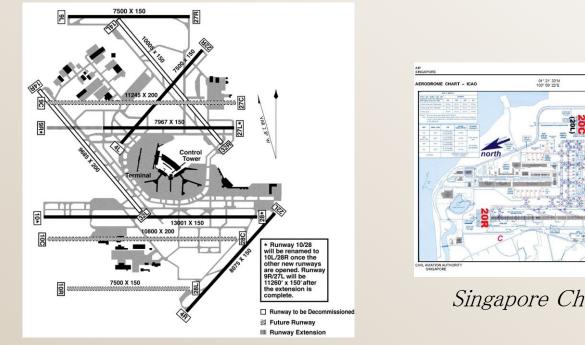
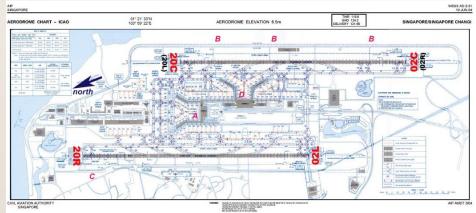
Temporal Precedence Checking for Switched Models and Its Application to a Parallel Landing Protocol

Parasara Sridhar Duggirala,

Le Wang, Sayan Mitra, Mahesh Viswanathan, and Cesar Munoz





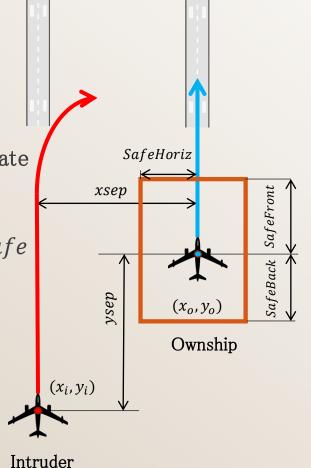
Singapore Changi International Airport

Chicago O'Hare International Airport

- Airports with multiple runways
- FAA pushing for a parallel landing mechanism SAPA
- Requires an alerting mechanism ALAS developed by NASA
- Verifying the validity of alerting mechanism

Parallel Landing: A Case Study

- *Ownship* and *Intruder* perform parallel landing
- Malicious behavior of intruder turns towards the ownship while landing
- Alert mechanism to warn ownship: guarantee predicate
- Property of interest *Alert* is generated before *Unsafe*
- Challenges in verification
 - Verifying temporal precedence
 - Predicates based on projected future behavior



Contributions

- Verification technique for temporal precedence properties
- Verifying guarantee predicates
- Application to Adjacent Landing Alerting System (ALAS) for checking *Alert* <_b Unsafe property

Checking temporal precedence property with guarantee predicates and apply it to ALAS system

Overview

✓ Motivation

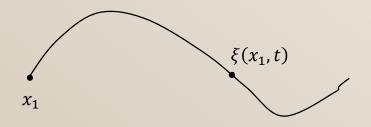
- System Model and Properties
- Temporal Precedence Property Verification
 - Reachable set computation using annotations
 - Temporal precedence checking
 - Verifying guarantee predicates
- ALAS system and verification results

System Model

- Switched System Model
- System dynamics $\dot{x} = f(x)$, solution is $\xi(x_0, t)$

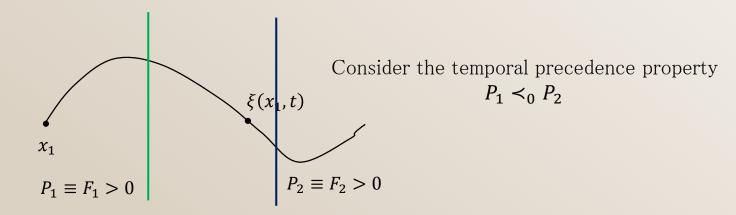
$$\frac{d}{dt}\xi(x_0,t) = f(\xi(x_0,t))$$

- Multiple modes of operation $\{ f_i \mid i \in I \}$
- Switching signal $\sigma: \mathbb{R}^{\geq 0} \to I$ denotes the switching among modes



Temporal Precedence Property

- Predicate $P \subseteq \mathbb{R}^n$ is satisfied by ξ from x_0 at time t iff $\xi(x_0, t) \in P$
- Temporal precedence property $P_1 \prec_b P_2$ is satisfied by ξ from x_0 iff $\forall t, P_2(\xi(x_0, t)) = \top, \exists t' < t b, P_1(\xi(x_0, t')) = \top$
- For ALAS, temporal precedence property Alert \prec_b Unsafe



