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Abstract. In this paper we present a framework for carrying out counter-
example guided abstraction-refinement (CEGAR) for systems modelled
as rectangular hybrid automata. The main difference, between our ap-
proach and previous proposals for CEGAR for hybrid automata, is that
we consider the abstractions to be hybrid automata as well. We show
that the CEGAR scheme is semi-complete for the class of rectangular
hybrid automata and complete for the subclass of initialized rectangular
automata. We have implemented the CEGAR based algorithm in a tool
called Hare, that makes calls to HyTech to analyze the abstract mod-
els and validate the counterexamples. Our experiments demonstrate the
usefulness of the approach.

1 Introduction

Direct model checking of realistic hybrid systems is in general undecidable and
often foiled by the state-space explosion problem. Hence, one has to rely on some
sort of abstraction. Finding the right abstraction is in itself a difficult problem. To
this end, the counterexample guided abstraction refinement (CEGAR) [7] tech-
nique (see Section 3) which combines automatic refinement with model checking
has gained preeminence in a number of contexts [4, 19, 8, 14] including in timed
and hybrid systems [2, 6, 5, 24, 11, 23, 9, 20].

The space over which CEGAR performs the abstractions and refinements is
key in determining both the efficiency (of model checking) and the completeness
of the procedure. For example, in [2, 6, 5, 24, 23] abstraction-refinement is carried
out in the space of finite-state discrete transition systems. Computing the tran-
sitions for this abstract finite state machine involves computing the unbounded
time reachable states from the states in the concrete system corresponding to a
particular state in the abstract system, which is difficult in practice for hybrid
systems with complex continuous dynamics.

In this paper, we investigate CEGAR in the context of abstractions which are
hybrid systems as well. When compared to using finite-state abstractions, using
hybrid abstractions in a CEGAR framework requires carrying out computation-
ally simpler tasks when constructing abstractions, refining them and validating
counterexamples. Instead of the computationally expensive unbounded time suc-
cessor computation, constructing hybrid abstractions only involves making local
checks about flow equations. Moreover when validating counterexamples in a hy-
brid CEGAR scheme, one is only required to compute time-bounded successors
(see 4.4). Computing time-bounded successors is often computationally easier



than computing time-unbounded successors; for example, for automata with lin-
ear differential dynamics, time-bounded posts can be efficiently approximated,
while no such algorithms exist for time-unbounded posts.

In this paper, we focus on hybrid abstraction-based CEGAR framework for
rectangular hybrid systems. We abstract such automata using initialized rectan-
gular hybrid automata [16]. The choice of initialized rectangular hybrid automata
as the abstract space is motivated by the desire to have a rich space of abstrac-
tions, with a decidable model checking problem, and effective tools to analyze
them. Our abstraction consists of the following operations: collapsing the control
states and transitions, dropping the continuous variables and scaling the vari-
ables. Variable scaling changes the constants that appear in the abstract hybrid
automaton which in turn can positively influence the efficiency of model check-
ing the abstract automaton. Our refinement algorithm involves splitting control
states/transitions, and/or adding variables that may have new dynamics (due
to scaling).

Our main results in this paper are complete/semi-complete CEGAR algo-
rithms for rectangular hybrid systems - (semi-completeness) if the hybrid sys-
tem we are analyzing is a rectangular hybrid automaton and is faulty, then our
CEGAR algorithm will terminate by demonstrating the error; (completeness)
on the other hand, if the hybrid system is an initialized rectangular hybrid au-
tomaton then our CEGAR algorithm will always terminate. Such completeness
results are usually difficult to obtain. In our case, one challenge is the fact that
the collection of abstract counterexamples is not enumerable as the executions
of an abstract hybrid system are uncountable. Thus, in order to argue that all
abstract counterexamples are eventually considered, we need to change the no-
tion of a counterexample to be a (infinite) set of executions, rather than a single
execution. This change in the definition of counterexample also forces the valida-
tion algorithms to be different. The completeness proof then exploits topological
properties, like compactness, to argue for termination.

Another highlight of our presentation is that we view our CEGAR framework
as a composition of a few CEGAR loops. To carry this out, we identify some
concepts and obtain a few results about the composition of CEGAR loops. Such
a compositional approach simplifies the presentation of the refinement algorithm
in our context, which is otherwise unwieldy, and helps identify more clearly the
subtle concepts needed for the completeness proof to go through.

We have implemented our CEGAR based algorithm for rectangular hybrid
automata in a tool that we call Hybrid Abstraction Refinement Engine (Hare[1]).
Hare makes calls to HyTech [17] to analyze abstract models and generate coun-
terexamples; we considered PHAVer [13] and SpaceEx [12], but at the time of
writing they do not produce counterexamples. We analyzed the tool on several
benchmark examples which illustrate that its total running time is comparable
with that of HyTech, and on some examples Hare is a couple of orders of mag-
nitude faster. Moreover, in some cases Hare can prove safety with dramatically
small abstractions. Fair running-time comparison of Hare with other Matlab-
based tools, such as d/dt [3] and checkmate [5], is not possible because of the



differences in the runtime environments. Experimental comparison of finite-state
and hybrid abstractions was also not possible because to the best of our knowl-
edge, the tools implementing finite-state abstractions are not publicly available.
We believe that in terms of efficiency, the approaches of finite state abstractions
and hybrid abstractions are incomparable.

Related Work. CEGAR with hybrid abstractions have been investigated in [9,
20] where the abstractions are constructed by ignoring certain variables. Coun-
terexamples are used to identify new variables to be added to the abstraction.
This approach has been carried out for timed automata [9] and linear hybrid au-
tomata [20]. In comparison to the above, our abstractions (may) change both the
control graph and variable dynamics, and are not restricted to only forgetting
continuous variables. In contrast, the scheme in [20] considers a more general
class of hybrid automata, though the abstractions in that scheme are not pro-
gressively refined. Finally, in [10] hybrid systems with flows described by linear
differential equations are approximated by rectangular hybrid automata. Even
though, their scheme progressively refines abstractions, the refinements are not
guided by counter-examples.

2 Preliminaries

Notation, Images and Inverse Images. Let N, Z, Q, R and R≥0 denote the set of
natural numbers, integers, rationals, reals and non-negative reals, respectively.
Given a function f : A→ B and a subset A′ ⊆ A, f(A′) is defined to be the set
{f(x) |x ∈ A′}. Similarly, for B′ ⊆ B, f−1(B′) is the set {x | ∃y ∈ B′, f(x) = y}.
When B′ is a singleton set {y}, we also use f−1(y) to denote f−1({y}).

Transition Systems. A transition system T is a tuple (S, S0, Σ,−→), where S is
a set of states, S0 ⊆ S is a set of initial states, Σ is a set of transition labels, and
−→⊆ S×Σ×S is a transition relation. We call (s, a, s′) ∈−→ a transition of T
and denote it as s

a−→ s′. We denote the elements of a transition system using
appropriate subscripts. For example, the set of states of a transition system Ti
is denoted by Si.

An execution fragment σ of a transition system T is a sequence of transitions
t0t1t2t3 · · · tn, such that s′i = si+1 for 0 < i < n, where ti is given by si

ai−→ s′i. We

denote the above execution fragment by σ = s0
a0−→ s1

a1−→ s2 · · · sn−1
an−1−→ sn.

