
Temporal Precedence Checking
for Switched Models and Its
Application to a Parallel Landing
Protocol

Parasara Sridhar Duggirala,
Le Wang,
Sayan Mitra,
Mahesh Viswanathan, and
Cesar Munoz

1

Chicago O’Hare International Airport

Singapore Changi International Airport

• Airports with multiple runways

• FAA pushing for a parallel landing mechanism - SAPA

• Requires an alerting mechanism – ALAS developed by NASA

• Verifying the validity of alerting mechanism

2

• Ownship and Intruder perform parallel landing

• Malicious behavior of intruder – turns towards
the ownship while landing

• Alert mechanism to warn ownship: guarantee predicate

• Property of interest 𝐴𝑙𝑒𝑟𝑡 is generated before 𝑈𝑛𝑠𝑎𝑓𝑒

• Challenges in verification

 Verifying temporal precedence

 Predicates based on projected future behavior

Parallel Landing: A Case Study

𝑆
𝑎
𝑓
𝑒𝐵
𝑎
𝑐𝑘

(𝑥𝑜 , 𝑦𝑜)

(𝑥𝑖 , 𝑦𝑖)

𝑦
𝑠𝑒
𝑝

𝑥𝑠𝑒𝑝

𝑆𝑎𝑓𝑒𝐻𝑜𝑟𝑖𝑧

𝑆
𝑎
𝑓
𝑒𝐹
𝑟𝑜
𝑛
𝑡

Ownship

Intruder

3

• Verification technique for temporal precedence properties

• Verifying guarantee predicates

• Application to Adjacent Landing Alerting System (ALAS) for checking
𝐴𝑙𝑒𝑟𝑡 ≺𝑏 𝑈𝑛𝑠𝑎𝑓𝑒 property

Contributions

Checking temporal precedence property with guarantee
predicates and apply it to ALAS system

4

 Motivation

• System Model and Properties

• Temporal Precedence Property Verification

• Reachable set computation using annotations

• Temporal precedence checking

• Verifying guarantee predicates

• ALAS system and verification results

Overview

5

• Switched System Model

• System dynamics 𝑥 = 𝑓(𝑥), solution is 𝜉 𝑥0, 𝑡

𝑑

𝑑𝑡
𝜉 𝑥0, 𝑡 = 𝑓(𝜉 𝑥0, 𝑡)

• Multiple modes of operation 𝑓𝑖 𝑖 ∈ 𝐼 }

• Switching signal 𝜎 ∶ R≥0 → 𝐼 denotes the switching among modes

System Model

𝑥1

𝜉 𝑥1, 𝑡

6

• Predicate 𝑃 ⊆ ℝ𝑛 is satisfied by 𝜉 from 𝑥0 at time 𝑡 iff 𝜉 𝑥0, 𝑡 ∈ 𝑃

• Temporal precedence property 𝑃1 ≺𝑏 𝑃2 is satisfied by 𝜉 from 𝑥0 iff
∀𝑡, 𝑃2 𝜉(𝑥0, 𝑡) = ⊤, ∃ 𝑡′ < 𝑡 − 𝑏, 𝑃1 𝜉 𝑥0, 𝑡

′ = ⊤

• For ALAS, temporal precedence property 𝐴𝑙𝑒𝑟𝑡 ≺𝑏 𝑈𝑛𝑠𝑎𝑓𝑒

Temporal Precedence Property

Consider the temporal precedence property
𝑃1 ≺0 𝑃2

𝑥1

𝜉 𝑥1, 𝑡

𝑃2 ≡ 𝐹2 > 0𝑃1 ≡ 𝐹1 > 0

7

Computing ReachTubes from
Simulations and Annotations

Compute Must, Not and May
Intervals for each of the predicates

Verification condition

Temporal Precedence
Verification

8

• Annotations – conservative upper bound among distance between
trajectories

• Annotations for ODE 𝑥 = 𝑓(𝑥) is 𝑉, 𝛽 such that

∀𝑡 > 0, 𝑉 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 ≤ 𝛽(𝑥1, 𝑥2, 𝑡)