Temporal Precedence Verification

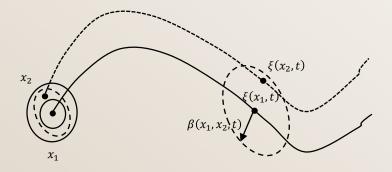
Computing **ReachTubes** from Simulations and Annotations

Compute Must, Not and May Intervals for each of the predicates

Computing ReachTubes

- Annotations conservative upper bound among distance between trajectories
- Annotations for ODE $\dot{x} = f(x)$ is V, β such that

 $\forall t > 0, V(\xi(x_1, t), \xi(x_2, t)) \le \beta(x_1, x_2, t)$

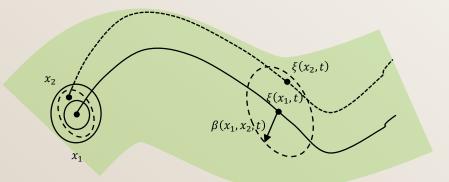


Verification of Annotated Models From Executions [DMV'13]

Computing ReachTubes

- Annotations conservative upper bound among distance between trajectories
- Annotations for ODE $\dot{x} = f(x)$ is V, β such that

 $\forall t > 0, V(\xi(x_1, t), \xi(x_2, t)) \le \beta(x_1, x_2, t)$



• Utility of annotation:

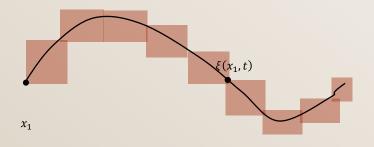
 $\xi(y,t) \in Bloat_{\epsilon}(\xi(x,t))$ where $\epsilon = \sup_{y \in B_{\delta}(x)} \{\beta(x,y,t)\}$

Verification of Annotated Models From Executions [DMV'13]

ReachTubes From Simulations And Annotations

- $\xi(x_0, t)$ general analytical solution does not exist
- Validated simulation engines generate regions for time intervals

 $\rho = (R_1, [t_0, t_1]), \dots, (R_l, [t_{l-1}, t_l]), \forall t \in [t_{i-1}, t_i], \xi(t) \in R_i$

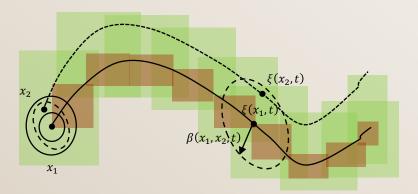


ReachTubes From Simulations And Annotations

- $\xi(x_0, t)$ general analytical solution does not exist
- Validated simulation engines generate regions for time intervals

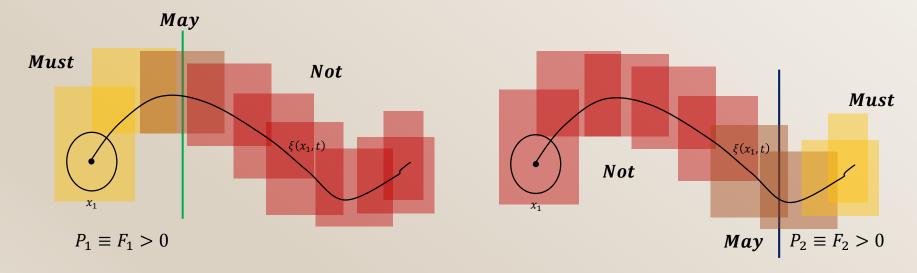
 $\rho = (R_1, [t_0, t_1]), \dots, (R_l, [t_{l-1}, t_l]), \forall t \in [t_{i-1}, t_i], \xi(t) \in R_i$

- ReachTube $\psi = B_{\epsilon}(\rho)$ where $\epsilon = \sup_{y \in B_{\delta}(x)} \{\beta(x, y, t)\}$
- Overapproximation can be made arbitrarily small
- How to infer temporal properties from such *ReachTubes*



