
Temporal Precedence Checking for Switched Models
and its Application to a Parallel Landing Protocol

Parasara Sridhar Duggirala1, Le Wang2, Sayan Mitra2, and Mahesh Viswanathan1

1 Dept. of Computer Science, Univ. of Illinois at Urbana Champaign,
duggira3@illinois.edu, vmahesh@illinois.edu

2 Dept. of Electrical & Computer Engineering, Univ. of Illinois at Urbana Champaign,
lewang2@illinois.edu, mitras@illinois.edu

Abstract. We present an algorithm for checking temporal precedence prop-
erties of nonlinear switched systems. This class of properties subsume
bounded safety and capture requirements about visiting a sequence of
predicates within given time intervals. Our algorithm handles nonlinear
predicates that arise from dynamics-based predictions used in alerting
protocols for state-of-the-art transportation systems. It is sound and rel-
atively complete for nonlinear switch systems that robustly satisfy the
given property. The algorithm is implemented in our Compare Execute
Check Engine (C2E2) using validated simulations. As a case study, we
consider NASA’s Adjacent Landing Alerting System (ALAS), which is an
alerting protocol for closely spaced parallel runways. Using our approach,
we study the performance of the ALAS protocol with respect to false and
missed alerts for different operating conditions such as initial velocities,
bank angles, initial longitudinal separation, and runway configurations.

1 Introduction

Dynamic analysis presents a scalable alternative to static analysis for models
with nonlinear dynamics. The basic procedure for dynamic safety verification
has three building blocks: (a) a simulation engine, (b) a generalization or bloat-
ing procedure, and (c) a satisfiability checker. The simulation engine generates
validated simulations of the model with some rigorous error bounds. The gen-
eralization procedure uses additional model information to over-approximate
bounded-time reach sets from the simulations. This additional model informa-
tion could be, for example, statically computed Lipschitz constants [13], con-
traction metrics [8] or more general designer-provided annotations [5]. Finally,
the approximation is checked by a satisfiability procedure for inferring safety
or for iteratively refining its precision. With these three pieces it is possible to
design sound and relatively complete algorithms for bounded time safety ver-
ification that also scale to moderately high-dimensional models [5].

In this paper, we extend the reach of the above procedure in two significant
ways. First, our new algorithm verifies temporal precedence properties which gen-
eralize bounded safety. A model A satisfies temporal precedence P1 ≺b P2 if
along every trajectory of A, for any time at which the predicate P2 holds, there

2

exists an instant of time, at least b time units sooner, where the predicate P1

must hold. The key subroutine in the new verification algorithm uses the above
simulation-based reach set approximation procedure for estimating the time in-
tervals over which the predicates P1 and P2 may or must hold. These estimates
are constructed so that the algorithm is sound. Moreover, we show that the al-
gorithm is guaranteed to terminate whenever A satisfies the property robustly
(relatively complete). That is, not only does every trajectory ξ satisfy P1 ≺b P2,
but any small time-shifts and value perturbations of ξ also satisfy P1 ≺b P2.
Such relative completeness guarantees usually have the most precision that one
can hope for in any formal analysis of models involving physical quantities.

Secondly, we develop a new approach to checking satisfiability of nonlin-
ear guarantee predicates [9]. If P1 and P2 in the above type of temporal prece-
dence property are in propositional logic or uses linear arithmetic, then exist-
ing solvers can efficiently check whether a set of states satisfy them. On the
other hand, if they are written as ∃t > 0, fp(x, t) > 0, where fp is a nonlinear
real-valued function then the options are limited. Quantifier elimination is an
expensive option, but even that is feasible only if fp has a closed form defini-
tion of a special form (such as polynomial functions). If fp is implicitly defined
as the solution of a set of ODEs (with no analytical solution) then quantifier
elimination is impossible. We provide a sound and relatively complete proce-
dure for checking bounded time guarantee predicates using simulation-based
over-approximations of fp(x, t).

These extensions allow us to handle an interesting and difficult verification
problem arising from a parallel landing protocol. The Simplified Aircraft-based
Paired Approach (SAPA) [6] is an advanced operational concept that enables
dependent approaches in closely spaced parallel runways. In the presence of
blundering aircraft, the SAPA procedure relies on an alerting algorithm called
Adjacent Landing Alerting System (ALAS) [12]. ALAS uses linear and nonlin-
ear projections of the current aircraft positions, velocity vectors, and bank an-
gles to detect possible conflicts between the landing aircrafts. Preliminary stud-
ies have shown that the SAPA/ALAS protocol may be unsafe for some parallel
runway geometries. Given the nonlinear characteristics of the ALAS logic, find-
ing operating conditions under which the SAPA/ALAS protocol satisfy safety
properties is a challenging problem.

This papers models the SAPA/ALAS protocol as a switched system and ap-
plies the verification algorithms to formally check properties of the alerting al-
gorithm for various configurations. We verify the property that ALAS issues an
alert at least b seconds before an unsafe scenario is encountered. This is modeled
as temporal precedence property Alert ≺b Unsafe . Since ALAS uses projections
of nonlinear dynamics to issue an alert, we apply the algorithm for inferring
guarantee predicates. We implemented these algorithms in C2E2 and discov-
ered operating conditions with the possibilities of false and missed alerts.

Related Work. There are several MATLAB based tools for analyzing prop-
erties of switched systems using simulations. Breach [4] uses sensitivity anal-
ysis for analyzing STL properties of systems using simulations. This analysis

3

is sound and relatively complete for linear systems, but does not provide for-
mal guarantees for nonlinear systems. S-Taliro [11] is a falsification engine that
search for counterexamples using Monte-Carlo techniques and hence provides
only probabilistic guarantees. STRONG [3] uses robustness analysis for cover-
age of all executions from a given initial set by constructing bisimulation func-
tions. Currently this tool computes bisimulation functions for only linear or
affine hybrid systems and does not handle nonlinear systems.