Computing ReachTubes

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

𝛽 𝑥1, 𝑥2, 𝑡

9

Verification of Annotated Models From Executions [DMV’13]

• Annotations – conservative upper bound among distance between
trajectories

• Annotations for ODE 𝑥 = 𝑓(𝑥) is 𝑉, 𝛽 such that

∀𝑡 > 0, 𝑉 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 ≤ 𝛽(𝑥1, 𝑥2, 𝑡)

• Utility of annotation:

𝝃 𝒚, 𝒕 ∈ 𝑩𝒍𝒐𝒂𝒕𝝐(𝝃(𝒙, 𝒕)) where 𝝐 = 𝒔𝒖𝒑
𝒚∈𝑩𝜹(𝒙)

{𝜷 𝒙, 𝒚, 𝒕 }

Computing ReachTubes

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

𝛽 𝑥1, 𝑥2, 𝑡

10

Verification of Annotated Models From Executions [DMV’13]

• 𝜉(𝑥0, 𝑡) – general analytical solution does not exist

• Validated simulation engines generate regions for time intervals

ρ = 𝑅1, 𝑡0, 𝑡1 , … , 𝑅𝑙 , 𝑡𝑙−1, 𝑡𝑙 , ∀𝑡 ∈ 𝑡𝑖−1, 𝑡𝑖 , 𝜉 𝑡 ∈ 𝑅𝑖

ReachTubes From Simulations
And Annotations

𝑥1

𝜉 𝑥1, 𝑡

11

• 𝜉(𝑥0, 𝑡) – general analytical solution does not exist

• Validated simulation engines generate regions for time intervals

ρ = 𝑅1, 𝑡0, 𝑡1 , … , 𝑅𝑙 , 𝑡𝑙−1, 𝑡𝑙 , ∀𝑡 ∈ 𝑡𝑖−1, 𝑡𝑖 , 𝜉 𝑡 ∈ 𝑅𝑖

• ReachTube 𝜓 = 𝐵𝜖 𝜌 where 𝜖 = sup
𝑦∈𝐵𝛿(𝑥)

{𝛽 𝑥, 𝑦, 𝑡 }

• Overapproximation can be made
arbitrarily small

• How to infer temporal properties
from such ReachTubes

ReachTubes From Simulations
And Annotations

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

𝛽 𝑥1, 𝑥2, 𝑡

12

• For a predicate 𝑃, and ReachTube 𝜓 = 𝑂1, 𝑡0, 𝑡1 , … , 𝑂𝑙 , 𝑡𝑙−1, 𝑡𝑙
the interval [𝑡𝑖−1, 𝑡𝑖] is

 in 𝑀𝑢𝑠𝑡(𝑃) if 𝑂𝑖 ⊆ 𝑃

 in 𝑁𝑜𝑡(𝑃) if 𝑂𝑖 ∩ 𝑃 = ∅

 in 𝑀𝑎𝑦 𝑃 otherwise

Must, Not, and May Intervals

𝑃1 ≡ 𝐹1 > 0

𝑴𝒖𝒔𝒕

𝑴𝒂𝒚

𝑵𝒐𝒕

𝑥1

𝜉 𝑥1, 𝑡

𝑃2 ≡ 𝐹2 > 0

𝑥1

𝜉 𝑥1, 𝑡

𝑵𝒐𝒕

𝑴𝒂𝒚

𝑴𝒖𝒔𝒕

13

• Temporal precedence 𝑃1 ≺𝑏 𝑃2 is satisfied by ReachTube 𝜓 if

∀ 𝐼2 ∈ 𝑀𝑢𝑠𝑡 𝑃2 ∪𝑀𝑎𝑦 𝑃2 , ∃𝐼1 ∈ 𝑀𝑢𝑠𝑡 𝑃1 , 𝐼1 < 𝐼2 − 𝑏

• Temporal precedence 𝑃1 ≺𝑏 𝑃2 is violated by ReachTube 𝜓 if
∃𝐼2 ∈ 𝑀𝑢𝑠𝑡 𝑃2 , ∀ 𝐼1 ∈ 𝑀𝑢𝑠𝑡 𝑃1 ∪𝑀𝑎𝑦 𝑃1 , 𝐼1 > 𝐼2 − 𝑏