Must, Not, and May Intervals

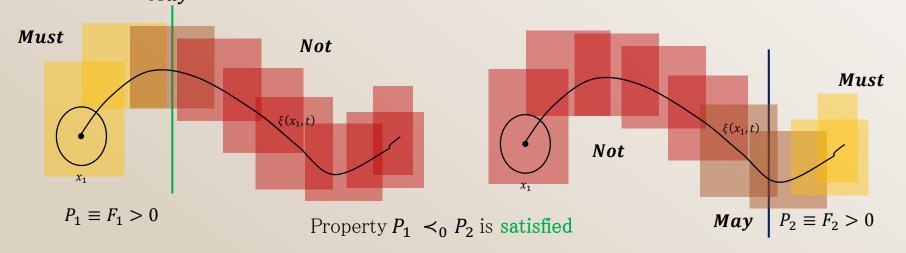
- For a predicate P, and ReachTube $\psi = (O_1, [t_0, t_1]), \dots, (O_l, [t_{l-1}, t_l])$ the interval $[t_{i-1}, t_i]$ is
 - in Must(P) if $O_i \subseteq P$
 - in Not(P) if $O_i \cap P = \emptyset$
 - in May(P) otherwise



Checking Temporal Precedence

• Temporal precedence $P_1 \prec_b P_2$ is **satisfied** by *ReachTube* ψ if

 $\forall I_2 \in Must(P_2) \cup May(P_2), \exists I_1 \in Must(P_1), I_1 < I_2 - b$ May



• Temporal precedence $P_1 \prec_b P_2$ is **violated** by *ReachTube* ψ if $\exists I_2 \in Must(P_2), \forall I_1 \in Must(P_1) \cup May(P_1), I_1 > I_2 - b$

Soundness and Relative Completeness

- *ReachTubes* can be made arbitrarily precise by
 - 1. Decreasing the time step
 - 2. Finer partition of the initial set
- Algorithm for verifying temporal precedence
 - 1. Partition initial set, and compute *ReachTubes* for each partition
 - 2. If temporal precedence is satisfied by all *ReachTubes*, return satisfied
 - 3. If violated, return **not satisfied**, else refine the partitioning and time step
- If the algorithm returns **satisfied** (**not-satisfied**) then system satisfies (**violates**) the property. If the system **robustly satisfies** (**robustly violates**) the property, algorithm will terminate with correct answer.

Checking Guarantee Predicates

- Assumption: Checking $0 \subseteq P$ or $0 \subseteq P^c$ is trivial
- *Alert* predicate based on future behavior of aircraft
- Guarantee predicates with *lookahead* function L_P such that $P(x) \equiv \exists t, L_P(x, t) > 0$
- If lookahead function is defined as solution of ODE, i.e. $L_P \equiv w(\xi'(x,t)) > 0$ where ξ' is the solution to $\dot{x} = g(x)$

Checking Guarantee Predicates

- Assumption: Checking $0 \subseteq P$ or $0 \subseteq P^c$ is trivial
- Alert predicate based on future behavior of aircraft
- Guarantee predicates with *lookahead* function L_P such that $P(x) \equiv \exists t, L_P(x, t) > 0$
- If lookahead function is defined as solution of ODE, i.e. $L_P \equiv w(\xi'(x,t)) > 0$ where ξ' is the solution to $\dot{x} = g(x)$
- Technique: Compute *ReachTubes* for $\dot{x} = g(x)$ and check for Must(w)
- If $Must(w) \neq \emptyset$, guarantee predicate is <u>satisfied</u>
- If $Must(w) \cup May(w) = \emptyset$, guarantee predicate is <u>not satisfied</u>
- Else, compute finer *ReachTubes* and repeat

Overview

✓ Motivation

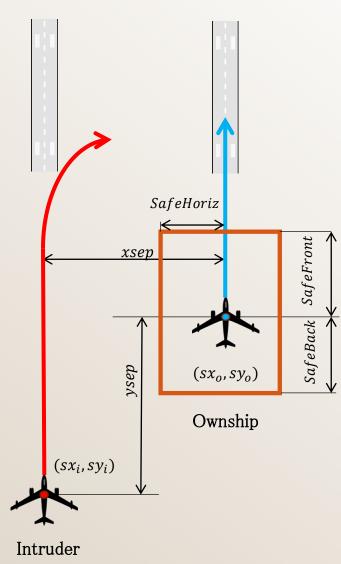
- ✓ System Model and Properties
- ✓ Temporal Precedence Property Verification
 - ✓ Reachable set computation using annotations
 - ✓ Temporal precedence checking
 - ✓ Verifying guarantee predicates
- ALAS system, properties and verification results

ALAS Protocol

- Parallel landing with separation between runways
- Ownship and Intruder aircraft
- Intruder behavior 2 modes: *approach* and *turn*
 - Approach Aircraft follows straight line trajectory to runway
 - \succ Turn Aircraft turns at bank angle ϕ_i