We say that the length of σ is n, denoted by, |σ|. An execution of σ is an execution
fragment starting from a state in S0. We denote the set of all execution fragments
of T by ExecF (T ) and the set of all executions by Exec(T ).

Given a set of states S′ ⊆ S and a symbol a ∈ Σ, PreT (S′, a) is defined to be

the set {s1 | ∃s2 ∈ S′ : s1
a−→ s2} and PostT (S′, a) as {s2 | ∃s1 ∈ S′ : s1

a−→ s2}.
Given a subset Σ′ of Σ, PreT (S′, Σ′) =

⋃
a∈Σ′ PreT (S′, a) and PostT (S′, Σ′) =⋃

a∈Σ′ PostT (S′, a).



Hybrid Automata A hybrid system is a system which exhibits mixed discrete-
continuous behaviors. A popular model for representing hybrid systems is that
of hybrid automata [16], which combine finite state automata modeling the dis-
crete dynamics, and differential equations or inclusions modeling the continuous
dynamics. An execution of such a system begins in a state of the automaton
with some values to the variables representing the continuous dynamics. It then
either evolves continuously, where in, only the values of the continuous variables
change according to the continuous dynamics associated with the current dis-
crete state of the automaton, or takes a discrete transition, where potentially
both the discrete and continuous state of the automaton can change. During the
latter, the state of the automaton changes from the source of an edge to its tar-
get, and the discrete transition is enabled only if the continuous state before the
transition satisfies the enabling condition associated with the edge. The value of
the continuous state after the transition either remains the same or is reset to
some other value.

Definition 1. A hybrid automaton H is a tuple (Loc, Edges, Source, Target,
qinit, n, Cont0, inv, flow, jump), where

– Loc is a finite set of (discrete) control states or locations.
– Edges is a finite set of edges.
– Source, Target: Edges → Loc are functions which associate a source and a

target location to every edge, respectively.
– qinit ∈ Loc is the initial location. The components above represent the dis-

crete part of the automaton.
– n ∈ N is the dimension of H, also denoted by Dim(H), which represents the

number of continuous variables in the system. The set of continuous states
is given by Cont = Rn.

– Cont0 ⊆ Cont is the initial set of continuous states.
– inv: Loc → 2Cont associates with every location an invariant set. The con-

tinuous state of the system belongs to the invariant of a location as long as
the control is in that location.

– flow: Loc → 2Traj(Cont) associates with every location a set of trajectories,
where Traj(Cont) is the set of continuous functions from R≥0 → Cont.

– jump: Edges→ 2Cont×Cont, associates with every edge a set of pair of states
describing the value of the continuous state before and after the edge is taken.

Next we present the semantics of a hybrid automaton, as a transition system
it represents. The semantics of a hybrid automaton H is defined in terms of
the transition system [[H]] = (Q,Q0, Σ,−→) over Σ = R≥0 ∪ Edges, where
Q = Loc×Cont, Q0 = qinit×Cont0, and the transition relation −→ is given by:

– Continuous transitions - For t ∈ R≥0, (q1, x1)
t−→ (q2, x2) iff q1 = q2 = q

and there exists a function f ∈ flow(q) such that x1 = f(0), x2 = f(t) and
for all t′ ∈ [0, t], f(t′) ∈ inv(q).

– Discrete transitions - For e ∈ Edges, (q1, x1)
e−→ (q2, x2) iff q1 = Source(e),

q2 = Target(e), x1 ∈ inv(q1), x2 ∈ inv(q2) and (x1, x2) ∈ jump(e).



We focus on the problem of control state reachability, namely, given a hybrid
automaton H and a location q 6= qinit, is q reachable in H, or equivalently does
there exist an execution of H from a state in {qinit} × Cont0 to {q} × Cont?
Typically, q is a “bad” or “unsafe” location that we do not want to reach, and
we are interested in determining the safety of the system, namely, no execution
reaches the unsafe location.

3 CEGAR framework

A counter-example guided abstraction refinement algorithm consists of the four
steps, namely, abstraction, model-checking, validation and refinement. We focus
on safety verification here. CEGAR loop begins with the construction of an ab-
straction (an overapproximation) of the original system (also called the concrete
system). The abstract system is then model-checked to determine if there ex-
ists an execution from the initial location to an unsafe location. Such a path
if one exists is called an abstract counter-example. If the abstract system has
no counter-examples, then it can be deduced from the properties of abstraction
that even the concrete system does not have any counter-examples, and hence is
safe. However, if an abstract counter-example is returned in the model-checking
phase, then one cannot in general make any conclusions about the safety of the
concrete system, and the counter-exapmle is validated to determine if there ex-
ist a counter-example in the concrete system corresponding to it. If a concrete
counter-example is found, then the concrete system is unsafe, and the concrete
counter-example exhibits a bug in the system. Otherwise, the analysis in vali-
dating the abstract counter-example is used to construct a new abstract system
which is a refinement of the current abstract system. The CEGAR algorithm
continues with the model-checking of the new abstract system. In general, the
CEGAR loop might not terminate.

The purpose of this section is to fix notation and highlight some differences
with the standard CEGAR loop. We present several CEGAR algorithms in the
next section, which provide various guarantees about the termination, namely,
completeness and semi-completeness. Completeness refers to the fact that there
are only finitely many iterations of the CEGAR loop in any execution; and
semi-completeness refers to the fact that the CEGAR loop always terminates
on a faulty machine exhibiting a counter-example. Semi-completeness is easy to
guarantee when the set of concrete executions of a system are (efficiently) enu-
merable, which is lacking for the class of systems we consider. Hence, we need to
change the notion of a counter-example to encapsulate a possibly (uncountable)
number of counter-examples, and perform the validation simultaneously on this
infinite set. This requires us to perform validation in a slightly different manner,
namely, we first need to find the actual set of abstract executions corresponding
to the counter-example, and then perform the standard validation on the com-
puted set. Further, in order to guarantee termination, we need to at the least
guarantee that we make progress in each iteration of the CEGAR loop.



In the rest of the section, we setup notation and explain our notion of counter-
example, the modified validation algorithm, and distill some local condition
which ensure progress of the CEGAR loop.

We fix some notation for the rest of this section. Our concrete systems and
abstract systems are both hybrid automata. Let HC be a concrete hybrid au-
tomaton and let HA be an abstract hybrid automaton. Let TC = [[HC ]] =
(SC , S

0
C , ΣC ,−→C) and TA = [[HA]] = (SA, S

0
A, ΣA,−→A) be the transition

systems associated with HC and HA, respectively. Let us fix an unsafe location
qunsafeC 6= qinitC in HC , and we want to check if qunsafeC is reachable in HC .

3.1 Abstraction

In the next section, we present several methods for constructing abstractions.
Here, we define formally the relation that holds between a system and its ab-
straction.

Given transition systems T1 = (S1, S
0
1 , Σ1,−→1) and T2 = (S2, S

0
2 , Σ2,−→2),

an abstraction or simulation function from T1 to T2 is a pair of functions α =
(αS , αΣ), where αS : S1 → S2 and αΣ : Σ1 → Σ2 such that

– αS(S0
1) ⊆ S0

2 , and

– for every s1, s
′
1 ∈ S1 and a1 ∈ Σ1, s1

a1−→1 s
′
1 implies αS(s1)

αΣ(a1)−→ 2 αS(s′1).

