Meeting A Powertrain Verification Challenge

Parasara Sridhar Duggirala,

Chuchu Fan,

Sayan Mitra, and

Mahesh Viswanathan

Powertrain Control Systems

- Fuel control and transmission subsystem
 - Software control: increasing complexity (100M LOC)
 - Constraints: Emissions, Efficiency, etc.
 - Strict performance requirements
 - Early bug detection using formal methods

Powertrain Control Systems

- Fuel control and transmission subsystem
 - Software control: increasing complexity (100M LOC)
 - Constraints: Emissions, Efficiency, etc.
 - Strict performance requirements
 - Early bug detection using formal methods

- Powertrain control benchmarks from Toyota Jin et.al. [HSCC'14]
- Complexity "*similar*" to industrial systems
- Benchmark tool/challenge problems for academic research

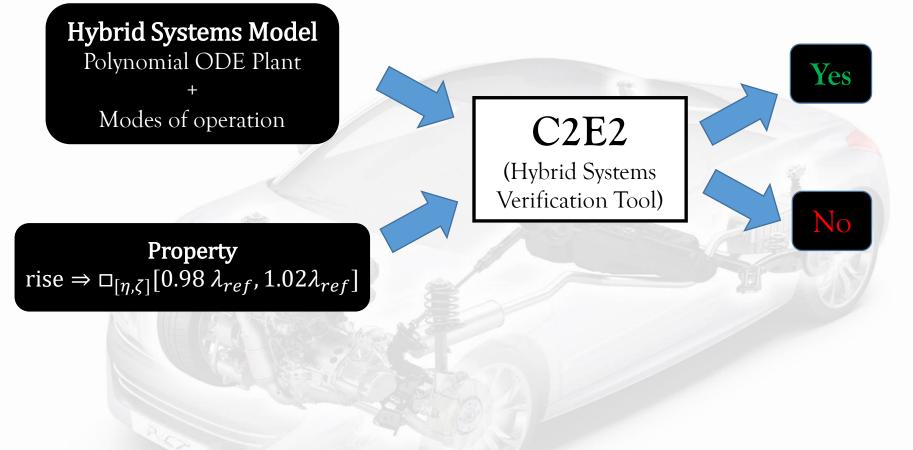
Powertrain Control Systems

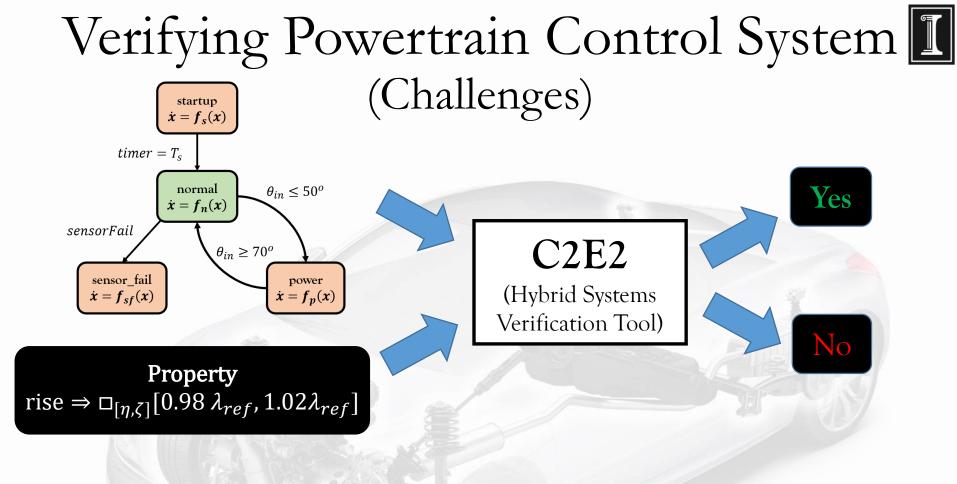
- Fuel control and transmission subsystem
 - Software control: increasing complexity (100M LOC)
 - Constraints: Emissions, Efficiency, etc.
 - Strict performance requirements
 - Early bug detection using formal methods