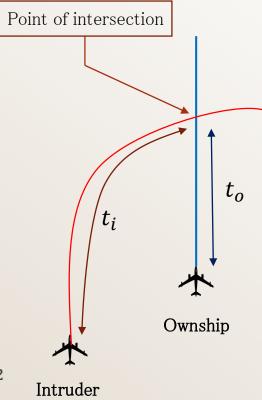
$$\begin{bmatrix} sx_i \\ sy_i \\ vx_i \\ vy_i \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \omega_i \\ 0 & 0 & -\omega_i & 0 \end{bmatrix} \begin{bmatrix} sx_i \\ sy_i \\ vx_i \\ vy_i \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \omega_i - c_y \\ \omega_i + c_x \end{bmatrix}$$

where $\omega_i = \frac{G |\tan(\phi_i)|}{\sqrt{vx_i^2 + vy_i^2}}$ and c_x and c_y are constants



Alerting Logic in ALAS

- *Alerting Logic* projects the behavior of intruder
- Considers 3 possible scenarios
 - 1. Bank angle $\phi_i = 0$
 - 2. Known bank angle ϕ_i
 - 3. Maximum bank angle ϕ_{max}
- t_i and t_o time taken to reach point of intersection
- $Alert_{\pi}(x) \equiv t_i > t_o \ then \ \Delta t^2 \times (vx_i^2 + vy_i^2) < Back^2$ $else \ \Delta t^2 \times (vx_i^2 + vy_i^2) < Front^2$



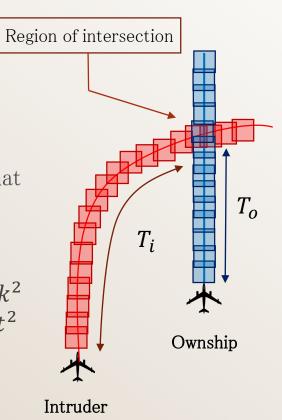
Temporal precedence property to be checked
 Alert <_b Unsafe

Alerting Logic in ALAS

- t_o and t_i closed form solutions involve exponentials
- Compute intervals T_i and T_o from *ReachTubes*, such that $t_i \in T_i$ and $t_o \in T_o$
- Alert'_{π}(x) $\equiv T_i > T_o$ then $\Delta T^2 \times (vx_i^2 + vy_i^2) < Back^2$ else $\Delta T^2 \times (vx_i^2 + vy_i^2) < Front^2$
- Temporal precedence property verified

Alert' \prec_b Unsafe

• Guarantees soundness and relative completeness



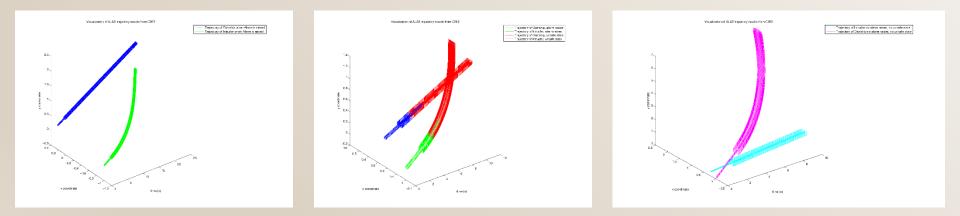
Verification Results

- Running times for several cases terminates in minutes
- Compute b such that
 Alert <_b Unsafe is satisfied
- When property is not robustly satisfied, then verification might not terminate

Scenario	Alert ≼ ₄ Unsafe	Time (mins:sec)	Alert ≼ _? Unsafe
6	False	3:27	2.16
7	True	1:13	_
8	True	2:21	_
6.1	False	7:18	1.54
7.1	True	2:34	_
8.1	True	4:55	_
9	False	2:18	1.8
10	False	3:04	2.4
9.1	False	4:30	1.8
10.1	False	6:11	2.4

Verification Results – Interesting Scenarios

- Flase Alert safe separation is always maintained and alert is raised
- Missed Alert safe separation is violated, but alert is not raised
- *No Alert* separation among aircraft is always maintained and alert is not raised



Conclusions and Future Work

- Presented a verification technique for temporal precedence properties
- Verifying *guarantee* predicates
- Applied it to ALAS for discovering interesting scenarios such as *false alerts* and *missed alerts*

Future Work:

- Additional complexities in behavior of intruder and ownship
- Verifying collision avoidance maneuvers

Conclusions and Future Work

- Presented a verification technique for temporal precedence properties
- Verifying *guarantee* predicates
- Applied it to ALAS for discovering interesting scenarios such as *false alerts* and *missed alerts*