We say that T2 is an abstraction of T1, denoted by T1 � T2. We denote the fact
that α is an abstraction function from T1 to T2 by T1 �α T2.
Notation. Given an abstraction function α = (αS , αΣ), we will drop the sub-
scripts S and Σ when it is clear from the context. For example, for a state
s, we will use α(s) to mean αS(s). Note that if α is an abstraction func-

tion from T1 to T2 and σ = s1
a1−→1 · · · sn is an execution fragment of T1,

σ′ = α(s1)
α(a1)−→ 2 · · ·α(sn) is an execution fragment of T2. Let us denote

α(s1)
α(a1)−→ 2 · · ·α(sn) by α(σ).

Let us fix an abstraction function α from the concrete system TC to the
abstract system TA. Since, we are interested in control state reachability, we
need certain consistency conditions on α to ensure that property is preserved. We
assume that there exists a location qunsafeA 6= qinitA in HA satisfying α({qunsafeC }×
ContC) ⊆ {qunsafeA } × ContA, that is, α maps the elements of the unsafe set
of concrete states to states corresponding to an unique location of HA. Let
UnsafeC = {sC} × ContC and UnsafeA = {sA} × ContA. Note that if qunsafeA is

not reachable in the abstract hybrid automaton HA, then qunsafeC is not reachable
in the concrete hybrid automaton HC .

3.2 Counter-examples

If qunsafeA is reachable in HA, then the model-checker returns a counter-example.
In order to guarantee semi-completeness, we need a set of counter-examples
which are enumerable, and spawn the set of all executions of the system. Hence,



we define a counter-example to be a path in the control flow graph of the abstract
hybrid automaton, which is feasible, that is, has an execution corresponding to
it. Note that such a counter-example exhibits potentially an infinite set of unsafe
abstract executions.

Given an element π = q0e0q1 · · · qn ∈ (LocEdges)∗Loc, define PathToExecF (π)

to be the set of all execution σ = (q0, x0)
t0−→ (q0, y0)

e0−→ (q1, x1)
t1−→ (q1, y1) · · ·

(qn−1, yn−1)
en−1−→ (qn, xn)

tn−→ (qn, yn). Formally, a counter-example of a hybrid
automaton H given an unsafe location qunsafe is an alternating sequence of loca-
tions and edges, that is, an element π of qinitEdges(LocEdges)∗ qunsafe such that
PathToExecF (π) is not empty. The length of a counter-example is the number
of elements in the sequence. We will call a counter-example of HC with unsafe
location qunsafeC , a concrete counter-example, and a counter-example of HA with

unsafe location qunsafeC , an abstract counter-example.

3.3 Validation

We think of an abstract counter-example as representing a possibly infinite set
of abstract unsafe executions. Hence, validation needs to check if there is a
concrete unsafe execution corresponding to any of the abstract unsafe executions
represented by the abstraction counter-example. This requires us to perform
validation in a slightly different manner. Validation takes place in two phases:
In the first phase, a forward analysis is done to compute a representation of
the abstract executions corresponding to the counter-example. In particular,
the set of abstract states reached by traversing the abstract counter-example is
computed. In the next phase, a backward reachability computation is performed
in the concrete system, along the potentially infinite set of abstract executions
computed in the previous step, and represented by a sequence of sets of abstract
states. The precise algorithm is given in Figure 1. There exists a concrete unsafe
execution corresponding to the abstract counter-example πA iff ReachπA,α(0) ∩
S0
C 6= ∅.

Remark 1. Observe that just running a standard backward reachability algo-
rithm on the counter-example does not suffice, since the reach sets thus obtained
might contain concrete state which do not correspond to an actual abstract ex-
ecution. This is because, running a backward reachability would correspond to
“validating” all abstract execution fragments corresponding to any “subpath” of
the counter-example, simultaneously.

Given an execution fragment σ′ of TA and an abstraction function α from
TC to TA, we denote by Concα(σ′), the set of execution fragments in TC cor-
responding to TA, namely, the set {σ ∈ ExecF (TC) |α(σ) = σ′}. Validation is
the process of checking if Concα(PathToExecF (πA)) contains an execution of
TC reaching sC .

Proposition 1. Concα(PathToExecF (πA)) contains an execution of TC reach-
ing sC iff ReachπA,α(0) ∩ S0

C 6= ∅.
If ReachπA,α(0) ∩ S0

C 6= ∅, then we call πA a spurious counter-example.
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Given two transition systems T1 = (S1, S
0
1 ,Σ1,−→1) and

T2 = (S2, S
0
2 ,Σ2,−→2), an abstraction or simulation function

from T1 to T2 is a pair of functions α = (αS ,αΣ), where
αS : S1 → S2 and αΣ : Σ1 → Σ2 such that

• αS(S0
1) ⊆ S0

2 , and
• for every s1, s

�
1 ∈ S1 and a1 ∈ Σ1, s1

a1−→1 s�1 implies

αS(s1)
αΣ(a1)−→ 2 αS(s�1).

We say that T2 is an abstraction of T1, denoted by T1 � T2.
We denote the fact that α is an abstraction function from T1

to T2 by T1 �α T2.
Notation. Given an abstraction function α = (αS ,αΣ), we

will drop the subscripts S and Σ when it is clear from the
context. For example, for a state s, we will use α(s) to mean
αS(s). Note that if α is an abstraction function from T1 to
T2 and σ = s1

a1−→1 · · · sn is an execution fragment of T1,
σ� = α(s1)

α(a1)−→ 2 · · ·α(sn) is an execution fragment of T2.

Let us denote α(s1)
α(a1)−→ 2 · · ·α(sn) by α(σ).

Let us fix an abstraction function α from the concrete
system TC to the abstract system TA. Since, we are interested
in control state reachability, we need certain consistency
conditions on α to ensure that property is preserved. We
assume that there exists a location qunsafe

A �= qinit
A in HA

satisfying α({qunsafe
C } × ContC) ⊆ {qunsafe

A } × ContA, that is,
α maps the elements of the unsafe set of concrete states
to states corresponding to an unique location of HA. Let
UnsafeC = {sC} × ContC and UnsafeA = {sA} × ContA.
Note that if qunsafe

A is not reachable in the abstract hybrid
automaton HA, then qunsafe

C is not reachable in the concrete
hybrid automaton HC .

B. Counter-examples

If qunsafe
A is reachable in HA, then the model-checker returns

a counter-example. In order to guarantee semi-completeness,
we need a set of counter-examples which are enumerable, and
spawn the set of all executions of the system. Hence, we define
a counter-example to be a path in the control flow graph of
the abstract hybrid automaton, which is feasible, that is, has
an execution corresponding to it. Note that such a counter-
example exhibits potentially an infinite set of unsafe abstract
executions.

Given an element π = q0e0q1e1 · · · qn ∈ (LocEdges)∗Loc,
let us define PathToExecF (π) to be the set of all execution
σ = (q0, x0)

t0−→ (q0, y0)
e0−→ (q1, x1)

t1−→ (q1, y1) · · ·
(qn−1, yn−1)

en−1−→ (qn, xn)
tn−→ (qn, yn). Formally, a counter-

example of a hybrid automaton H given an unsafe location
qunsafe is an alternating sequence of locations and edges, that
is, an element π of qinitEdges(LocEdges)∗ qunsafe such that
PathToExecF (π) is not empty. The length of a counter-
example is the number of elements in the sequence. We will
call a counter-example of HC with unsafe location qunsafe

C , a
concrete counter-example, and a counter-example of HA with
unsafe location qunsafe

C , an abstract counter-example.