Checking Temporal Precedence

Property 𝑃1 ≺0 𝑃2 is satisfied
𝑃1 ≡ 𝐹1 > 0

𝑴𝒖𝒔𝒕

𝑴𝒂𝒚

𝑵𝒐𝒕

𝑥1

𝜉 𝑥1, 𝑡

𝑃2 ≡ 𝐹2 > 0

𝑥1

𝜉 𝑥1, 𝑡

𝑵𝒐𝒕

𝑴𝒂𝒚

𝑴𝒖𝒔𝒕

14

• ReachTubes can be made arbitrarily precise by

1. Decreasing the time step

2. Finer partition of the initial set

• Algorithm for verifying temporal precedence

1. Partition initial set, and compute ReachTubes for each partition

2. If temporal precedence is satisfied by all ReachTubes, return satisfied

3. If violated, return not satisfied, else refine the partitioning and time step

• If the algorithm returns satisfied (not-satisfied) then system satisfies
(violates) the property. If the system robustly satisfies (robustly
violates) the property, algorithm will terminate with correct answer.

Soundness and Relative
Completeness

15

• Assumption: Checking O ⊆ P or O ⊆ Pc is trivial

• Alert predicate based on future behavior of aircraft

• Guarantee predicates with lookahead function 𝐿𝑃 such that
𝑃 𝑥 ≡ ∃𝑡, 𝐿𝑃 𝑥, 𝑡 > 0

• If lookahead function is defined as solution of ODE, i.e.
𝐿𝑃 ≡ 𝑤 𝜉′ 𝑥, 𝑡 > 0 where 𝜉′ is the solution to 𝑥 = 𝑔(𝑥)

Checking Guarantee Predicates

16

• Assumption: Checking O ⊆ P or O ⊆ Pc is trivial

• Alert predicate based on future behavior of aircraft

• Guarantee predicates with lookahead function 𝐿𝑃 such that
𝑃 𝑥 ≡ ∃𝑡, 𝐿𝑃 𝑥, 𝑡 > 0

• If lookahead function is defined as solution of ODE, i.e.
𝐿𝑃 ≡ 𝑤 𝜉′ 𝑥, 𝑡 > 0 where 𝜉′ is the solution to 𝑥 = 𝑔(𝑥)

• Technique: Compute ReachTubes for 𝑥 = 𝑔(𝑥) and check for 𝑀𝑢𝑠𝑡(𝑤)