- Powertrain control benchmarks from Toyota Jin et.al. [HSCC'14]
- Complexity "*similar*" to industrial systems
- Benchmark tool/challenge problems for academic research

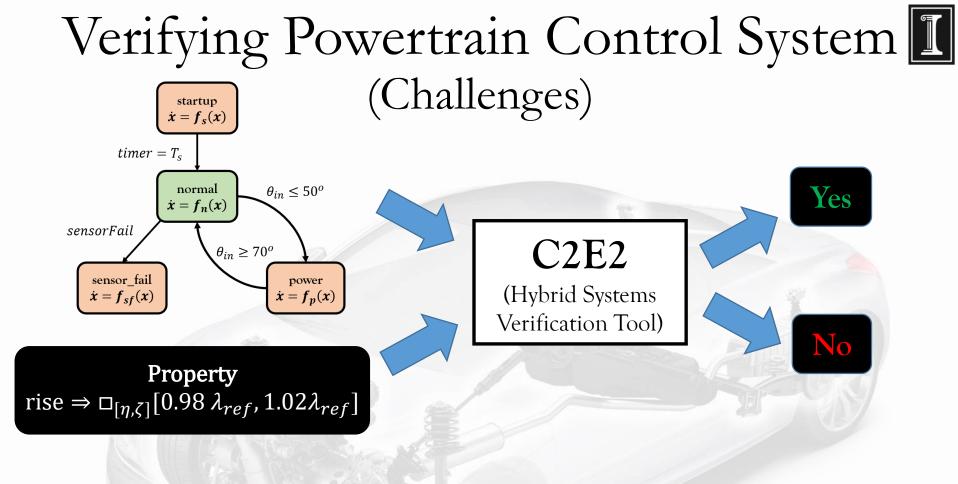
<u>This paper: Verifying one of the models in</u> <u>the powertrain control benchmark</u>

Verifying Powertrain Control System I (Challenges)

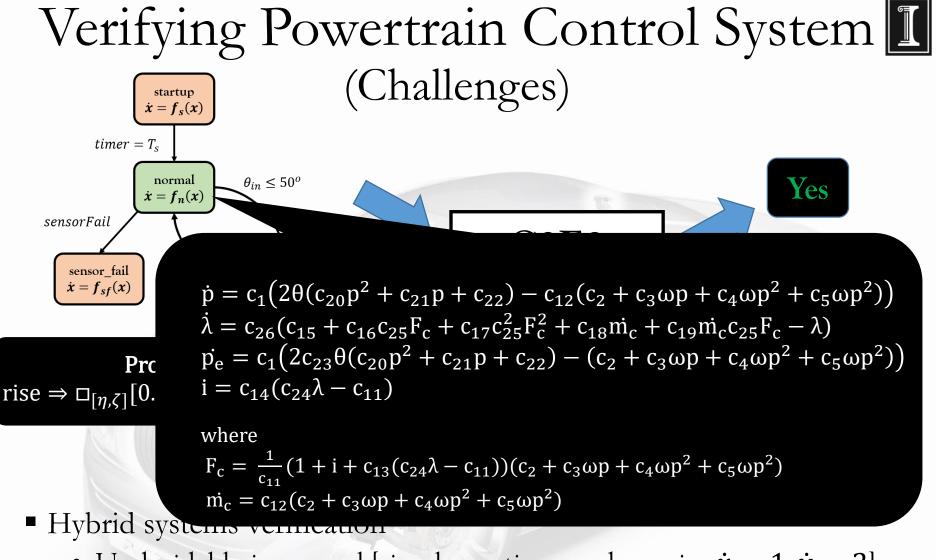




- Hybrid systems verification
 - Undecidable in general [simple continuous dynamics $\dot{x} = 1, \dot{y} = 2$]



- Hybrid systems verification
 - Undecidable in general [simple continuous dynamics $\dot{x} = 1, \dot{y} = 2$]
 - Nonlinear Ordinary Diff. Eqns. scalability problems



