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This paper: Verifying one of the models in 
the powertrain control benchmark



Verifying Powertrain Control System
(Challenges)
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Property
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(Hybrid Systems
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Yes

No
ሶp = c1 2θ c20p

2 + c21p + c22 − c12 c2 + c3ωp + c4ωp
2 + c5ωp

2

ሶλ = c26(c15 + c16c25Fc + c17c25
2 Fc

2 + c18 ሶmc + c19 ሶmcc25Fc − λ)

ሶpe = c1 2c23θ c20p
2 + c21p + c22 − c2 + c3ωp + c4ωp

2 + c5ωp
2

ሶi = c14(c24λ − c11)

where

Fc =
1

c11
(1 + i + c13(c24λ − c11))(c2 + c3ωp + c4ωp

2 + c5ωp
2)

ሶmc = c12(c2 + c3ωp + c4ωp
2 + c5ωp

2)
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Powertrain Systems Benchmark
(previous work)

 Falsification techniques
S-Taliro Annpureddy et.al.[TACAS’11], Breach Donze et.al.[CAV’10].

 Requirement mining (also found bugs) Jin et.al.[HSCC’13].

 Simulation guided Lyapunov analysis Balkan et.al.[ICC’15], and more 
…
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Powertrain Systems Benchmark
(previous work)

 Falsification techniques
S-Taliro Annpureddy et.al.[TACAS’11], Breach Donze et.al.[CAV’10].

 Requirement mining (also found bugs) Jin et.al.[HSCC’13].

 Simulation guided Lyapunov analysis Balkan et.al.[ICC’15], and more 
…

 Our contribution:

• Formal verification of Model III*
• Bridging simulations and verification
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Model III
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Plant

+
Continuous 
controller
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Modes of operation



Powertrain Model
(Model III)

 Hybrid System of  4 modes (with inputs)

CAV 2015 12

startup
ሶ𝒙 = 𝒇𝒔 𝒙

normal
ሶ𝒙 = 𝒇𝒏 𝒙

sensor_fail
ሶ𝒙 = 𝒇𝒔𝒇 𝒙

power
ሶ𝒙 = 𝒇𝒑 𝒙

𝑡𝑖𝑚𝑒𝑟 = 𝑇𝑠

𝜃𝑖𝑛 ≤ 50𝑜

𝜃𝑖𝑛 ≥ 70𝑜
𝑠𝑒𝑛𝑠𝑜𝑟𝐹𝑎𝑖𝑙

 No Feedback Control
 Open Loop mode, 

feedforward estimator

 Feedback Control
 Closed-loop mode, 

feedback PI control + 
feedforward estimator



Powertrain Model
(Model III)

 Hybrid System of  4 modes (with inputs)

 Real valued variables – Ordinary Diff. Eqns.

𝜆 – Air/fuel ratio

𝑝 – Intake manifold pressure

𝑝𝑒 – Estimate of  𝑝

𝑖 – PI control variable

CAV 2015 13

startup
ሶ𝒙 = 𝒇𝒔 𝒙

normal
ሶ𝒙 = 𝒇𝒏 𝒙

sensor_fail
ሶ𝒙 = 𝒇𝒔𝒇 𝒙

power
ሶ𝒙 = 𝒇𝒑 𝒙

𝑡𝑖𝑚𝑒𝑟 = 𝑇𝑠

𝜃𝑖𝑛 ≤ 50𝑜

𝜃𝑖𝑛 ≥ 70𝑜
𝑠𝑒𝑛𝑠𝑜𝑟𝐹𝑎𝑖𝑙

 No Feedback Control
 Open Loop mode, 

feedforward estimator

 Feedback Control
 Closed-loop mode, 

feedback PI control + 
feedforward estimator



Powertrain Model
(Model III)

 Hybrid System of  4 modes (with inputs)

 Real valued variables – Ordinary Diff. Eqns.