C. Validation

We think of an abstract counter-example as representing a
possibly infinite set of abstract unsafe executions. Hence, val-

Input: πA, an abstract counter-example in HA of length l.

Phase 1: Forward reachability in the abstract automaton.

Compute FReachπA
(i), for 0 ≤ i ≤ 2l + 1.

• FReachπA
(0) = S0

A.
• FReachπA

(i + 1) = PostTA
(FReachπA

(i), a), where
– (Time Elapse) a = R≥0 if i is even, and
– (Edge) e�(i−1)/2 if i is odd, for 0 ≤ i < 2l + 1.

Phase 2: Backward reachability in the concrete automaton.

Compute Sk for 0 ≤ i ≤ 2l + 1:

Sk = α−1(FReachπA
(k)), 0 ≤ i < 2l + 1

S2l+1 = α−1(FReachπA
(k)) ∩ (qunsafe

C × ContC)

Compute ReachπA,α(k), 0 ≤ k ≤ 2l + 1.
• ReachπA,α(2l + 1) = S2l+1.
• ReachσA,α(k) = Sk∩PreTC

(ReachπA,α(k+1), a), where
– (Time elapse) a = R≥0 if k is even, and
– (Edge) α−1(e�(k−1)/2), if k is odd.

Fig. 1. Validation Algorithm
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will drop the subscripts S and Σ when it is clear from the
context. For example, for a state s, we will use α(s) to mean
αS(s). Note that if α is an abstraction function from T1 to
T2 and σ = s1

a1−→1 · · · sn is an execution fragment of T1,
σ� = α(s1)

α(a1)−→ 2 · · ·α(sn) is an execution fragment of T2.

Let us denote α(s1)
α(a1)−→ 2 · · ·α(sn) by α(σ).

Let us fix an abstraction function α from the concrete
system TC to the abstract system TA. Since, we are interested
in control state reachability, we need certain consistency
conditions on α to ensure that property is preserved. We
assume that there exists a location qunsafe

A �= qinit
A in HA

satisfying α({qunsafe
C } × ContC) ⊆ {qunsafe

A } × ContA, that is,
α maps the elements of the unsafe set of concrete states
to states corresponding to an unique location of HA. Let
UnsafeC = {sC} × ContC and UnsafeA = {sA} × ContA.
Note that if qunsafe

A is not reachable in the abstract hybrid
automaton HA, then qunsafe

C is not reachable in the concrete
hybrid automaton HC .

B. Counter-examples

If qunsafe
A is reachable in HA, then the model-checker returns

a counter-example. In order to guarantee semi-completeness,
we need a set of counter-examples which are enumerable, and
spawn the set of all executions of the system. Hence, we define
a counter-example to be a path in the control flow graph of
the abstract hybrid automaton, which is feasible, that is, has
an execution corresponding to it. Note that such a counter-
example exhibits potentially an infinite set of unsafe abstract
executions.

Given an element π = q0e0q1e1 · · · qn ∈ (LocEdges)∗Loc,
let us define PathToExecF (π) to be the set of all execution
σ = (q0, x0)

t0−→ (q0, y0)
e0−→ (q1, x1)

t1−→ (q1, y1) · · ·
(qn−1, yn−1)

en−1−→ (qn, xn)
tn−→ (qn, yn). Formally, a counter-

example of a hybrid automaton H given an unsafe location
qunsafe is an alternating sequence of locations and edges, that
is, an element π of qinitEdges(LocEdges)∗ qunsafe such that
PathToExecF (π) is not empty. The length of a counter-
example is the number of elements in the sequence. We will
call a counter-example of HC with unsafe location qunsafe

C , a
concrete counter-example, and a counter-example of HA with
unsafe location qunsafe

C , an abstract counter-example.

C. Validation

We think of an abstract counter-example as representing a
possibly infinite set of abstract unsafe executions. Hence, val-

Input: πA, an abstract counter-example in HA of length l.

Phase 1: Forward reachability in the abstract automaton.

Compute FReachπA
(i), for 0 ≤ i ≤ 2l + 1.

• FReachπA
(0) = S0

A.
• FReachπA

(i + 1) = PostTA
(FReachπA

(i), a), where
– (Time Elapse) a = R≥0 if i is even, and
– (Edge) e�(i−1)/2 if i is odd, for 0 ≤ i < 2l + 1.

Phase 2: Backward reachability in the concrete automaton.

Compute Sk for 0 ≤ i ≤ 2l + 1:

Sk = α−1(FReachπA
(k)), 0 ≤ i < 2l + 1

S2l+1 = α−1(FReachπA
(k)) ∩ (qunsafe

C × ContC)

Compute ReachπA,α(k), 0 ≤ k ≤ 2l + 1.
• ReachπA,α(2l + 1) = S2l+1.
• ReachσA,α(k) = Sk∩PreTC

(ReachπA,α(k+1), a), where
– (Time elapse) a = R≥0 if k is even, and
– (Edge) α−1(e�(k−1)/2), if k is odd.

Fig. 1. Validation Algorithm

idation needs to check if there is a concrete unsafe execution
corresponding to any of the abstract unsafe executions rep-
resented by the abstraction counter-example. This requires us
to perform validation in a slightly different manner. Validation
takes place in two phases: In the first phase, a forward analysis
is done to compute a representation of the abstract executions
corresponding to the counter-example. In particular, the set
of abstract states reached by traversing the abstract counter-
example is computed. In the next phase, a backward reacha-
bility computation is performed in the concrete system, along
the potentially infinite set of abstract executions computed in
the previous step, and represented by a sequence of sets of
abstract states. The precise algorithm is given in Figure 1.
There exists a concrete unsafe execution corresponding to the
abstract counter-example πA iff ReachπA,α(0) ∩ S0

C �= ∅.
Remark. Observe that an execution fragment σ� of length

i corresponding to a suffix of the abstract counter-example
πA might not always correspond to a suffix of an execution
fragment in PathToExecF (πA), since there might not exists a
σ�� of length 2l+1−i corresponding to a prefix of πA such that
σ�� and σ� can be “concatenated” to form an execution. Hence,
we need to first compute the forward reach in the abstract
system.

Given an execution fragment σ� of TA and an abstraction
function α from TC to TA, we denote by Concα(σ�), the set of
execution fragments in TC corresponding to TA, namely, the
set {σ ∈ ExecF (TC) |α(σ) = σ�}. Validation is the process of
checking if Concα(PathToExecF (πA)) contains an execution
of TC reaching sC .

Proposition 1: Concα(PathToExecF (πA)) contains an
execution of TC reaching sC iff ReachπA,α(0) ∩ S0

C �= ∅.

Fig. 1. Validation Algorithm

Given an execution fragment σ� of TA and an abstraction function α from
TC to TA, we denote by Concα(σ�), the set of execution fragments in TC cor-
responding to TA, namely, the set {σ ∈ ExecF (TC) |α(σ) = σ�}. Validation is
the process of checking if Concα(PathToExecF (πA)) contains an execution of
TC reaching sC .

Fig. 1. Validation Algorithm

3.4 Refinement

We formalize the conditions which ensure that the refinement is making progress
by “eliminating” spurious abstract counter-examples. The refinement algorithms
we present in the next section ensure the progress conditions presented here.

Definition 2. Given two transition systems T1 and T2 such that T1 � T2, a
transition system T3 is said to be a refinement of T2 with respect to T1, if T1 �
T3 � T2.