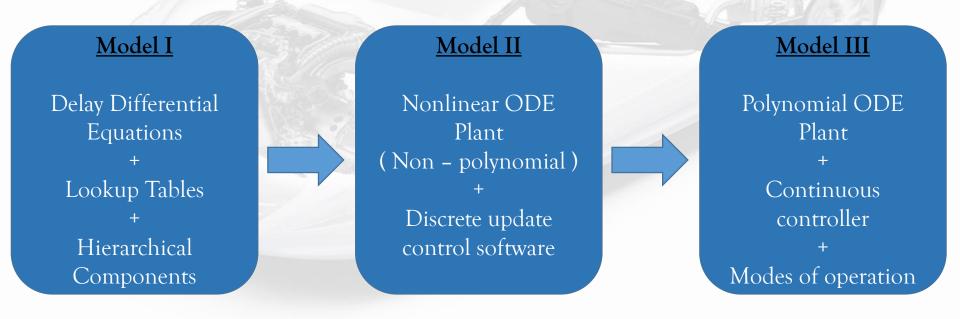
- Undecidable in general [simple continuous dynamics $\dot{x} = 1, \dot{y} = 2$]
- Nonlinear Ordinary Diff. Eqns. scalability problems

Outline

- ✓ Motivation & Challenges
- Powertrain Benchmark
- Specification
- Simulation Based Verification Technique
- Engineering
- Verification Results
- Conclusions and Future Work

Powertrain Systems Benchmark (previous work)

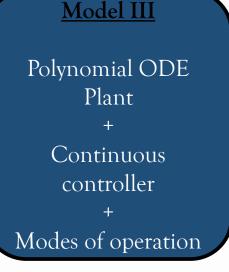
- Falsification techniques
 S-Taliro Annpureddy et.al.[TACAS'11], Breach Donze et.al.[CAV'10].
- Requirement mining (also found bugs) Jin et.al.[HSCC'13].
- Simulation guided Lyapunov analysis Balkan et.al.[ICC'15], and more