𝜆 – Air/fuel ratio

𝑝 – Intake manifold pressure

𝑝𝑒 – Estimate of  𝑝

𝑖 – PI control variable

 Transitions – input signal 𝜃𝑖𝑛
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□[60,100] 𝑥 < 0.1□[0,100] 𝑥 ∈ [1,3]

𝐫𝐢𝐬𝐞 ⇒ □[𝜼,𝜻][𝟎. 𝟗𝟖 𝝀𝒓𝒆𝒇, 𝟏. 𝟎𝟐𝝀𝒓𝒆𝒇]
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t

𝑥

Initial Set

𝜂 𝜁 t

𝜆

𝜆𝑟𝑒𝑓

𝐔 ≜ (𝒙 < 𝟏 ∨ 𝒙 > 𝟑) ∧ (𝒕 ≤ 𝟏𝟎𝟎)

Verification goal:
Given initial set 𝚽 and switching signals 𝝈

Prove that

𝐔 ≜ (𝒙 < −𝟎. 𝟏 ∨ 𝒙 > 𝟎. 𝟏) ∧ (𝒕 ≥ 𝟔𝟎 ∧ 𝒕 ≤ 𝟏𝟎𝟎)

Technique: Reachability Computation
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 Given start            and unsafe

 Compute finite cover of  initial set

 Simulate from the center 𝑥 of  each cover

 Bloat simulation so that bloated tube contains 
all trajectories from the cover

 Union = over-approximation of  reach set

 Check intersection/containment with 𝑈

 Refine

Θ

𝑥0

𝑈

A Simple (Often The Only) Strategy

ሶ𝑥 = 𝑓(𝑥)

How much to bloat the sample simulation?

𝐵𝜖(𝑥(𝑡))



Discrepancy Function

Discrepancy Function: capturing the continuity of  ODE solutions
executions that start close, stay close

𝛽 is called a discrepancy function of  the system if  for any two states 𝑥1 and 𝑥2,
|𝑥1(𝑡) − 𝑥2(𝑡)| ≤ 𝛽(𝑥1, 𝑥2, 𝑡)
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Discrepancy Function

Discrepancy Function: capturing the continuity of  ODE solutions
executions that start close, stay close

𝛽 is called a discrepancy function of  the system if  for any two states 𝑥1 and 𝑥2,
|𝜉(𝑥1, 𝑡) − 𝜉(𝑥2, 𝑡)| ≤ 𝛽(𝑥1, 𝑥2, 𝑡)
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|𝑥1 − 𝑥2|

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

≤ 𝛽(𝑥1, 𝑥2, 𝑡)

= 𝛽(𝑥1, 𝑥2, 𝑡)

Discrepancy functions are given as model annotations, i.e. 𝛽 is given by the user

ሶ𝑝 = 𝑐1(2𝜃 𝑐20𝑝
2 + 𝑐21𝑝 + 𝑐22 − 𝑐12(𝑐2 + 𝑐3𝜔𝑝 + 𝑐4𝜔𝑝

2 + 𝑐5𝜔𝑝
2))

ሶ𝜆 = 𝑐26(𝑐15 + 𝑐16𝑐25𝐹𝑐 + 𝑐17𝑐25
2 𝐹𝑐

2 + 𝑐18 ሶ𝑚𝑐 + 𝑐19 ሶ𝑚𝑐𝑐25𝐹𝑐 − 𝜆)
ሶ𝑝𝑒 = 𝑐1(2𝑐23𝜃 𝑐20𝑝

2 + 𝑐21𝑝 + 𝑐22 − (𝑐2 + 𝑐3𝜔𝑝 + 𝑐4𝜔𝑝
2 + 𝑐5𝜔𝑝

2))
ሶ𝑖 = 𝑐14 𝑐24𝜆 − 𝑐11

where

𝐹𝑐 =
1

𝑐11
(1 + 𝑖 + 𝑐13(𝑐24𝜆 − 𝑐11))(𝑐2 + 𝑐3𝜔𝑝 + 𝑐4𝜔𝑝

2 + 𝑐5𝜔𝑝
2)

