, $\exists x, t, \varepsilon_1, B_{\varepsilon_1}(\xi(x, t)) \subseteq U$
- **5**. Hence $\exists \delta, \tau$, such that $B_{\epsilon}^{V}(R_{i}) \subseteq U$ and $B_{\epsilon'}^{V}(R_{i}) \subseteq U$
- 6. Hence algorithm returns unsafe.

Also holds when $\omega \rightarrow 0$

Input to the algorithm

- Dynamics $\dot{x} = f(x, t)$ with annotation V and witness β
- Initial partitioning δ , time step τ , time bound T_b
- Are all executions from set I are safe?
- $I \subseteq \Theta$ and Θ is an ω Over approximation of I

Relative Completeness (when $\omega = 0$)

- **1**. $\delta \to 0, \tau \to 0$ implies $\varepsilon \to 0, \varepsilon' \to 0$
- 2. If system is robustly safe, $\exists \delta, \tau$ such that all tubes are safe
- 3. Hence algorithm returns safe.
- 4. If system is unsafe, since U is unsafe, $\exists x, t, \varepsilon_1, B_{\varepsilon_1}(\xi(x, t)) \subseteq U$
- **5**. Hence $\exists \delta, \tau$, such that $B_{\epsilon}^{V}(R_{i}) \subseteq U$ and $B_{\epsilon'}^{V}(R_{i}) \subseteq U$
- 6. Hence algorithm returns unsafe.

Also holds when $\omega \rightarrow 0$

Verification of Switched System

- Initial set Θ
- Dynamics $\{f_i\}_{i \in I}$ and annotations with witness V_i, β_i
- Switching interval sequence $\rho = q_0, q_1, \cdots, q_k$.
- Initial partitioning δ , time step τ

Verification of Switched System

Input to the algorithm

- Initial set Θ
- Dynamics $\{f_i\}_{i \in I}$ and annotations with witness V_i, β_i
- Switching interval sequence $\rho = q_0, q_1, \cdots, q_k$.
- Initial partitioning δ , time step τ

 $ProjectReachset(q_i.lb,q_i.ub)$

Verification of Switched System

Input to the algorithm

- Initial set Θ
- Dynamics $\{f_i\}_{i \in I}$ and annotations with witness V_i, β_i
- Switching interval sequence $\rho = q_0, q_1, \cdots, q_k$.
- Initial partitioning δ , time step τ

$ProjectReachset(q_i.lb, q_i.ub)$

Soundness

- **1.** Each call to *CheckDS*(Θ , f_{q_i} , V_{q_i} , δ , τ , q_i . ub) is sound
- 2. If the algorithm returns safe, all modes in ρ are safe
- 3. If algorithm returns unsafe, there is one mode in ρ that exhibits unsafe behavior

Relative Completeness

- 1. Order of over approximation for each subroutine call is bounded by $2\varepsilon + \varepsilon'$
- **2**. As $\delta \to 0, \tau \to 0, \omega \to 0$
- 3. If all the modes are safe, $\exists \delta', \tau'$ that will prove safety
- 4. If at least one mode is unsafe, as $\omega \rightarrow 0$, the algorithm should return unsafe

Experimental Results

Benchmark	Varia bles	Time horizon	Refs.	Sims.	C2E2 (sec)	Flow* (sec)	Ariadne (sec)	
Moore-G. Jet Engine	2	10	12	36	1.56	10.54	56.57	
Brussellator	2	10	33	115	5.26	16.77	72.75	
VanDerPol	2	10	5	17	0.75	8.93	98.36	
Coupled VanDerPol	4	10	10	62	1.43	90.96	270.61	
Sinusoidal Tracking	6	10	12	84	3.68	48.63	763.32	
Linear Adaptive	3	6	8	16	0.47	NA	NA	
Nonlinear Adaptive	2	10	16	32	1.23	NA	NA	
Nonlinear Disturbance	3	10	22	48	1.52	NA	NA	

Experimental Results

Benchmark	Varia bles	Time horizon	Refs.	Sims.	C2E2 (sec)	Flow* (sec)	Ariadne (sec)	Benchmark 12 fluid	Sims.	Time (sec)	
Mooro G								tanks (ft)	16	2.74	
Jet Engine	2	10	12	36	1.56	10.54	56.57	18 ft	76	15.28	
Brussellator	2	10	33	115	5.26	16.77	72.75	24 ft	100	22.12	
VanDerPol	2	10	5	17	0.75	8.93	98.36	2110	124	20.02	
Coupled								30 ft	124	28.82	
VanDerPol	4	10	10	62	1.43	90.96	270.61	3 vehicles	22	F 60	
Sinusoidal	C	10	40	0.4	2.60	40.60	762.22	12 vars	52	5.00	
Tracking	6	10	12	84	3.68	48.63	/63.32	16 vars	64	12.23	
Linear Adaptive	3	6	8	16	0.47	NA	NA	20 vars	128	25.14	
Nonlinear	2	10	16	37	1 23	ΝΔ	NΔ	24 vars	256	54.23	
Nonlinear	2	10	10	52	1.23	INА					
Disturbance	3	10	22	48	1.52	NA	NA	Switched-Nonlinear models			

Conclusions

- Presented a notion of annotations for embedded systems.
- Sound and relative complete verification technique for nonlinear systems using executions
- Works for models with unknown parameters (adaptive control examples)
- Shows promise in scaling to higher dimensions

Future Work

- Extension to Hybrid Systems
- Automatically obtaining annotations from sample executions, Taylor Models or Lagrangian remainders.
- Approximate bisimulations from annotations.

Acknowledgements:

Funding: NSF

Discussions with Daniel Liberzon