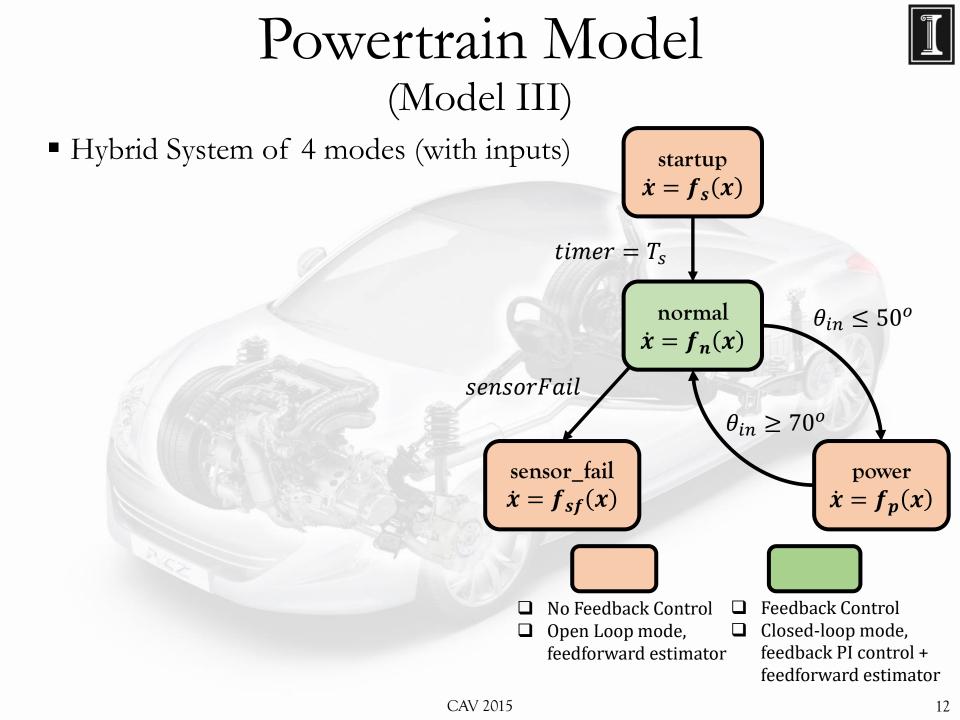


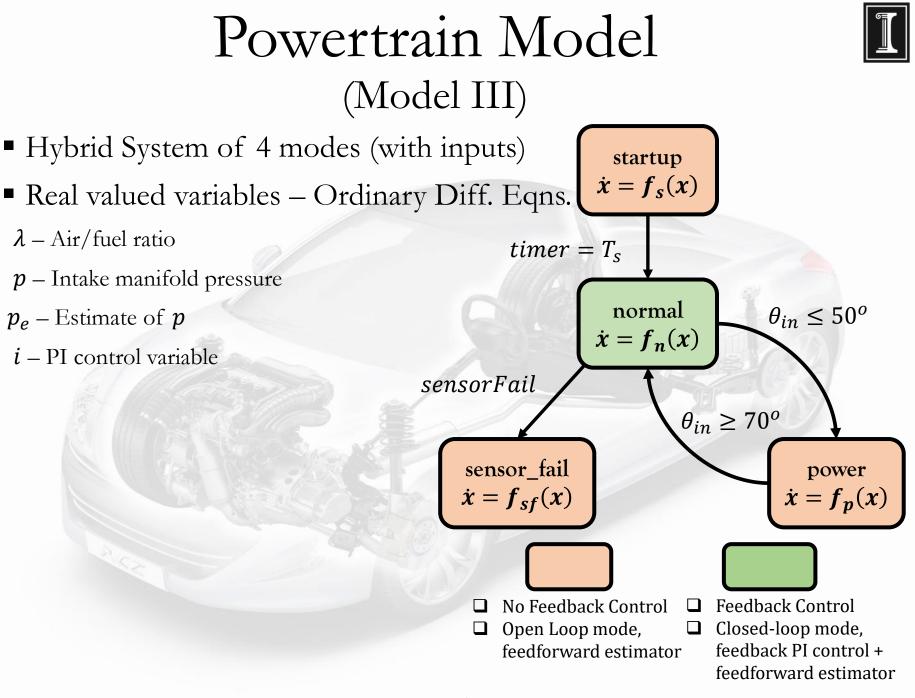
Powertrain Systems Benchmark (previous work)

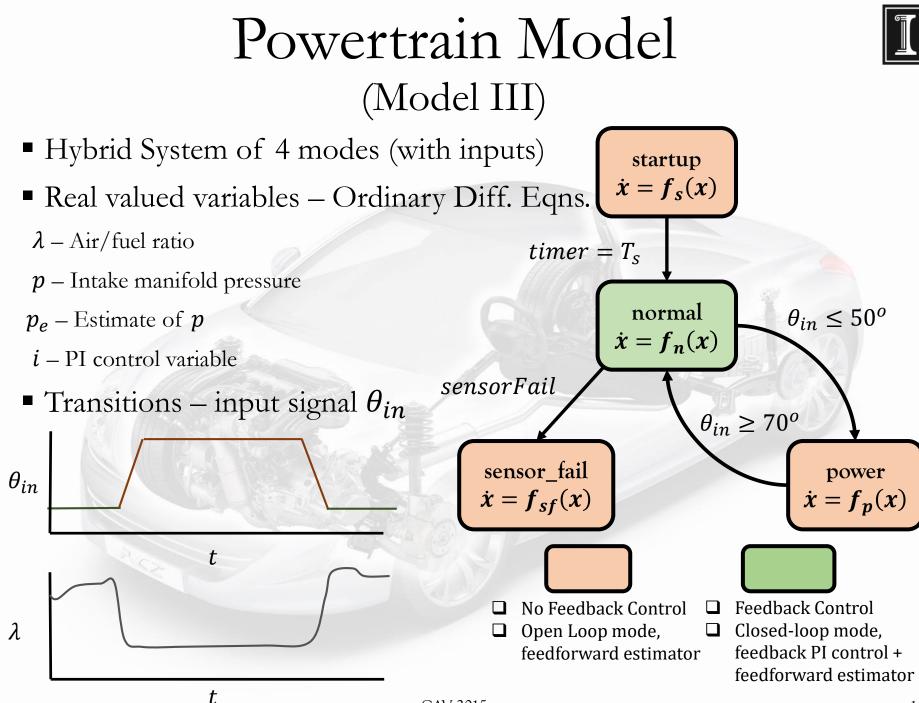
- Falsification techniques
 S-Taliro Annpureddy et.al.[TACAS'11], Breach Donze et.al.[CAV'10].
- Requirement mining (also found bugs) Jin et.al.[HSCC'13].
- Simulation guided Lyapunov analysis Balkan et.al.[ICC'15], and more