• If 𝑀𝑢𝑠𝑡 𝑤 ≠ ∅, guarantee predicate is satisfied

• If 𝑀𝑢𝑠𝑡 𝑤 ∪ 𝑀𝑎𝑦 𝑤 = ∅, guarantee predicate is not satisfied

• Else, compute finer ReachTubes and repeat

Checking Guarantee Predicates

17

 Motivation

 System Model and Properties

 Temporal Precedence Property Verification

 Reachable set computation using annotations

 Temporal precedence checking

 Verifying guarantee predicates

• ALAS system, properties and verification results

Overview

18

• Parallel landing with separation between runways

• Ownship and Intruder aircraft

• Intruder behavior – 2 modes: approach and turn

 Approach – Aircraft follows straight line trajectory
to runway

 Turn – Aircraft turns at bank angle 𝜙𝑖

 𝑠𝑥𝑖
𝑠𝑦𝑖
𝑣𝑥𝑖
𝑣𝑦𝑖

=

0 0 1 0
0 0 0 1
0 0 0 𝜔𝑖

0 0 −𝜔𝑖 0

𝑠𝑥𝑖
𝑠𝑦𝑖
𝑣𝑥𝑖
𝑣𝑦𝑖

+

0
0

𝜔𝑖 − 𝑐𝑦
𝜔𝑖 + 𝑐𝑥

where 𝜔𝑖 =
𝐺 |tan(𝜙𝑖)|

𝑣𝑥𝑖
2+𝑣𝑦𝑖

2
and 𝑐𝑥 and 𝑐𝑦 are constants

ALAS Protocol

𝑆
𝑎
𝑓
𝑒
𝐵
𝑎
𝑐𝑘

(𝑠𝑥𝑜, 𝑠𝑦𝑜)

(𝑠𝑥𝑖 , 𝑠𝑦𝑖)

𝑦
𝑠𝑒
𝑝

𝑥𝑠𝑒𝑝

𝑆𝑎𝑓𝑒𝐻𝑜𝑟𝑖𝑧

𝑆
𝑎
𝑓
𝑒
𝐹
𝑟𝑜
𝑛
𝑡

Ownship

Intruder

19

• Alerting Logic – projects the behavior of intruder

• Considers 3 possible scenarios

1. Bank angle 𝜙𝑖 = 0

2. Known bank angle 𝜙𝑖

3. Maximum bank angle 𝜙𝑚𝑎𝑥

• 𝑡𝑖 and 𝑡𝑜 - time taken to reach point of intersection

• 𝐴𝑙𝑒𝑟𝑡𝜋 𝑥 ≡ 𝑡𝑖 > 𝑡𝑜 then Δ𝑡2 × 𝑣𝑥𝑖
2 + 𝑣𝑦𝑖

2 < 𝐵𝑎𝑐𝑘2

else Δ𝑡2 × 𝑣𝑥𝑖
2 + 𝑣𝑦𝑖

2 < 𝐹𝑟𝑜𝑛𝑡2

• Temporal precedence property to be checked
𝑨𝒍𝒆𝒓𝒕 ≺𝒃 𝑼𝒏𝒔𝒂𝒇𝒆

Alerting Logic in ALAS

Ownship

Intruder

Point of intersection

𝑡𝑜
𝑡𝑖

20

• 𝑡𝑜 and 𝑡𝑖 - closed form solutions involve exponentials

• Compute intervals 𝑇𝑖 and 𝑇𝑜 from ReachTubes, such that
𝑡𝑖 ∈ 𝑇𝑖 and 𝑡𝑜 ∈ 𝑇𝑜

• 𝐴𝑙𝑒𝑟𝑡′𝜋 𝑥 ≡ 𝑇𝑖 > 𝑇𝑜 then Δ𝑇2 × 𝑣𝑥𝑖
2 + 𝑣𝑦𝑖

2 < 𝐵𝑎𝑐𝑘2

else Δ𝑇2 × 𝑣𝑥𝑖
2 + 𝑣𝑦𝑖

2 < 𝐹𝑟𝑜𝑛𝑡2

• Temporal precedence property verified

𝑨𝒍𝒆𝒓𝒕′ ≺𝒃 𝑼𝒏𝒔𝒂𝒇𝒆

• Guarantees soundness and relative completeness

Alerting Logic in ALAS Region of intersection

𝑇𝑜
𝑇𝑖

Ownship

Intruder

21

Verification Results

• Running times for several cases
terminates in minutes

• Compute 𝑏 such that
𝑨𝒍𝒆𝒓𝒕 ≺𝒃 𝑼𝒏𝒔𝒂𝒇𝒆 is satisfied

• When property is not robustly
satisfied, then verification might
not terminate

Scenario
Alert ≼4

Unsafe
Time

(mins:sec)
Alert ≼?