2 System Models and Properties

For a vector v in Rn, |v| stands for `2-norm. Given intervals I ,I ′ over reals,
we say that I < I ′ iff ∀v ∈ I,∀v′ ∈ I ′, v < v′. For a real number b, I − b =
{v − b | v ∈ I}. Subtraction operation over intervals is defined as, I − I ′ =
{v − v′ | v ∈ I, v′ ∈ I ′}. I × I ′ = {v × v′ | v ∈ I, v′ ∈ I ′}. For δ ∈ R≥0 and
x ∈ Rn, Bδ(x) ⊆ Rn is the closed ball with radius δ centered at x. For a set
S ⊆ Rn, Bδ(S) = ∪x∈SBδ(v). For any function V : Rn × Rn → R≥0, given a
δ > 0, BVδ (x) = {y | V (x, y) ≤ δ}. For a set S ⊆ Rn, BVδ (S) = ∪x∈SBVδ (x). For a
bounded set A, dia(A) = supx,y∈A |x− y| denotes the diameter of A.

A real-valued function α : R≥0 7→ R≥0 is called a class K function if α(0) = 0
and α is strictly increasing. It is a class K∞ function if additionally α(x) → ∞
as x → ∞. For a function h : R≥0 → Rn and a positive real δ > 0, the δ-left
shift of h is the function hδ : R≥0 → Rn defined as hδ(t) = h(t + δ) for any
t ∈ R≥0. A δ-perturbation of h is any function g : R≥0 → Rn such that for all
t, |g(t) − h(t)| < δ. A càdlàg function is a function which is continuous from the
right and has a limit from the left for every element in its domain.

2.1 The Switched System Model

We will use the switch system formalism [7] for modeling continuous systems.
The evolution of an n dimensional switched system is specified by a collection
of ordinary differential equations (ODEs) also called as modes or locations in-
dexed by a set I and a switching signal that specifies which ODE is active at a
given point in time. Fixing a switching signal and an initial state, the system is
deterministic. Its behavior is the continuous, piece-wise differentiable function
of time obtained by pasting together the solutions of the relevant ODEs. We fix
I as the set of modes and n as the dimension of the system with Rn as state
space for the rest of the document.

Definition 1. Given the set of modes I and the dimension n, a switched system A
is specified by the tuple 〈Θ,F , Σ〉, with

(i) Θ ⊆ Rn, a compact set of initial states,
(ii) F = {fi : Rn → Rn}i∈I , an indexed collection of continuous, locally Lipschitz

functions, and
(iii) Σ, a set of switching signals, where each σ ∈ Σ is a càdlàg function σ : R≥0 → I.

4

The semantics of A is defined in terms of its solutions or trajectories. For a
given initial state x0 ∈ Θ and a switching signal σ ∈ Σ, the solution or the
trajectory of the switched system is a function ξx0,σ : R≥0 → Rn, such that:
ξx0,σ(0) = x0, and for any t > 0 it satisfies the differential equation:

ξ̇x0,σ(t) = fσ(t)(ξx0,σ(t)). (1)

When clear from context, we drop the x0 and σ subscripts from ξ. Under the
stated locally Lipschitz assumption of the fi’s and the càdlàg assumption on
σ, it is well-known that Equation (1) has a unique solution and that indeed the
trajectory ξ is a well-defined function.

𝑜𝑛	

𝑜𝑓𝑓	 𝜎(
𝑡)
	

𝜉(
𝑡)
	

𝑡𝑖𝑚𝑒 (𝑡)	

62	

Fig. 1. A switching signal and trajectory of
thermostat model.

Example. A simple switched sys-
tem model of a thermostat has two
modes I = {on, off } and a sin-
gle continuous dimension with ini-
tial value, say x = 62. The continu-
ous dynamics is defined by the linear
ODEs ẋ = −kx for off and ẋ = h−kx
for on , where k and h are parame-
ters of the thermostat. Thus, fon(x) =
−kx and foff (x) = h − kx. For a par-
ticular switching signal σ, the solution ξx0,σ is shown in Figure 1.

We are interested in verifying the system for a set of switching signals Σ
with bounded time and finite number of mode switches. A bounded time switch-
ing signal can be represented as a sequence σ = m0,m1, . . . ,mk where each mi

is a pair in I ×R+, with the two components denoted by mi.mode and mi.time.
The sequence define σ(t) = mi.mode for all t ∈ [

∑i−1
j=0mj .time,

∑i
j=0mj .time).

We consider a set of switching signals Σ that are represented as a switching in-
terval sequence S = q0, q1, . . . qk, where each qj is a pair with qj .mode ∈ I and
qj .range is an open interval in R≥0. Given a switching interval sequence S, the
set sig(S) denotes the set of switching signals σ = m0,m1, . . . ,mk, such that
mj .mode = qj .mode and mj .time ∈ qj .range. By abuse of notation, we will use
interchangeably a set of switching signalsΣ and its finite representation S with
sig(S) = Σ. We denote by width(S) the size of the largest interval qi.range. The
refinement operation of Σ, denoted as refine(S), gives a finite set of switching
interval sequences S such that

⋃
S′∈S sig(S

′) = sig(S) and for each S′ ∈ S,
width(S′) ≤ width(S)/2.