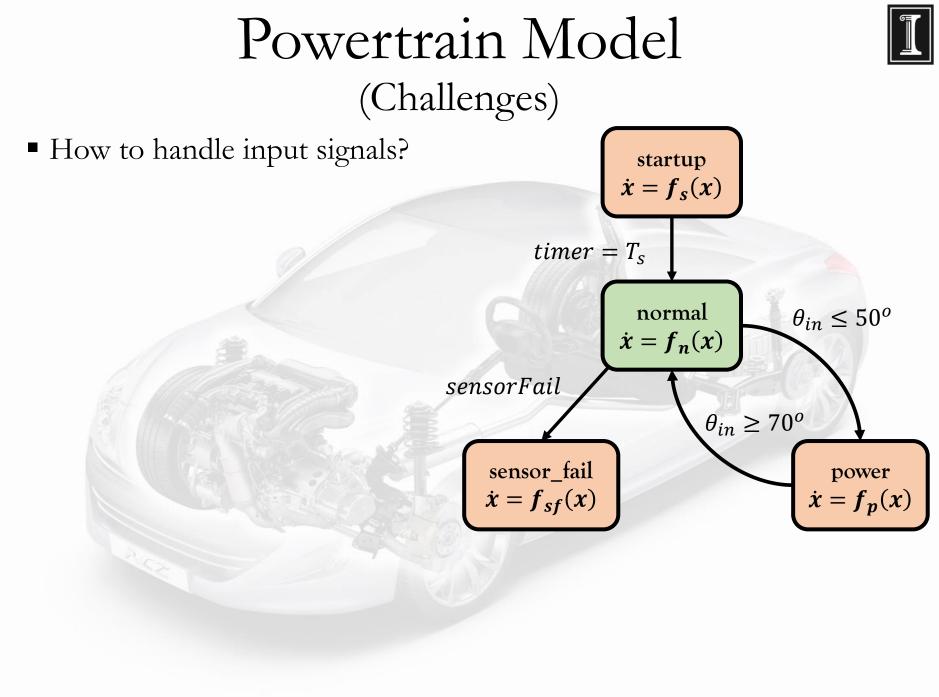
- Our contribution:
 - Formal verification of <u>Model III</u>*
 - Bridging simulations and verification