Unsafe

6 False 3:27 2.16

7 True 1:13 –

8 True 2:21 –

6.1 False 7:18 1.54

7.1 True 2:34 –

8.1 True 4:55 –

9 False 2:18 1.8

10 False 3:04 2.4

9.1 False 4:30 1.8

10.1 False 6:11 2.4

22

• Flase Alert – safe separation is always maintained and alert is raised

• Missed Alert – safe separation is violated, but alert is not raised

• No Alert – separation among aircraft is always maintained and alert is
not raised

Verification Results –
Interesting Scenarios

23

• Presented a verification technique for temporal precedence properties

• Verifying guarantee predicates

• Applied it to ALAS for discovering interesting scenarios such as false
alerts and missed alerts

Future Work:

• Additional complexities in behavior of intruder and ownship

• Verifying collision avoidance maneuvers

Conclusions and Future Work

24

• Presented a verification technique for temporal precedence properties

• Verifying guarantee predicates

• Applied it to ALAS for discovering interesting scenarios such as false
alerts and missed alerts

Future Work:

• Additional complexities in behavior of intruder and ownship

• Verifying collision avoidance maneuvers

Conclusions and Future Work

Questions?
25

Annotations: Discrepancy function

• Definition. A smooth function V ∶ ℝ2𝑛 → ℝ≥0 is a discrepancy function
for 𝑥 = 𝑓 𝑥, 𝑡 if for any 𝑥1 and 𝑥2 ∈ ℝ𝑛

1. (static bound) ∃ 𝛼1, 𝛼2: 𝛼1 𝑥1 − 𝑥2 ≤ 𝑉 𝑥1, 𝑥2 ≤ 𝛼2 𝑥1 − 𝑥2

2. (dynamic bound) V 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 ≤ 𝛽 𝑥1, 𝑥2, 𝑡 where 𝛽:ℝ2𝑛 ×
ℝ≥0 → ℝ≥0 and 𝛽 → 0 as 𝑥1 → 𝑥2

• 𝛼1, 𝛼2, 𝛽 is a witness for 𝑉

• Stability not required

• Multiple annotations for the same system

26

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

𝛽 𝑥1, 𝑥2, 𝑡

Contraction Metrics

• Definition. A positive definite, symmetric matrix M is a contraction metric for

the system if ∃ 𝛽𝑀 ≥ 0 such that
𝜕𝑓

𝜕𝑥

𝑇
𝑀 +𝑀

𝜕𝑓

𝜕𝑥
+ 𝛽𝑀𝑀 ≼ 0

• Theorem. [Lohmiller & Slotine`98]. If M is a contraction metric then
∃ 𝑘 ≥ 1, 𝛾 > 0 such that ∀ 𝑥1, 𝑥2, 𝑡, 𝜉(𝑥1, 𝑡) − 𝜉(𝑥2, 𝑡)

2≤ 𝑘 𝑥1 − 𝑥2
2𝑒−𝛾𝑡

• Proposition. 𝑥1 − 𝑥2
2 is a discrepancy function with 𝛽 ≔ 𝑘𝑒−𝛾𝑡 𝑥1 − 𝑥2

2

27

Incremental Stability

• Definition. The system is incrementally stable if there is a 𝐾𝐿 function 𝛾
such that for any two initial states 𝑥1and 𝑥2 𝜉 𝑥1, 𝑡 − 𝜉 𝑥2, 𝑡 ≤
𝛾 𝑥1 − 𝑥2 , 𝑡 .

• Theorem. [Angeli 2000]. If the system is incrementally stable then there
exists a smooth function (incremental Lyapunov function) V:ℝ2𝑛 → ℝ≥0

and 𝛼:ℝ → ℝ≥0 s.t.

V 𝜉 𝑥1, 𝑡 , 𝜉 𝑥2, 𝑡 − 𝑉 𝑥1, 𝑥2 ≤

0

𝑡

−𝛼 𝜉 𝑥1, 𝜏 − 𝜉 𝑥2, 𝜏 𝑑𝜏.