2.2 Temporal Precedence with Guarantee Predicates

A predicate for the switched systemA is a computable function P : Rn → {>,⊥}
that maps each state in Rn to either > (true) or ⊥ (false). The predicate is said
to be satisfied by a state x ∈ Rn if P (x) = >. A guarantee predicate [9] P (x) is
a predicate of the form ∃t > 0, fp(x, t) > 0, where fp : Rn × R → R is called a
lookahead function. A guarantee predicate holds at a state x if there exists some

5

future time t at which fp(x, t) > 0 holds. Using a quantifier elimination proce-
dure, one could reduce a guarantee predicate to an ordinary predicate without
the existential quantifier. However, this is an expensive operation, and more
importantly, it is only feasible for restricted classes of real-valued lookahead
functions with explicit closed form definitions. We present in Section 3.2 a tech-
nique to handle guarantee predicates with lookahead functions as solutions to
nonlinear ODE. As we will see in Section 4, such lookaheads are particularly
useful in designing alert mechanisms such as ALAS.

Temporal precedence properties are a class of properties specified by a pair of
predicates that must hold for any behavior of the system with some minimum
time gap between them. More precisely, a temporal precedence property φ is
written as φ = P1 ≺b P2, where P1 and P2 are (possibly guarantee) predicates
and b is a positive real number. The property φ = P1 ≺b P2 is satisfied by a
particular trajectory ξ of A iff

∀t2 > 0, if P2(ξ(t2)) then ∃t1, 0 < t1 < t2 − b, P1(ξ(t1)). (2)

In other words, along ξ, predicate P1 should be should be satisfied at least b
time units before any instance of P2 is satisfied. We say that A satisfies φ, if
every trajectory of A satisfies φ. With a collection of precedence properties, we
can state requirements about ordering of some predicates before others.

The property φ is said to be robustly satisfied by a system if ∃τ > 0, δ > 0
such that all τ ′ < τ left shifts and all δ-perturbations of all trajectories ξ satisfy
the property. An execution ξ is said to robustly violate a precedence property
P1 ≺b P2 if there is a time instant t2 such that P2(ξ(t2)) holds, and for some
δ > 0, all δ-perturbations ξ′ of ξ and t1 ∈ (0, t2 − b), P1 does not hold in ξ′

at time t1. We will say that a system robustly violates φ = P1 ≺b P2 if some
execution ξ (from an initial state) robustly violates φ.

3 Simulation-based Verification of Temporal Precedence

In this section, we present an algorithm for verifying temporal precedence prop-
erties of switched systems and establish its correctness. Similar to the simulation-
based safety verification algorithm presented in our earlier work [5], this algo-
rithm has three components: (a) it uses validated simulations for the dynamics
in F , (b) it requires model annotations called discrepancy functions for the dy-
namics in in F . Finally, (c) it requires a procedure for checking satisfiability of
nonlinear guarantee predicates arising from solutions of differential equations.
We first introduce the two main building blocks, simulations, and discrepancy
functions and then provide the algorithm for verifying temporal properties.

3.1 Simulations and Annotations

For a given initial state x0 and an ODE ẋ = f(x, t) which admits a solution ξ,
a fixed time-step numerical integrator produces a sequence of sample points

6

e.g., x1, x2, . . . , xl ∈ Rn that approximate the trajectory ξx0
at a sequence of

time points, say ξx0
(h), ξx0

(2h), . . . , ξx0
(l × h). However, these simulations do

not provide any rigorous guarantees about the errors incurred during numeri-
cal approximations. Rigorous error bounds on these simulations, which can be
made arbitrarily small, are required for performing formal analysis. We present
one such notion of a simulation for an ODE as follows:

Definition 2. Consider an ODE ẋ = f(x, t). Given an initial state, x0, a time bound
T > 0, error bound ε > 0, and a time step τ > 0, an (x0, T, ε, τ)-simulation trace is
a finite sequence (R1, [t0, t1]), (R2, [t1, t2]), . . . , (Rl, [tl−1, tl]) where each Rj ⊆ Rn,
and tj ∈ R≥0 such that ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0, and tl = T ,
(2) ∀t ∈ [tj−1, tj], ξx0

(t) ∈ Rj , and
(3) dia(Rj) ≤ ε.

Numerical ODE solvers such as CAPD [1] and VNODE-LP [10] can be used to
generate such simulations for arbitrary values of τ and ε using Taylor Models
and interval arithmetic. We now define the next building block, a type of model
annotation for ODEs called discrepancy function.

Definition 3. A smooth function V : R2n → R≥0 is called a discrepancy function
for an ODE ẋ = f(x, t), if and only if there are functions α, α ∈ K∞ and a uniformly
continuous function β : R2n×R→ R≥0 with β(x1, x2, t)→ 0 as |x1−x2| → 0 such
that for any pair of states x1, x2 ∈ Rn:

α(|x1 − x2|) ≤ V (x1, x2) ≤ α(|x1 − x2|) and (3)
∀ t > 0. V (ξx1

(t), ξx2
(t)) ≤ β(x1, x2, t), (4)

where ξ denotes the solution of the differential equation. A tuple (α, α, β) satisfying the
above conditions is called a witness to the discrepancy function.