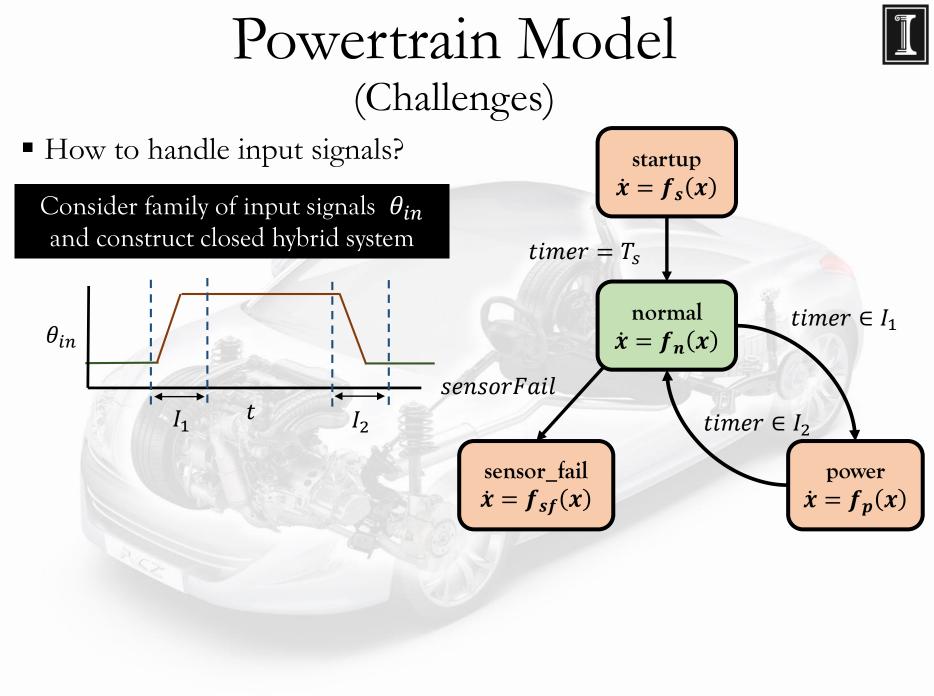


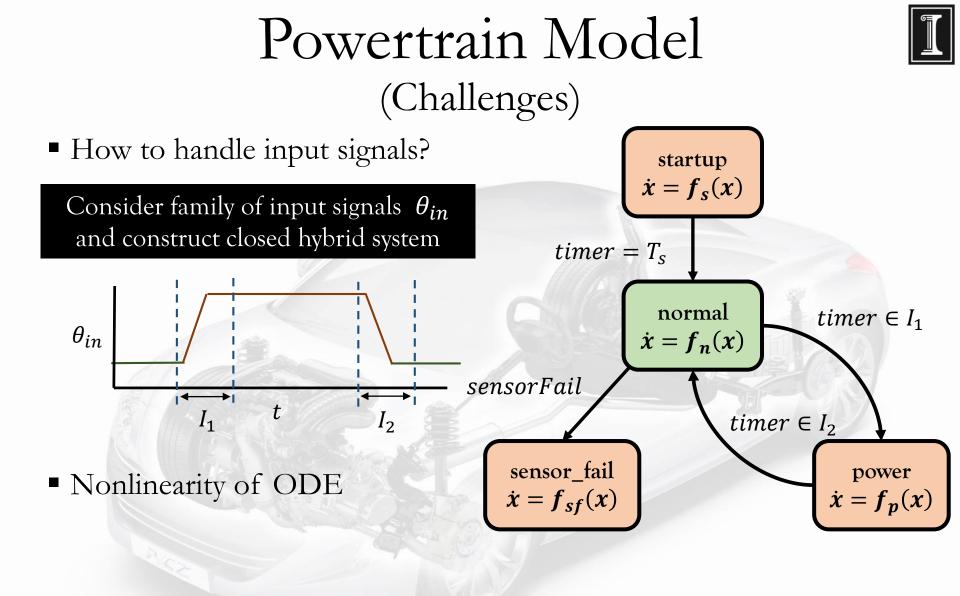


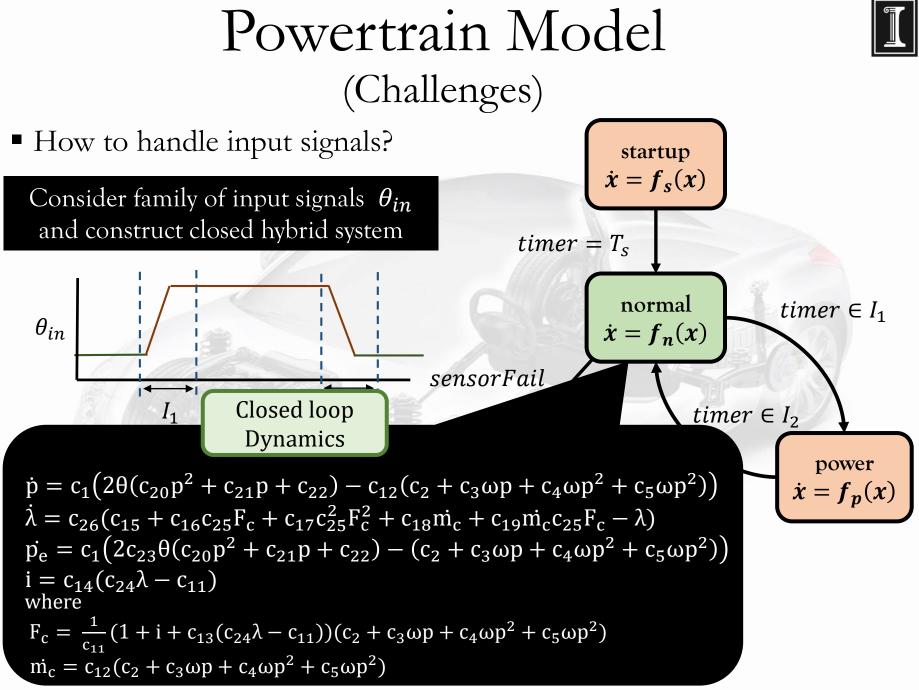






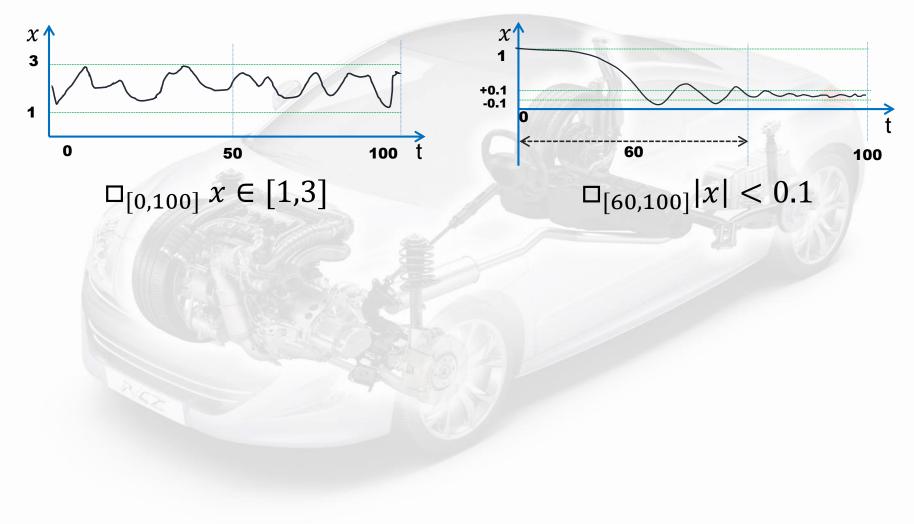






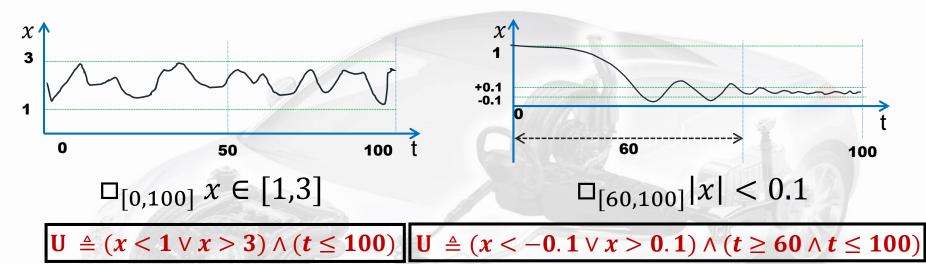
Powertrain Specification

Signal Temporal Logic: temporal specification for signals



Powertrain Specification

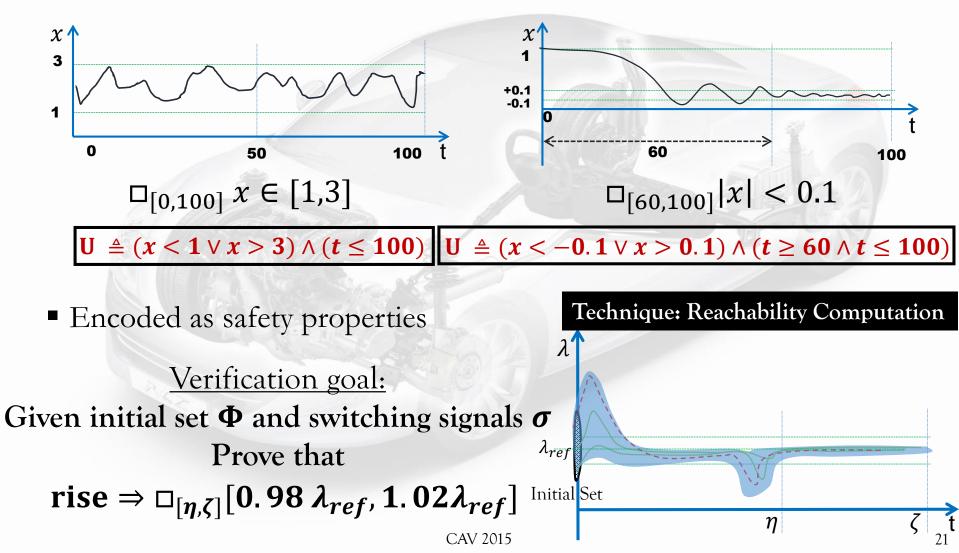
Signal Temporal Logic: temporal specification for signals



Encoded as safety properties