• Proposition. Incremental Lyapunov function is a discrepancy function with
𝛽 𝑥1, 𝑥2, 𝑡 = 𝑉 𝑥1, 𝑥2 + 0

𝑡
−𝛼 𝜉 𝑥1, 𝜏 − 𝜉 𝑥2, 𝜏 𝑑𝜏.

28

About Annotations

• How are annotations useful : computing sound over approximations

∀ 𝑥 ∈ 𝐵𝛿 𝑥0 , 𝜉 𝑥, 𝑇 ∈ 𝐵𝑉 𝜉 𝑥0, 𝑇 𝑤ℎ𝑒𝑟𝑒 𝜀 = sup𝑥 ∈𝐵𝛿 𝑥0 ,0≤𝑡≤𝑇 {𝛽 𝑥, 𝑥0, 𝑡 }

29

𝑥0
𝜉 𝑥0, 𝑡

𝜀
𝐵𝑉 𝜉 𝑥0, 𝑇

𝐵𝑉 𝑥 = 𝑥′ 𝑉 𝑥, 𝑥′ ≤ 𝜀}

• 𝑑𝑖𝑟 = 𝑠𝑖𝑔𝑛 𝑥𝑜 − 𝑥𝑖 × 𝑣𝑦𝑖 − 𝑦𝑜 − 𝑦𝑖 × 𝑣𝑥𝑖

• 𝑟 =
𝑣𝑥𝑖

2+𝑣𝑦𝑖
2

𝜔
; 𝑐𝑥 = 𝑥𝑖 + 𝑑𝑖𝑟 ×

𝑣𝑦𝑖

𝜔
; 𝑐𝑥 = 𝑦𝑖 + 𝑑𝑖𝑟 ×

𝑣𝑥𝑖

𝜔

• 𝑖𝑓 𝑟2 × 𝑣𝑥𝑜
2 + 𝑣𝑦𝑜

2 − 𝑥𝑜 − 𝑐𝑥 𝑣𝑦𝑜 − 𝑦𝑜 − 𝑐𝑦 𝑣𝑥𝑜
2

< 0 ; 𝐴𝑙𝑒𝑟𝑡 = 0

• 𝑀 = 𝑥𝑜 − 𝑐𝑥 𝑣𝑥𝑜 + 𝑦𝑜 − 𝑐𝑦 𝑣𝑦𝑜; 𝑁 =
1

𝑟2
(𝑥𝑜 − 𝑐𝑥 𝑥𝑖 − 𝑐𝑥 + 𝑦𝑜 − 𝑐𝑦 𝑦𝑖 − 𝑐𝑦)

• 𝑡𝑜 =
1

𝑣𝑥𝑜
2+𝑣𝑦𝑜

2 [−𝑀 + (𝑀2−𝑣𝑥𝑜
2 + 𝑣𝑦𝑜

2)(𝑥𝑜 − 𝑐𝑥
2 + 𝑦𝑜 − 𝑐𝑦

2
− 𝑟2)]

• 𝑡𝑖 = 𝑎𝑏𝑠(
𝑟

𝑑𝑖𝑟× 𝑣𝑥𝑜
2+𝑣𝑦𝑜

2
× acos(𝑁))

• 𝑖𝑓(𝑡𝑜 > 𝑡𝑖 ∧ 𝑡𝑜 − 𝑡𝑖
2 × 𝑣𝑥𝑜

2 + 𝑣𝑦𝑜
2 < 𝐹𝑟𝑜𝑛𝑡2) ; 𝐴𝑙𝑒𝑟𝑡 = 1

• 𝑖𝑓(𝑡𝑖 > 𝑡𝑜 ∧ 𝑡𝑜 − 𝑡𝑖
2 × 𝑣𝑥𝑜

2 + 𝑣𝑦𝑜
2 < 𝐵𝑎𝑐𝑘2) ; 𝐴𝑙𝑒𝑟𝑡 = 1

Alert Predicate Closed Form

30