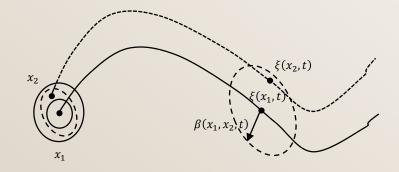
Future Work:

- Additional complexities in behavior of intruder and ownship
- Verifying collision avoidance maneuvers

Annotations: Discrepancy function

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x, t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2: \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1,t),\xi(x_2,t)) \leq \beta(x_1,x_2,t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ and $\beta \to 0$ as $x_1 \to x_2$

• $(\alpha_1, \alpha_2, \beta)$ is a witness for V



- Stability not required
- Multiple annotations for the same system

Contraction Metrics

- Definition. A positive definite, symmetric matrix M is a contraction metric for the system if $\exists \beta_M \ge 0$ such that $\frac{\partial f}{\partial x}^T M + M \frac{\partial f}{\partial x} + \beta_M M \le 0$
- Theorem. [Lohmiller & Slotine 98]. If M is a contraction metric then $\exists k \ge 1, \gamma > 0$ such that $\forall x_1, x_2, t$, $|\xi(x_1, t) - \xi(x_2, t)|^2 \le k|x_1 - x_2|^2 e^{-\gamma t}$
- Proposition. $|x_1 x_2|^2$ is a discrepancy function with $\beta \coloneqq ke^{-\gamma t}|x_1 x_2|^2$

Incremental Stability

- Definition. The system is incrementally stable if there is a *KL* function γ such that for any two initial states x_1 and $x_2 |\xi(x_1, t) \xi(x_2, t)| \le \gamma(|x_1 x_2|, t)$.
- Theorem. [Angeli 2000]. If the system is incrementally stable then there exists a smooth function (incremental Lyapunov function) $V: \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ and $\alpha: \mathbb{R} \to \mathbb{R}^{\geq 0}$ s.t.

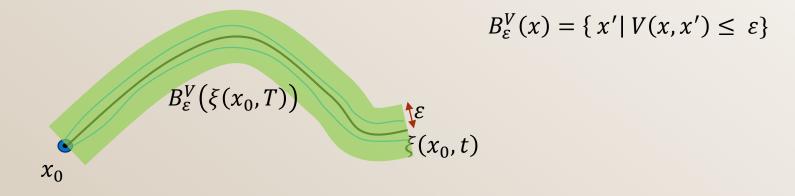
$$V(\xi(x_1,t),\xi(x_2,t)) - V(x_1,x_2) \le \int_0^t -\alpha(|\xi(x_1,\tau) - \xi(x_2,\tau)|)d\tau.$$

• Proposition. Incremental Lyapunov function is a discrepancy function with $\beta(x_1, x_2, t) = V(x_1, x_2) + \int_0^t -\alpha(|\xi(x_1, \tau) - \xi(x_2, \tau)|)d\tau.$

About Annotations

• How are annotations useful : computing sound over approximations

 $\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$



Alert Predicate Closed Form

•
$$dir = sign((x_o - x_i) \times vy_i - (y_o - y_i) \times vx_i)$$

• $r = \frac{\sqrt{vx_i^2 + vy_i^2}}{\omega}; c_x = x_i + dir \times \frac{vy_i}{\omega}; c_x = y_i + dir \times \frac{vx_i}{\omega}$
• $if(r^2 \times (vx_o^2 + vy_o^2) - ((x_o - c_x)vy_o - (y_o - c_y)vx_o)^2) < 0; Alert = 0$
• $M = (x_o - c_x)vx_o + (y_o - c_y)vy_o; N = \frac{1}{r^2}((x_o - c_x)(x_i - c_x) + (y_o - c_y)(y_i - c_y))$
• $t_o = \frac{1}{vx_o^2 + vy_o^2}[-M + \sqrt{(M^2 - vx_o^2 + vy_o^2)((x_o - c_x)^2 + (y_o - c_y)^2 - r^2)}]$
• $t_i = abs(\frac{r}{dir \times \sqrt{vx_o^2 + vy_o^2}} \times acos(N))$
• $if(t_o > t_i \wedge (t_o - t_i)^2 \times (vx_o^2 + vy_o^2) < Front^2); Alert = 1$

• $if(t_i > t_o \land (t_o - t_i)^2 \times (vx_o^2 + vy_o^2) < Back^2)$; Alert = 1