The discrepancy function provides an upper bound on the distance between
two trajectories starting from different initial states x1 and x2. This upper bound,
together with a simulation, is used to compute an overapproximation of the set
of all reachable states of the system from a neighborhood of the simulation.
For linear and affine dynamics such discrepancy functions can be computed
by solving semidefinite programs [5]. In [5], we identified classes of nonlin-
ear ODEs for which Lipschitz constants, contraction metrics, and incremen-
tal Lyapunov functions can be computed which are all special instances of
Definition 3. For the switched systems A with a set of differential equations
F = {fi}i∈I , a discrepancy function for each fi (namely, Vi and its witness
(αi, αi, βi)) is required. Using discrepancy function and validated simulations
as building blocks, we compute a bounded overapproximation of the reachable
set for initial set Θ, set of switching signals S, and time step τ . We present one
such notion of ReachTube as follows:

7

Definition 4. Given an initial set of states Θ, switching interval sequence S, dynam-
ics F , time step τ > 0, and error bound ε > 0, a (Θ,S, ε, τ)-ReachTube is a sequence
ψ = (O1, [t0, t1]), (O2, [t1, t2]), . . . , (Ol, [tl−1, tl]) where Oj is a set of pairs (R, h)
such that R ⊆ Rn, and h ∈ I, such that, ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0,
(2) ∀x0 ∈ Θ,∀σ ∈ sig(S),∀t ∈ [tj−1, tj],∃(R, h) ∈ Oj , such that, ξx0,σ(t) ∈

R, σ(t) = h,
(3) ∀(R, h) ∈ Oj , dia(R) ≤ ε, and
(4) each mode in I occurs at most once in Oj .

Intuitively, for every given time interval [tj−1, tj], the set Oj contains an
(R, h) pair such that R overapproximates the reachable set for the mode h in
the given interval duration. In our previous work on verification using sim-
ulations [5], we presented an algorithm that computes overapproximation of
the reachable set using sampled executions and annotations. We outline the
procedure ComputeReachTube(Θ,S, δ, ε′, τ) that takes as input the initial set Θ,
switching signals S, partitioning parameter δ, simulation error ε′ and time step
τ , to compute theReachTube ψ and error ε such thatψ is a (Θ,S, ε, τ)-ReachTube.

1. Assign to Q, the set of initial states Θ.
2. For each qi in the switching interval sequence S = q0, q1, . . . , qk.
3. ComputeX = {x1, x2, . . . , xm}, a δ-partitioning ofQ, such thatQ ⊆ ∪Bδ(xi).
4. Generate a validated simulation (Definition 2) η for every state x ∈ X with

error ε′, time step τ . Then, compute the ReachTube for Bδ(x0) by bloating
η as BVqi.mode

ε (η), where ε = sup{βqi.mode(y, x, t)|y ∈ Bδ(x)}.
5. Compute the union of each of the ReachTubes for Bδ(x0) as the ReachTube

for mode qi.mode.
6. Compute the initial set for the next mode by taking the projection ofReachTube

for qi.mode over the interval qi.range as Q. Repeat steps 3 - 6 for qi+1.

The order of overapproximation of the ReachTube computed using the proce-
dure described above is the maximum bloating performed using the annotation
Vqi.mode and βqi.mode for all the modes in S. This overapproximation and the er-
ror in simulation gives us the value of ε such that ψ is a (Θ,S, ε, τ)-ReachTube.
The nondeterminism during the switching times from one mode to another en-
ables the reachable set to be in two different modes at a given instance of time,
which is reflected in Oj . From [5], we get the following proposition.
Proposition 1. Given an initial set Θ, switching signals S, partitioning parameter δ,
simulation error ε′ and time step τ , let the tuple 〈ψ, ε〉 = ComputeReachTube(Θ,S, δ, ε′, τ).
Then, as dia(Θ)→ 0, width(S)→ 0, δ → 0, ε′ → 0, and τ → 0, we have ε→ 0.
3.2 Temporal Precedence Verification Algorithm
CheckRefine (see Figure 2) performs the following steps iteratively: (1) Create
an initial partition of the set of start states Θ. (2) Compute the ReachTubes for
each these partitions as given in Definition 4. (3) Check the temporal precedence
property for the ReachTube. (4) Refine the partitioning if the above check is
inconclusive, and repeat steps (2)-(4).

8

A key step in the verification procedure is to check, whether a givenReachTube
satisfies a temporal precedence property. We define collection of intervals mustInt ,
notInt , and mayInt for a given predicate P and ReachTube ψ which will help
us in the verification of temporal precedence property.

Definition 5. Given a ReachTube ψ = (O1, [t0, t1]), . . . , (Ol, [tl−1, tl]) and a pred-
icate P , we define sets of intervals mustInt(P,ψ), notInt(P,ψ), and mayInt(P,ψ)
such that ∀j > 0

[tj−1, tj] ∈ mustInt(P,ψ) iff ∀(R, h) ∈ Oj , R ⊆ P.
[tj−1, tj] ∈ notInt(P,ψ) iff ∀(R, h) ∈ Oj , R ⊆ P c.
[tj−1, tj] ∈ mayInt(P,ψ) otherwise.

Definition 5 classifies an interval [tj−1, tj] as an element of mustInt(P,ψ)
only if the overapproximation of the reachable set for that interval is contained
in P . Similar is the case with notInt(P,ψ). However if the overapproximation
of the reachable set cannot conclude either of the cases, then the interval is clas-
sified as mayInt(P,ψ). There are two possible reasons for this: first, the order
of overapproximation is too coarse to prove containment in either P or P c; sec-
ond, the execution moves from the states satisfying P to states not satisfying P
during that interval. Thus, better estimates of mustInt , notInt and mayInt can
be obtained by improving the accuracy ofReachTube ψ. We now proceed to de-
fine the conditions when aReachTube satisfies or violates a temporal precedence
property P1 ≺b P2.

Remark 1: To compute mustInt , mayInt , and notInt as defined in Definition 5,
we need to be able to check if R ⊆ P or R ⊆ P c. However, for guarantee predi-
cates with lookahead functions that use the solutions of ODEs, it is unclear how
to perform these checks. In Section 3.3, we will describe a simulation-based
method to address this challenge. The algorithm in Section 3.3 will, in fact, pro-
vide weaker guarantees. Assuming P is an open set, our algorithm will answer
correctly when R ⊆ P and when for some δ > 0, Bδ(R) ⊆ P c; in other cases,
our algorithm may not terminate. Such weaker guarantees will turn out to be
sufficient for our purposes.