Notation. We will say H3 is a refinement of H2 with respect to H1 to mean that
[[H3]] is a refinement of [[H2]] with respect to [[H1]], and denote it by H1 � H3 �
H2.

Our goal is to find a refinement HR such that HC � HR � HA. Note that
HR = HA is such a system, however, we want to make progress by eliminating
the spurious counter-example. Hence, we define good refinements to be those in
which some “potential” execution fragment of the counter-example in the current
abstraction is not a “potential” execution fragment of any counter-example in
the refinement.

To formalize progress, we need some definitions. Given a transition system
T , a potential execution fragment of T is a sequence ρ = s0a0s1a1 · · · sl−1al−1sl
alternating between elements of S and Σ. Further, given an abstraction function

γ from T1 to T2, and an execution fragment σ′ = s′0
a′0−→2 s

′
1

a′1−→2 · · · s′l−1
a′l−1−→2

s′l of T2, Potentialγ(σ′) is the set of all potential execution fragments ρ =
s0a0s1a1 · · · sl−1al−1sl of T1 such that γ(si) = s′i and γ(ai) = a′i. Note that
a potential execution fragment might not correspond to an actual execution
fragment.

Definition 3. Let HC �α HA and HC �β HR. Given a spurious counter-
example πA of HA, a refinement HR of HA with respect to HC is said to be
good with respect to πA if there exists a ρ ∈ Potentialα( PathToExecF (πA))
such that ρ 6∈ Potentialβ(PathToExecF ( πR)) for any counter-example πR of
HR.



In validating a spurious counter-example πA of HA, we see that ReachπA,α(0)
∩S0

C is empty. Note that if ReachπA,α(k) = ∅ for some k, then ReachπA,α(i)

is empty for all i ≤ k. Let k̂ be the largest integer such that ReachπA,α(k̂)

is empty, if ReachπA, α(k) is empty for some k, otherwise, let k̂ = 0 (since

ReachπA,α(0) ∩ S0
C is definitely empty). We call k̂ the infeasibility index of πA

with respect to α. The next proposition states a local sufficient condition to
ensure that a refinement is good.

Proposition 2. Let α be the an abstraction function which is surjective. Let
πA = s′0e

′
0s
′
1 · · · s′l−1e′l−1s′l be a spurious counter-example of HA with an infeasi-

bility index k̂ with respect to α. Suppose that HR �β HA is a refinement of HA
with respect to HC satisfying:

Post[[HR]](β(Sk̂), β(ak̂)) ∩ β(ReachπA,α(k̂ + 1)) = ∅, (1)

where Sk̂ is as defined in Figure 1 and ak̂ = R≥0 if k̂ is even and is {α−1(e′
(k̂−1)/2)}

otherwise. Then HR is a refinement of HA with respect to HC which is good with
respect to πA.

Remark 2. Validation can be done by checking if Concα(PathToExecF (πA))
contains an execution of TC reaching sC , which can be verified by perform-
ing a backward reachability in the concrete system with respect to the abstract
counter-example and checking if the reach set becomes empty. However, in order
to guarantee progress in the refinement step, in particular, to be able to per-
form refinement which satisfies Equation 1, we need to identify and eliminate a
potential concrete execution of some abstract unsafe execution.

3.5 Completeness, Semi-completeness and Composition

Abstract1 Model Check1

Refine1 Validate1

A1

Abstract2

Model Check2

Refine2 Validate2

A2

Unsafe

Safe

Friday, August 24, 2012

Fig. 2. A2[A1]: Composition of CEGAR Algorithm A1 with A2

A CEGAR algorithm for a class of systems takes as input a finite represen-
tation of a system from the class and (a) either outputs “YES” or (b) outputs
“NO” and returns a counter-example of the system, or (c) does not terminate.
If it outputs “YES”, then it is guaranteed that the system is safe, that is, the



unsafe location is not reachable, and if it outputs “NO”, then it is unsafe. We
will assume that the different phases of any loop of the CEGAR algorithm ter-
minate, but CEGAR algorithm itself may or may not terminate. Next, we define
the notions of completeness and semi-completeness of a CEGAR algorithm.

Definition 4. A CEGAR algorithm is said to be complete for a subclass C of
hybrid automata if it terminates for all inputs from the class C. It is said to be
semi-complete if it terminates at the least for inputs from C which are unsafe,
that is, have an execution to an unsafe location.

We say that a CEGAR algorithm is fair, if it returns a smallest length
counter-example whenever it terminates on an unsafe system, under the assump-
tion that the model-checker always returns a smallest length counter-example.

Note that a CEGAR algorithm is essentially a model-checking algorithm.
Hence, we can compose CEGAR algorithms by using a CEGAR algorithm A1

as a model-checker for a CEGAR algorithm A2 as shown in Figure 2. We denote
the composed algorithm by A2[A1].

Proposition 3. Let Ai be a CEGAR algorithm with input and abstraction spaces
Ci and Di respectively, for i = 1, 2, such that D2 ⊆ C1. Then:

– If A1 and A2 are complete and fair CEGAR algorithms, then A2[A1] is
complete and fair.

– If A2 is semi-complete and fair, and if A1 is complete and fair, then A2[A1]
is also semi-complete and fair.

4 CEGAR for Rectangular Hybrid Automata

In this section, we focus on a subclass of hybrid automata called rectangular
hybrid automata. We present three CEGAR algorithms for this class. In order to
keep the presentation simple, we choose to illustrate the ideas in the algorithms
using examples. The formal description and details can be found in [22].

We begin with a brief overview of the class of rectangular hybrid systems. A
rectangular (hybrid) automaton is a hybrid automaton in which the invariants,
guards, jumps and flow are specified using rectangular constraints. A rectangular
constraint is of the form x ∈ I, where x is a variable and I is an interval whose
finite end-points are integers. Figure 3 shows a rectangular hybrid automaton.

It has four locations, namely, l1, l2, l3 and l4, as shown by the circles and
four edges e1, e2, e3 and e4, as shown by the arrows between the circles. The
invariant at location l3 is given by x ∈ [−1, 1]. To keep the diagram simple, we
have omitted the constraints x ∈ [−10, 10] and y ∈ [−10, 10] from the invariants
of every location. The flow is specified by rectangular differential inclusions of
the form ẋ ∈ I. The flow associated with it are all functions whose projection to
the x-component is such that the derivative with respect to time belongs to the
interval I at all times.

The jump relation is specified using two kinds of constraints, namely, guards
and resets. A guard specifies the enabling condition on the edge, and the reset
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Fig. 3. H1: An example of a rectangu-
lar hybrid automaton
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ẋ ∈ [1, 1]
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ẋ ∈ [2, 2]
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Fig. 4. H5: Flow abstraction of H2

scaling down y by a factor of 2

specifies the value of the continuous state after the edge is taken. An edge is
labelled by a constraint of the form x ∈ I, which specifies that the edge can
be taken when the value of x belongs to the interval I. If an edge is labelled
by a constraint of the form x :∈ I, it means that the value of x after the edge
is taken is reset non-deterministically to some value in the interval I. When a
constraint of the form x :∈ I is absent, it means that the value of a variable
remains the same after taking an edge. We call a reset of the first form as strong
reset and a reset of the second form as an identity reset. Note that the jump
relation associated with a constraint x ∈ I1, x :∈ I2 is I1 × I2, where as that
associated with just x ∈ I is {(x, x) |x ∈ I}.