ሶ𝑚𝑐 = 𝑐12(𝑐2 + 𝑐3𝜔𝑝 + 𝑐4𝜔𝑝
2 + 𝑐5𝜔𝑝

2)

All known tools failed to find any discrepancy functions
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 Computing discrepancy function from simulations and static 
analysis Fan & Mitra [ATVA’15]
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 Key principle

• 𝐽 =
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analysis Fan & Mitra [ATVA’15]

 Key principle

• 𝐽 =
𝜕𝑓

𝜕𝑥

• If eig 𝐽 + 𝐽𝑇 < 0 in 𝐑 then
trajectories converge in 𝐑

• Compute max eig 𝐽 + 𝐽𝑇 in 𝐑
• Gives a local discrepancy 

function in region 𝐑
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𝐑

ሶ𝒙 = 𝒇(𝒙)

𝑥1

𝑥2

≤ 𝑒−𝜆𝑡 𝑥1 − 𝑥2

We apply on–the–fly 
discrepancy function for verifying

powertrain control system



Engineering

 Domain Transformation:  
If  eig(𝐽 + 𝐽𝑇) returns values close to 0, fails to prove convergence of  traj.
Performs linear basis transformation for getting useful discrepancy function.
Involves multiplicative costs.

 Model reduction: 
The differential equation was reduced to a simpler one in power and start-up mode.
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Engineering

 Domain Transformation:  
If  eig(𝐽 + 𝐽𝑇) returns values close to 0, fails to prove convergence of  traj.
Performs linear basis transformation for getting useful discrepancy function.
Involves multiplicative costs.

 Model reduction: 
The differential equation was reduced to a simpler one in power and start-up mode.

 Performance Tuning: 
How often to perform domain transformation

 Implementation in C2E2 [TACAS’15]: 
Extension of  C2E2 tool using eigen library and interval arithmetic for matrix norms.
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Powertrain Verification Results

Verified many key specification for a given set of  driver behaviors 
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Property Mode Sat Sim. Time

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓 , 1.2𝜆𝑟𝑒𝑓] all modes Yes 53 11m58s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓 , 1.2𝜆𝑟𝑒𝑓] startup Yes 50 10m21s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓 , 1.2𝜆𝑟𝑒𝑓] normal Yes 50 10m21s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓
𝑝𝑤𝑟

, 1.2𝜆𝑟𝑒𝑓
𝑝𝑤𝑟

] power Yes 53 11m12s

□ 𝜆 ∈ [0.8𝜆′𝑟𝑒𝑓 , 1.2𝜆′𝑟𝑒𝑓] power No 4 0m43s

𝑟𝑖𝑠𝑒 ⇒ □(𝜂,𝜉)𝜆 ∈ [0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓] normal Yes 50 10m15s

(𝑙 = 𝑝𝑤𝑟) ⇒ □(𝜂,𝜉)𝜆 ∈ [0.95 𝜆𝑟𝑒𝑓, 1.05𝜆𝑟𝑒𝑓] power Yes 53 11m35s

(𝑙 = 𝑝𝑤𝑟) ⇒ □(𝜂/2,𝜉)𝜆 ∈ [0.95 𝜆𝑟𝑒𝑓, 1.05𝜆𝑟𝑒𝑓] power No 4 0m45s

Safety properties

Performance 
properties



Reachable Set
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Conclusions and Future Work

 Verified the polynomial hybrid system model in the Powertrain 
Control Benchmark

 Scalability of  dynamic analysis tool C2E2 to handle systems of  
industrial complexity

Future Work:

 Handling properties with path integrals

 New algorithms for handling other models in the benchmark
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Thank You

 Xiaoqing Jin

 Jyotirmoy Deshmukh

 Jim Kapinski

 Koichi Ueda

 Ken Butts
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Questions?