Definition 6. Given ReachTube ψ, and a temporal precedence property P1 ≺b P2, ψ
is said to satisfy the property iff for any interval I ′, I ′ ∈ mustInt(P2, ψ)∪mayInt(P2, ψ),
exists interval I , I ∈ mustInt(P1, ψ) such that I < I ′−b. Also, ψ is said to violate the
property if ∃I ′ ∈ mustInt(P2, ψ) such that, ∀I ∈ mustInt(P1, ψ) ∪mayInt(P1, ψ),
I ′ − b < I .

From Definition 6 it is clear that if a ReachTube ψ satisfies a temporal prece-
dence property, then for all the trajectories corresponding to theReachTube, the
predicate P1 is satisfied at least b time units before P2. Also, if the ReachTube
violates the property, then it is clear that there exists at least one trajectory such
that for an instance of time, i.e., in I ′ ∈ mustInt(P2, ψ) at all the time instances
at least b units before, the predicate P1 is not satisfied. In all other cases, the
ReachTube cannot infer whether the property is satisfied or violated. As this

9

inference depends on the accuracy of mustInt , notInt and mayInt . More accu-
rate ReachTubes produce better estimates of these intervals and hence help in
better inference of temporal precedence property.

Given a system A and property P1 ≺b P2, one can compute the ReachTube
for the system and apply Definition 6 to check whether the system satisfies the
temporal precedence property. This is however not guaranteed to be useful as
the approximation ofReachTube computed might be too coarse. In CheckRefine,
we give an algorithm that at each iteration refines the inputs to compute more
precise ReachTubes. Proposition 1 guarantees that these ReachTubes can be
made arbitrarily precise.
1: Input: A = 〈Θ,F , Σ〉, {Vi, (αi, αi, βi)}i∈I , P1 ≺b P2, δ0, δ′0, ε′0, τ0.
2: Q← Θ; Ω ← {Σ}; δ ← δ0; δ′ ← δ′0; ε′ ← ε′0; τ ← τ0
3: while Q 6= ∅ do
4: X ← δ-partition(Q);
5: for all x0 ∈ X do
6: for all S ∈ Ω do
7: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S, δ

′, ε′, τ)
8: if ψ satisfies P1 ≺b P2 then continue;
9: else if ψ falsifies P1 ≺b P2 return “Property P1 ≺b P2 is violated”

10: else
11: Ω ← Ω \ {S} ∪ refine(S); δ ← δ/2; δ′ ← δ′/2, ε′ ← ε′/2; τ ← τ/2;
12: goto Line 3
13: end if
14: end for
15: Q← Q \Bδ(x0)
16: end for
17: end while
18: return “Property P1 ≺b P2 is satisfied”.

Fig. 2. Algorithm CheckRefine: Partitioning and refinement algorithm for verification of
temporal precedence properties.

The algorithm (in Figure 2) first partitions the initial set into δ-neighborhoods
(line 3) and compute ReachTubes for every switching interval sequence in Ω
(line 7). If all these ReachTubes (that is all the executions from neighborhood)
satisfy the property, then the neighborhood is removed fromQ. Similarly, CheckRefine
returns that the property is violated only when ReachTube violates the prop-
erty. If neither can be inferred, then the parameters to function ComputeReachTube
are refined in line 11 to increase their precision. Since this operation is iteratively
performed to obtain arbitrarily precise ReachTubes, Soundness and Relative
completeness follow from Definition 6 and Proposition 1.

Theorem 1 (Soundness and Relative Completeness). Algorithm CheckRefine is
sound, i.e., if it returns that the system satisfies the property, then the property is indeed
satisfied. If it returns that the property is violated, then the property is indeed violated
by the system. Further, if we assume that predicates P1 and P2 are open sets, and there
is a procedure that correctly determines if for a set R, R ⊆ Pi (for i = 1, 2) or if there
is δ > 0 such that Bδ(R) ⊆ P ci (for i = 1, 2). Then, if the system A satisfies P1 ≺b P2

or robustly violates P1 ≺b P2 then CheckRefine terminates with the right answer.

10

3.3 Verification of Guarantee Predicates
As discussed in the Section 2.2, guarantee predicates are of the form P (x) =
∃t > 0, fp(x, t) > 0, where fp is called a lookahead function. In this section,
we present an algorithm for time bounded verification of such predicates of
the special form P (x) = ∃0 < t < Tl, wp(ξ

′
x(t)) > 0, where wp is a continuous

function and ξ′ is solution of ODE ẏ = g(y, t). As specified in Remark 1, we
give a decision procedure to check R ⊆ P or an open cover of R is contained in
P c. This algorithm similar to CheckRefine computes successively better approx-
imations for the ReachTube and checks whether the predicate P ′ ≡ wp(x) > 0
is satisfied by the reach tube. This is done by calculating mustInt(P ′, ψ) and
mayInt(P ′, ψ) as defined in Definition 5. If the mustInt is non-empty, then it
implies that the predicate P is satisfied by the ReachTube and hence R ⊆ P . If
both the mayInt and mustInt are empty sets, then, clearly the predicate P is not
satisfied in the bounded time Tl by any state in R, and hence an open cover of
R is contained in P c. Soundness and Relative Completeness of CheckGuarantee
follow from CheckRefine(proofs in full version 3.).