The control state reachability problem is undecidable for the class of rect-
angular hybrid automata [15]. Hence, to ensure that the model-checking phase
of a CEGAR loop terminates, we consider as the abstraction space, a subclass
of rectangular hybrid automata called initialized rectangular hybrid automata,
which have the property that whenever the differential inclusions associated with
a variable is different for the source and target of an edge, then the edge is nec-
essarily labelled by a reset constraint for that variable, that is, the value of the
variable is non-deterministically reset to some value in an interval (as opposed to
carrying over the value from previous location). The control state reachability
problem has been shown to be decidable for the class of initialized rectangu-
lar hybrid automata [15]. For example, the variable x is non-initialized along
the edge e1, since the constraints associated with ẋ in locations l1 and l2 are
different, but the edge e1 does not have a reset constraint for x.

Before presenting the CEGAR algorithm, let us discuss briefly the com-
putability of the validation step. For a transition system T arising from a rectan-
gular hybrid automaton H, one can compute PreT (S, a) and PostT (S, a) where
S is any linear set and a is either the set of non-negative reals R≥0 or a subset
of edges Edges of the hybrid automaton H. Further, the resulting sets are linear
too. This implies that FReachπ(i) can be computed for any counter-example π
of H and any position i in π. Further FReachπ(i) is a linear set. We distill the
conditions for ReachπA,α(i) to be computable in the following proposition.

Proposition 4. Let α be an abstraction function from HC to HA. Suppose that
for any linear subset S of the state space, α−1(S) is a linear set and can be com-



puted. Then ReachπA,α(k) is a linear set and is computable for each k. Further,
ReachπA,α(k) is a compact set.

Proof. Compactness follows from the fact that the invariants associated with
the locations are compact (closed and bounded).

In this section, we present three CEGAR algorithms. For each of these we
present the “hybrid abstraction” which can be thought of as a symbolic rep-
resentation of the abstraction function, and a specific method to construct an
abstract system using the hybrid abstraction. Further, the resulting abstraction
function will be such that it satisfies the hypothesis of Proposition 4. Hence, we
can effectively carry out the validation phase. We will present our refinement
algorithm which ensures progress as given by Equation 1.

The first CEGAR algorithm abstracts a rectangular hybrid automaton to an
initialized rectangular hybrid automaton by abstracting the identity resets of the
edges which violate the initialization condition by strong resets. This algorithm
is semi-complete for the class of rectangular automata. Next, we present two
CEGAR algorithms for the class of initialized rectangular automata, which are
complete for this class. One abstracts a system, by merging together different
locations/edges and the other abstracts by dropping/scaling variables. All these
algorithms are fair. Hence, they can be composed as sketched in Proposition 3
to obtain more sophisticated CEGAR algorithms which are complete and semi-
complete, respectively.

4.1 Strong Reset Abstraction based CEGAR

In this section, we present a semi-complete CEGAR algorithm for the class of
rectangular hybrid automata.

Abstraction The broad idea is to abstract a rectangular hybrid automaton
to an initialized rectangular hybrid automaton by abstracting an identity reset
which violates the initialization condition by a strong reset. A naive approach
is to replace a constraint x ∈ I associated with a pair non-initialized edge e
and variable x, by the constraint x ∈ I, x :∈ I. It transforms an identity reset
to a strong reset, and is such that the jump relation associated with the new
constraint {(v1, v2) | v1, v2 ∈ I} is a superset of the jump relation before the
transformation {(v, v) | v ∈ I}. Observe that one can interpret the identity reset
{(v, v) | v ∈ I} as an infinite set of strong resets ({(v, v)})v∈I . We choose to
abstract an identity reset by a finite set of strong resets for the verification to
be computationally feasible. More generally, we abstract a constraint x ∈ I by a
set of constraints x ∈ Ji, x :∈ Ji, i ∈ K, where Ji, i ∈ K is a finite partition of I.

Consider the rectangular automaton H1 in Figure 3. The only non-initialized
edge in the automaton is e1. The strong rest abstraction of H1 is exactly the
same as H1, except that the constraint associated with edge e1 is x ∈ [−1, 0],
x :∈ [−1, 0], y ∈ [−1, 0], y :∈ [−1, 0]. Let us call this automaton H2.



Refinement The refinement step constructs a new abstraction by replacing
the jump relation associated with a non-initialized edge by a smaller set. The
validation step identifies the two sets as given by Equation 1 that need to be
separated. One can show that the infeasibility index always corresponds to a
non-initialized edge of the concrete automaton. The refinement corresponds to
refining the partition used in transforming the non-initialized edge to an initial-
ized edge.

Let us consider the counter-example l1e1l2e3l4 of the strong reset abstraction
of H1, namely, H2, where l4 is the unsafe state. Validation step returns that the
sets A = {(−1, 0)} and B = {(v1, v2) | v1 ∈ [−1, 0], v2 ∈ [−1, 0], v1 ≥ v2}. The
minimum distance (Euclidean) between A and B is

√
2/2. Hence, any square

whose sides are 1/2 units will not overlap with both A and B. Therefore, we
partition the guard x ∈ [−1, 0], y ∈ [−1, 0] into square chunks of width 1/2. So
the edge e1 in the refinement is labelled by the multi-rectangular constraints cor-
responding to the partition (x ∈ [−1,−1/2], y ∈ [−1,−1/2]), (x ∈ [−1/2, 0], y ∈
[−1,−1/2]), (x ∈ [−1,−1/2], y ∈ [−1/2, 0]), and (x ∈ [−1/2, 0], y ∈ [−1/2, 0]).
Note that the refinement step could force us to use rational end-points, even
if we begin with integer end-points for all the intervals which appear in the
constraints.

Remark 3. Compactness of the reach set is a crucial property we exploit here,
since this guarantees that there exists a minimum distance between the two sets
that need to be separated according to Equation 1.

It is easy to see that if the model-checker always return a smallest counter-
example in the abstract system when one exists, then the CEGAR algorithm will
find a smallest length counter-example if it terminates. However, the CEGAR
loop might not terminate in general (a consequence of the undecidability of con-
trol state reachability for rectangular automata). Hence, we obtain the following
partial guarantee about the termination of the CEGAR loop.

Theorem 1. The strong reset abstraction based CEGAR algorithm is semi-
complete for the class of rectangular hybrid automata, and is fair.

Remark 4. Note that the semi-completeness depends crucially on our choice of
the notion of a counter-example. For example, the above theorem would not hold
had we chose an abstract execution fragment as the notion of counter-example.

4.2 Control Abstraction based CEGAR

We present a CEGAR algorithm for the class of initialized rectangular automata.
Hence, this CEGAR loop can be used as a model-checker for the strong reset
abstraction based CEGAR algorithm of the previous section.

Abstraction As the name suggests, we abstract the underlying control flow
graph of the initialized rectangular automaton. More precisely, we define a con-
sistent partition of locations/edges and merge the locations/edges in the each of



the partitions. We define the constraints for the invariants, differential inclusions,
guards and resets to be a the smallest rectangular constraints which contain the
corresponding constraints for the elements in each partition.