1: Input: R, ẏ = g(y, t), S′, Vg(x1, x2), (αg, αg, βg) wp, δ, τ , Tl
2: while R 6= ∅ do
3: X ← δ-partition(R);
4: for all x0 ∈ X do
5: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S

′, δ, δ, τ);
6: if mustInt(wp, ψ) 6= ∅ then R← R \Bδ(x0)
7: else if mustInt(wp, ψ) ∪mayInt(wp, ψ) = ∅ then return “UNSAT”
8: end if
9: end for

10: δ ← δ/2; τ ← τ/2;
11: end while
12: return “SAT”.

Fig. 3. Algorithm CheckGuarantee: Decides whether a lookahead predicate is satisfied in
a given set R

4 Case Study: A Parallel Landing Protocol
The Simplified Aircraft-based Paired Approach (SAPA) is an advanced opera-
tional concept proposed by the US Federal Aviation Administration (FAA) [6].
The SAPA concept supports dependent, low-visibility parallel approach opera-
tions to runways with lateral spacing closer than 2500 ft. A Monte-Carlo study
conducted by NASA has concluded that the basic SAPA concept is technically
and operationally feasible [6]. In the presence of a blundering aircraft, i.e., unac-
ceptable crossing of paired aircraft paths, SAPA relies on an alerting mechanism
to avoid aircraft blunders.

NASA’s Adjacent Landing Alerting System (ALAS) is an alerting algorithm
for the SAPA concept [12]. ALAS is a pair-wise state-based algorithm, i.e., ALAS
detects possible conflicts between two aircraft by checking if the linear and
curved projected trajectories of the current state violate predefined separation

3 https://wiki.cites.illinois.edu/wiki/display/MitraResearch/Verification+of+a+Parallel+Landing+Protocol

11

minima. The two aircraft are referred to as ownship and intruder. When the
ALAS algorithm is deployed in an aircraft following the SAPA procedure, the
aircraft considers itself to be the ownship, while any other aircraft is considered
to be an intruder.

𝑆
𝑎
𝑓
𝑒𝐵

𝑎
𝑐𝑘

(𝑠𝑥𝑜, 𝑠𝑦𝑜)

(𝑠𝑥𝑖 , 𝑠𝑦𝑖)

𝑦
𝑠𝑒
𝑝

𝑥𝑠𝑒𝑝

𝑆𝑎𝑓𝑒𝐻𝑜𝑟𝑖𝑧

𝑆
𝑎
𝑓
𝑒𝐹

𝑟𝑜
𝑛
𝑡

Fig. 4. Possible blundering scenario
during parallel approach of aircraft. In-
truder (red) & ownship (blue).

A formal static analysis of the ALAS algo-
rithm is challenging due to the complexity of the
SAPA/ALAS protocol and the large set of con-
figurable parameters that enable different alert-
ing thresholds, aircraft performances, and run-
way geometries. The dynamic analysis presented
in this paper is well suited for finding operat-
ing conditions under which the SAPA procedure
with the ALAS algorithm performs well with re-
spect to false and missed alerts.
4.1 Aircraft Dynamics
For the analysis of the SAPA/ALAS protocol,
this paper considers a blundering scenario where
the intruder aircraft turns towards the ownship
during the landing approach as shown in Fig-
ure 4. We model the dynamics of the aircraft as
a switched system with continuous variables sxi,
syi, vxi, vyi and sxo, syo, vxo, and vyo repre-
senting the position and velocity of intruder and
ownship respectively. The switching system has two modes: approach and turn .
The mode approach represents the phase when both aircraft are heading to-
wards the runway with constant speed. The differential equation for this mode
is

˙
sxo

syo

vxo

vyo

 =

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

sxo

syo

vxo

vyo

 and

˙
sxi

syi

vxi

vyi

 =

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

sxi

syi

vxi

vyi

 . (5)

The mode turn represents the blundering trajectory of intruder. In this mode,
the intruder banks at an angle φi to turn away from the runway towards the
ownship. The switching signal determines the time of transition from approach
to turn . In this mode, the differential equation of the ownship remains the same
as that of approach , but the intruder’s turning motion with banking angle φi is

˙
sxi

syi

vxi

vyi

 =

0 0 1 0

0 0 0 1

0 0 0 ωi

0 0 −ωi 0

sxi

syi

vxi

vyi

+

0

0

ωi − cy
ωi + cx

 , (6)

12

where cx and cy are constant functions of the initial states of the ownship and
intruder, and ωi is the angular speed of intruder. Given the bank angle φi, the
angular speed is given by wi =

G| tan(φi)|√
vxi

2+vyi2
, where G is the gravitational con-

stant. The upper bound on the bank angle φi is denoted as φmax.
The system starts in the approach mode with the initial position of the in-

truder at sxi = syi = 0 and the ownship at sxo = xsep and syo = ysep, where
xsep denotes the lateral separation between the runways and ysep denotes the
initial longitudinal separation between the aircraft. The initial velocities of both
aircraft along the x-axis are 0 and the initial velocities along the y-axis are pa-
rameters. The time of switching from approach mode to turn mode is nondeter-
ministically chosen from the interval Tswitch = [2.3, 2.8]. These parameters and
the initial values of the variables are constrained by the SAPA procedure [6].

4.2 ALAS Algorithm and Verification of Temporal Precedence Property
ALAS Algorithm: ALAS issues an alert when the aircraft are predicted to vio-
late some distance thresholds called Front and Back specified by ALAS [12]. To
predict this violation, the aircraft projects the current state of the system with
three different dynamics: first, the intruder does not turn (i.e., banking angle
0◦), second, the intruder turns with the specified bank angle φi and third, the
intruder turns with the maximum bank angle φmax. If any of these projections
violates the distance thresholds, then an alert is issued. We represent the alert
predicate for the projections asAlert0,Alertφi

andAlertφmax
respectively. Thus

the alert predicate is defined as Alert ≡ Alert0 ∨Alertφi ∨Alertφmax . These are
guarantee predicates that check for future violations of distance thresholds.