Figure 5 shows an abstraction of the initialized rectangular automaton H2

in which location l2 and l3 are merged and edges e3 and e4 are merged.
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Fig. 5. H3: Control Abstraction of the Hybrid Automaton H2

The constraint on ẋ in l2,3 is a constraint which corresponds to the smallest
rectangular set containing [2, 2] and [1, 1], the constraints on ẋ in l2 and l3,
respectively. Similarly, the guard for the variable y on the edge e3,4 is the union
of the sets [3, 10] and [6, 10].

We call the smallest rectangular set containing a given set, the rectangular
hull of the set. We use the following rules in constructing the constraints for an
abstract edge E. If all the concrete edges corresponding to E have identity resets,
then E is an identity reset and the constraint for the guard is the rectangular
hull of the constraints on the concrete edges. If at least one the edges does not
have an identity reset, then the edges with identity reset are transformed into
the naive strong reset explained in the previous section. Then the guard and
reset are obtained by taking the rectangular hull of the the guards and resets,
respectively, of the concrete strong reset transformed edges. The only exception
to the above rule is when E is a singleton edge, in which case, the last step of
taking the rectangular hull is skipped. This is to ensure that after finite number
of refinement (essentially, when the abstract locations and edges are singleton
sets), the abstract automaton is identical to the concrete automaton.

Refinement The refinement algorithm essentially constructs a new control ab-
straction by splitting the equivalence class of locations and edges near the point
of infeasibility. We present a specific method to refine along the above lines. Let
us define L2 to be the set of locations appearing in ReachπA,α(k̂ + 1). If the
infeasibility edge corresponds to an abstract edge e, then we also define E and
L1. E is the set of concrete edges in α−1(e), whose target is a location in L2.

And L1 is the locations appearing in ReachπA,α(k̂) which is a source of some
edge in E. We then split the equivalence classes such that the elements in L1,
L2 and E appear in singleton sets. The intuition behind the above construction
is that the only elements which effect satisfaction of Equation 1 are those in the



above sets. The above splitting will force the refined system to be equivalent to
the concrete system locally, and hence Equation 1 is trivially satisfied.

Let us consider the counter-example πA = l1e2l2,3e3,4l4. The infeasibility

index k̂ corresponds to the time transition from l2,3 to l2,3. In more detail,

FReachπA(k̂) and FReachπA(k̂ + 1) are the regions C given by the constraints
x ∈ [0, 1], y ∈ [0, 1] and D given by the constraints x ∈ [0, 1], y ∈ [0, 4], x ≥ y−3,

respectively. However, ReachπA,α(k̂ + 1) is given by l2 × {(1, 4)}. And taking
the predecessor of l2 × {(1, 4)} with respect to ẋ ∈ [2, 2] and ẏ ∈ [3, 3], has a
non-empty intersection with the region C. Hence, we split the equivalence class
{l2, l3} such that l2 is in a singleton equivalence class. We will also need to split
the edges e3 and e4 to obtain a consistent partition. Therefore, the refinement
step results in the concrete automaton.

The control abstraction based CEGAR will always terminate, since starting
with any partition of locations and edges, it is possible to refine the partitions
only finitely many times due to the fact that the set of locations and edges is
finite. Hence, we obtain a complete CEGAR algorithm for the class of initialized
rectangular automata. Further, it is fair.

Theorem 2. The control abstraction based CEGAR algorithm is complete for
the class of initialized rectangular hybrid automata, and is fair.

4.3 Flow Abstraction based CEGAR

We present another complete algorithm for the class of initialized rectangular
automata which abstracts the continuous dynamics by dropping certain vari-
ables or applying a limited form of linear transformation, namely, scaling on the
variables.

Abstraction A flow abstraction preserves the underlying control flow graph.
A specification of a flow abstraction provides a subset of the variables of the
concrete automaton and a scaling factor, a natural number, for each of the
variables in the subset. The abstraction is constructed by first dropping the
variables not in the specified subset, that is, only the constraints corresponding
to the variables in the subset are retained in the invariants, guards, resets and
differential inclusions. Next, the constraints are scaled according to the scaling
factors provided. A scaling factor of k ∈ N for a variable x involves, replacing
every constant c appearing in the constraints involving x by c/k. Note that
this step may result in an automaton with rational end-points. Hence, we take
the rectangular hull of the sets obtained. The only exception is when the scaling
factor is 1, in which case we do not take the rectangular hulls. This is to guarantee
that when all the variables are included with a scaling factor of 1, we obtain the
concrete automaton. Scaling factor helps in reducing the granularity for the
purpose of analyzing the system.

Let us consider the automaton H1, and a flow abstraction which keeps the
variable x with scaling factor of 1. The resulting abstract system is obtained



by removing all the constraints involving y from H1. Let us consider another
abstraction in which we keep both the variables, x with a scaling factor of 1 and
y with a scaling factor of 2. The resulting abstract automaton is shown in Figure
4. The flow of y in H2 is given by ẏ ∈ [3, 3], which when scaled down by 2 gives
the ẏ ∈ [1.5, 1.5], and then taking the rectangular hull of the set gives ẏ ∈ [1, 2].
Similarly, the guard on e3 is transformed from y ∈ [3, 10] to y ∈ [1, 5].

Refinement The refinement algorithm consists of two steps. Broadly, in the first
step we choose a subset of variables, and in the second step assign appropriate
scaling factors to the chosen variables. We iterate over all subsets of variable
in the increasing order of size and check if Equation 1 holds, when the scaling
factor for all the variables is taken to be 1. Then we assign a scaling factor for a
variable in the chosen set, to be the g.c.d of the previous scaling factor and all the
constants appearing in the constraints involving the variable locally, that is, the
constants appearing the invariants and flows of the location, if the infeasibility
index corresponds to a time transition, otherwise, one considers the constants
appearing in the guards and reset of the edge corresponding to the infeasibility
index. These conditions ensure that Equation 1 is satisfied.

Let us consider the abstraction H4 and the counter-example l1e2l3e4l4. We
observe that the infeasibility index corresponds to transition from l3 to l3 with
time elapse. Hence, we need to add y. However, since the g.c.d of the constants
corresponding to location l3, namely, the differential inclusion ẏ ∈ [2, 2] and the
invariant y ∈ [−10, 10], is 2, we assign a scaling factor of 2 with y. The resulting
refinement is the automaton H5 shown in Figure 4.

Again, the flow abstraction based CEGAR algorithm always terminates, be-
cause there are only finite number of refinements starting from any abstraction.
Every refinement entails adding a variable or changing the scaling associated
with a variable. Note that the new scaling factor is necessarily lower than or
equal to the previous scaling factor, because by definition the new scaling factor
is a divisor of the previous scaling factor. Since the number of variable is finite,
and the scaling factor associated with a newly introduced variable is finite, we
obtain that the CEGAR algorithm terminates in a finite number of iterations.
Also, the CEGAR algorithm is fair.

Theorem 3. The flow abstraction based CEGAR algorithm is complete for the
class of initialized rectangular hybrid automata, and is fair.

4.4 Discussion

We obtain a semi-complete algorithm for the class of rectangular hybrid au-
tomata by composing all the three algorithms, and a complete algorithm for the
class of initialized rectangular automata by composing the last two algorithms.
The compositional CEGAR framework provides a convenient method to describe
and implement CEGAR algorithms in a modular fashion.