We now describe Alarmπ in detail (π being the bank angle considered). The
lookahead function for Alertπ is defined as follows: from a given state x, it
computes the projected trajectory of the aircraft when intruder turns at bank
angle π. If these trajectories intersect, then it computes the times of intersection.
That is, it computes ti, to such that sx′i(ti) = sx′o(to) and sy′i(ti) = sy′o(to), where
sx′i, sy

′
i, sx

′
o, sy

′
o represent the positions of the intruder and ownship aircraft in

the projected trajectory. If such ti and to exist, the Alertπ is defined as:

Alertπ(x) ≡ iff ti > t0 ? (∆t2 × (vx2o + vy2o) < Back2)

: (∆t2 × (vx2o + vy2o) < Front2),

where ∆t = ti − to. If such ti and to do not exist, then Alertπ(x) = ⊥. The
expression a ? b : c is a short hand for if(a) then b else c.

As the guarantee predicates cannot be handled by SMT solvers, we pro-
posed in Section 3.3, a simulation based algorithm for handling them. In this
case study, we apply the proposed technique to resolve the nonlinearities of to
and ti in the Alertπ predicate. For a given state x, we compute the bounded
time (Tl) projected ReachTubes ψ′ to compute intervals To and Ti such that
ti ∈ Ti and to ∈ To. Then, an overapproximation Alert ′π of Alertπ is computed
as: Alert ′π(x) = > if and only if

Ti > T0 ? (∆T 2 × (vx2o + vy2o) < Back2)

: (∆T 2 × (vx2o + vy2o) < Front2)

13

where ∆T = Ti − To. The numerical values of Ti and To computed simplify the
Alert ′π predicate and can be handled by SMT solvers.

Safety of Aircraft: A state of the system where the intruder aircraft is in-
side a safety area surrounding the ownship is said to be unsafe. In this paper,
we consider a safety area of rectangular shape that is SafeHoriz wide, starts
a distance SafeBack behinds the ownship and finishes a distance SafeFront
in front of the ownship. The values SafeHoriz , SafeBack and SafeFront are
to be determined by a safety analysis of the SAPA concept. In this paper, we
consider them to be given constant values. Formally, the predicate Unsafe is
defined as Unsafe(x) ≡ (syi > syo?syi − syo < SafeFront : syo − syi <
SafeBack) and |sxi − sxo| < SafeHoriz .

The main correctness property for the ALAS algorithm is that an alert is
raised at least b seconds before the intruder violates the safety buffer where
b is in the range [4, 15]. This can written as a temporal precedence property
Alert ≺b Unsafe .

4.3 Verification Scenarios and C2E2 Performance
Tool overview. The verification algorithms of Section 3 are implemented in the
tool Compute Execute Check Engine (C2E2). C2E2 accepts Stateflow (SF) charts
as inputs, translates them to C++ using CAPD [1] for generating rigorous sim-
ulations. For checking sat queries it used Z3 [2] and GLPK 4. The discrepancy
functions for the aircraft dynamics were obtained by computing incremental
Lyapunov-like function using MATLAB [5]. The following experiments were
performed on Intel Quad Core machine 2.33 GHz with 4GM memory.

0 2 4 6 8 10
12

0.2

0.4

0

0.5

1

ysep=0.3±0.01km

xsep=0.23±0.01km

x (km)

y
 (

k
m

)

time (sec)

(a) Scenario 1.

y
 (

k
m

)

x (km)
time (sec)2 4 6 8

0

1

2

2

4

6

10

xsep=0.23±0.01km

ysep=0.3±0.01km

(b) Scenario 2.

y
 (

k
m

)

x (km)
time (sec)

5 10
15 20

-1
-0.5

0

0

0.5

1

1.5

2

xsep=1.03±0.01km

ysep=0.3±0.01km

(c) Scenario 3.

Fig. 5. Figure depicting the set of reachable states of the system. Color coding is used to
depict whether the alert is issued by the alerting algorithm

Results. We verify the temporal precedence property Alert ≺b Unsafe . In this
section, we check the temporal precedence property for several configurations
of the system (i.e., values of parameters and initial values of state variables).
For all these experiments, we fix the time bound for verification as 15 sec and
the time bound for projection as 25 sec.

Scenario 1. The system configuration is specified by the following param-
eters and variables: xsep ∈ [0.22, 0.24] km, ysep ∈ [0.2, 04] km, φi = 30◦,

4 http://www.gnu.org/software/glpk

http://www.gnu.org/software/glpk

14

φmax = 45◦, vyo = 0.07 km/sec and vyi = 0.08 km/sec. With this configu-
ration, C2E2 proves that the system satisfies the temporal precedence property
Alert ≺4 Unsafe and an alert is generated 4.38 seconds before the safety is
violated. The set of reachable states of the ownship and the intruder when the
safety property is violated is shown in red and the safe states reached are shown
in blue and green respectively in Figure 5(a).

Scenario 2. Increasing the intruder velocity to vyi = 0.11 km/sec, and bank
angle φi = 45◦ from the configuration of Scenario 1 results in Scenario 2. In
this case, the safe separation between the intruder and the ownship is always
maintained as the intruder completes the turn behind the ownship. Also, the
alarm is not raised and hence the property Alert ≺b Unsafe is satisfied.

Scenario 3. Changing the configuration by vyi = 0.11 km/sec, xsep ∈ [1.02, 1.04]
km, and φi = 45◦ from Scenario 1 results in Scenario 3. C2E2 proves that ALAS
issues a false-alert, i.e. an alert is issued even when the safety of the system
is maintained. Though the property Alert ≺b Unsafe is not violated, avoiding
such circumstances improves the efficiency of the protocol and C2E2 can help
identify such configurations.

Scen. A ≺4 U time (m:s) Refs. A ≺t U

6 False 3:27 5 2.16

7 True 1:13 0 –

8 True 2:21 0 –

6.1 False 7:18 8 1.54

7.1 True 2:34 0 –

8.1 True 4:55 0 –

9 False 2:18 2 1.8

10 False 3:04 3 2.4

9.1 False 4:30 2 1.8

10.1 False 6:11 3 2.4

Table 1. Running times. Columns 2-5: Verification
Result, Running time, # of refinements, value of b for
whichA ≺b U is satisfied.

Scenario 4. Placing the intruder in
front of ownship i.e., ysep = −0.3 km
and vyi = 0.115 km/sec from configu-
ration in Scenario 1 results in Scenario
4. C2E2, in this scenario proves that
the ALAS algorithm misses an alert,
i.e., does not issue an alert before the
safety separation is violated. Such sce-
narios should always be avoided as
they might lead to catastrophic situ-
ations. This demonstrates that C2E2
can aid in identifying scenarios which
should be avoided and help design the
safe operational conditions for the pro-
tocol.

Scenario 5. Reducing the xsep ∈ [0.15, 0.17] km and ysep ∈ [0.19, 0.21] km
from configuration in Scenario 1 gives Scenario 5. For this scenario, C2E2 did
not terminate in 30 mins. Recall that the verification algorithm presented in Sec-
tion 3 is sound and relatively complete only if the system robustly satisfies the
property. Thus, we conjecture that the Scenario 5 does not satisfy the property
robustly. Upon closer inspection we observe that the partitioning parameter
δ = 0.0005 and time step τ = 0.001 (typical values at termination are δ = 0.005
and τ = 0.01), which support our conjecture.
Performance of C2E2. The running time of verification procedure and their out-
comes for several other scenarios are presented in Table 1. In Scenarios 6-8,
we introduce uncertainty in the initial velocities of the aircraft with all other
parameters remaining the same as in Scenario 1. The velocity of the aircraft
are changed to be vyo ∈ [0.07, 0.075] in scenario 5, vyi ∈ [0.107, 0.117] in sce-
nario 6, and vxi ∈ [0.0, 0.005] in scenario 7 respectively. Scenarios x.1 is sim-

15

ilar to Scenario x (for x being 6,7,8) however with twice the uncertainty in
the velocity. Scenario 9 is obtained by changing the runway separation to be
xsep = 0.5 ± 0.01. Scenario 10 is obtained by reducing the xsep = 0.2 ± 0.01.
Scenario x.1 is similar to Scenario x (for x being 9,10) however with twice the
time horizon for verification and projection. We can draw conclusion that the
verification time depends on time horizon approximately linearly.

5 Conclusion
In this paper, we presented a dynamic analysis technique that verifies temporal
precedence properties and an approach to verify guarantee predicates that use
solutions of ODEs as lookahead functions. We proved soundness and relative
completeness of both these techniques and applied the verification technique
on SAPA concept with ALAS alerting system as a case study. The case study
demonstrated that our technique can not only verify the properties of the ALAS
protocol, but also could identify conditions for false and missed alert which are
crucial in designing operational conditions.

Acknowledgement: The authors would like to sincerely thank Dr. César Muñoz
from NASA Langley research center for helpful discussions and inputs.

References

1. D. Wilczak, P. Zgliczyski, Computer Assisted Proofs in Dynamic Groups (CAPD).
http://capd.ii.uj.edu.pl/

2. L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS ’08.
3. Y. Deng, A. Rajhans, and A. Agung Julius. Strong: A trajectory-based verification

toolbox for hybrid systems. In QEST ’13.
4. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid sys-

tems. In CAV ’10.
5. P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of annotated models

from executions. In EMSOFT ’13.
6. S. C. Johnson, G. W. Lohr, B. T. McKissick, N. M. Guerreiro, and P. Volk. Simplified

aircraft-based paired approach: Concept definition and initial analysis. Technical
Report NASA/TP-2013-217994, NASA, Langley Research Center, 2013.

7. D. Liberzon. Switching in Systems and Control. Systems and Control: Foundations
and Applications. Birkhauser, Boston, June 2003.

8. W. Lohmiller and J. J. E. Slotine. On contraction analysis for non-linear systems.
Automatica ’98.

9. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In PODC ’87.
10. N. Nedialkov. VNODE-LP: Validated solutions for initial value problem for ODEs.

Technical report, McMaster University, 2006.
11. T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancic, A. Gupta, and G.J. Pappas.

Monte-carlo techniques for falsification of temporal properties of non-linear hybrid
systems. In HSCC ’10.

12. R. B. Perry, M. M. Madden, W. T.-Pomales, and Ricky W. Butler. The simplified
aircraft-based paired approach with the ALAS alerting algorithm. Technical Report
NASA/TM-2013-217804, NASA, Langley Research Center, 2013.

13. G.R. Wood and B.P. Zhang. Estimation of the Lipschitz constant of a function. Journal
of Global Optimization ’96.

	Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol
	Introduction
	System Models and Properties
	The Switched System Model
	Temporal Precedence with Guarantee Predicates

	Simulation-based Verification of Temporal Precedence
	Simulations and Annotations
	Temporal Precedence Verification Algorithm
	Verification of Guarantee Predicates

	Case Study: A Parallel Landing Protocol
	Aircraft Dynamics
	ALAS Algorithm and Verification of Temporal Precedence Property
	Verification Scenarios and C2E2 Performance

	Conclusion