The hybrid abstraction based CEGAR algorithms have the advantage that
the various phases of the CEGAR loop are more efficient. As said before, con-
struction of the abstraction is simpler because one can avoid expensive un-
bounded Post computations with respect to time. However, the validation phase
as described requires computing unbounded Pre. One can avoid unbounded Pre
computations, by using a small trick. One can add a new clock (a variable x
with ẋ = 1), which forces taking a discrete transition every τ time units. This is
achieved by adding self loops on the locations with a guard x ∈ [τ, τ ] and reset
x :∈ [0, 0] and adding the constraint x ∈ [0, τ ] to the invariant. The new system
is equivalent to the old system in terms of checking safety. However, validating a
counter-example of the new system requires computing Pre with respect to the
time interval [0, τ ].

5 Implementation and Experimental Results

The tool, which we call Hybrid Abstraction Refinement Engine (Hare), im-
plements the CEGAR algorithm in C++. Hare input consists of a hybrid au-
tomaton and a single initial abstraction function (which combines all the three
different types of abstractions). This function defines the initial abstract hybrid
automaton. The default initial abstract automaton has no variables and has
three locations—an initial location, an unsafe location, and a third location cor-
responding to all the other locations of the concrete automaton. This abstract
automaton is automatically translated to the input language for HyTech [18]
and then model-checked. If HyTech does not produce a counterexample for the
safety property, Hare returns the current abstraction. Otherwise, the counterex-
ample is parsed and validated. In order to validate the counter-example, we need
to compute Pre and Post with respect to certain edges and/or time. However,
HyTech allows taking Pre and Post only with respect to the set of all the tran-
sitions. Thus, our implementation of the validation involves construction of new
hybrid automata corresponding to the counter-example, and calls HyTech’s Pre
and Post functions on these automata. These calls to HyTech, at least in part,
contribute to the relatively large time that Hare spends in the validation step
for some of the case studies. Our implementation consists of a single CEGAR
algorithm which is a combination of the the three CEGAR schemes presented
in Section 4. It does not correspond to any particular composition of the al-
gorithms, and our presentation of the algorithm as a composition is purely for
highlighting the ideas in the implementation in a readable manner.

5.1 Experimental Results

Our experimental evaluation of Hare (see Table 1) is based on five classes of
examples:

1. BILL n models a ball in an n-dimensional bounded reflective rectangle. The
unsafe set is a particular point in the bounded rectangle.



2. NAV n models the motion of a point robot in an n × n grid where each
region in the grid is associated with a rectangular vector field. When the
robot is in a region, its motion is described by the flow equations of that
region. The unsafe set is a particular set of regions. NAV n A and NAV n B
represent the two different configurations of the vector fields, the initial and
the unsafe regions. NAV n C models two robots on the same the n× n grid
with different initial conditions; the unsafe set being the set of states where
the two robots simultaneously reach the same unsafe region.

3. SATS n models a distributed air traffic control protocol with n aircraft pre-
sented in [21]. The model of each aircraft captures several (8 or 10) phys-
ical regions in the airspace where the aircraft can be located, such as the
left holding region at 3K feet, the left approach region, the right missed-
approach region, the runway, etc. The continuous evolution of the aircraft
are described by rectangular dynamics within each region. An aircraft tran-
sitions from one to another region based on the rules defined by the traffic
control protocol, which involves the state of the current aircraft and also
other aircrafts. Thus, the automata for the different aircraft communicate
through shared variables. The safety property requires that the distance be-
tween two aircraft is never less than a safety constant c. We have worked on
two variants of SATS: SATS n S models just one side of the airspace and
the full SATS n C has two sides.

4. FISME n models Fischer’s timing-based mutual exclusion algorithm with n
concurrent processes.

5. ZENO is a variant of the well-known 2D bouncing ball system where the
system has zeno executions.

It is clear from the above table that Hare produces relatively small abstrac-
tions: in some cases with two orders of magnitude reduction in the number of
locations, and often reducing the continuous state space by one or two dimen-
sions. In the extreme case of NAV n A, an abstraction with 6 discrete states is
found in 4 iterations, independent of the size of the grid. This is not too surprising
in hindsight because the final abstraction clearly illustrates why only a constant
number of control locations can reach the unsafe region in this example, and it
successfully lumps all the unreachable locations together. Yet, the total verifica-
tion time is better for HyTech for NAV n A and NAV n B than Hare primarily
because, as discussed earlier, Hare makes numerous calls to HyTech not only
for model checking the abstract automaton but also for the validation and the
refinement refinement steps. Note that the time taken for abstraction refinement
is comparable to that of the time taken for direct verification by HyTech. Hare

’s advantage is apparent in the case of NAV C *, SATS, and FISME, where the
system consists of several automata evolving in parallel. In NAV C, for example,
since the motion of each of the robots can be abstracted into a simpler automa-
ton with less number of discrete locations, the state space of the composition of
these abstract automaton is reduced dramatically (exponentially in the number
of robots) and this is apparent in the differences in the running time.



Problem Conc. size Abst. size Iter. Validation Abstraction Hare HyTech
(locs, vars) (locs, vars) (sec) Refinement(sec) (sec) (sec)

BILL 2 A (6,2) (4, 1) 1 0.02 0.04 0.06 0.03

BILL 3 A (8,3) (4, 1) 1 0.04 0.06 0.1 0.04

NAV 10 A (100,2) (6, 2) 4 0.64 0.16 0.8 0.16

NAV 15 A (225,2) (6, 2) 4 1.07 0.18 1.25 0.27

NAV 10 B (100,2) (5, 1) 4 0.67 0.16 0.83 0.24

NAV 15 B (225,2) (5, 1) 4 1.84 0.29 2.13 0.52

NAV 8 C (642,4) (72, 4) 5 1.45 1.39 2.84 23.54

NAV 10 C (1002,4) (72, 4) 5 2.41 1.51 3.92 58.24

NAV 14 C (1962,4) (72, 4) 5 5.38 1.74 7.12 346.83

SATS 3 S (512,3) (320, 2) 4 0.48 1.92 2.40 2.64

SATS 4 S (4096,4) (1600, 2) 4 5.25 15.38 20.63 23.75

SATS 5 S (32786,5) (8000,2) 4 45.79 106.58 154.17 189.65

SATS 3 C (1000,4) (500, 2) 5 2.04 3.82 5.86 6.26

SATS 4 C (10000,5) (2500, 2) 5 22.25 41.37 63.98 76.63

FISME 2 (42,4) (9, 4) 4 0.03 0.07 0.1 0.02

FISME 3 (43,5) (36, 4) 4 0.44 1.34 1.78 1.98

FISME 4 (44,6) (144, 4) 4 28.27 22.21 50.48 78.23

ZENO BOX (7,2) (5,1) 1 0.04 0.04 0.08 —

Table 1. The columns (from left) show the problem name, sizes of the concrete and final
abstract hybrid automaton, number of CEGAR iterations, time taken for validation,
time taken for refinement, total time by Hare and the time taken by HyTech

In SATS, the time taken for validation is less compared to the time taken
for abstraction and refinement steps. This is primarily because of the nature
of the system. In SATS case study, the time taken to verify the abstractions is
considerable while compared to other case studies.

The advantage of variable-hiding abstraction is apparent in ZENO (HyTech
does not terminate in this case), as a subset of variables are sufficient to infer
the safety of the system. We believe that in a complex hybrid automaton, with
several components, adding the sufficient number of variables and abstracting
the state space of hybrid automaton will yield better abstractions. All of this
suggests, a direction of research, one we plan on pursuing, where the model-
checker is more closely integrated with an abstraction refinement tool such as
Hare.
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