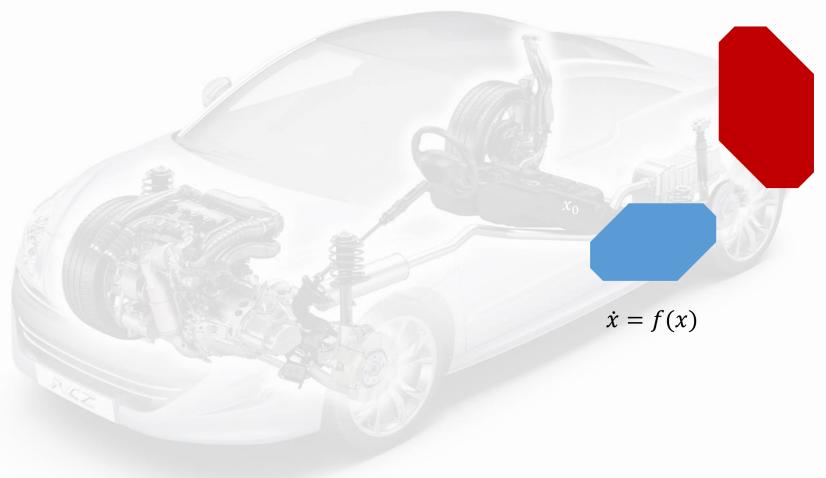
Powertrain Specification

Signal Temporal Logic: temporal specification for signals

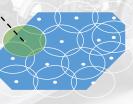


Outline

- ✓ Motivation & Challenges
- ✓ Powertrain Benchmark
- ✓ Specification
- Simulation Based Verification Technique
- Engineering
- Verification Results
- Conclusions and Future Work

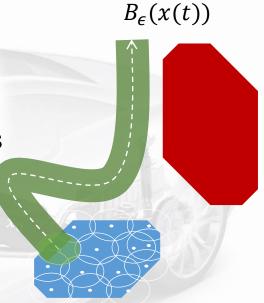


- Given start \bigcirc and unsafe \bigcirc
- Compute finite cover of initial set
- Simulate from the center x of each cover



 $\dot{x} = f(x)$

- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set



- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set
- Check intersection/containment with U
- Refine

 $B_\epsilon(x(t))$

 $\dot{x} = f(x)$

- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set
- Check intersection/containment with U
- Refine

 $B_{\epsilon}(x(t))$

 $\dot{x} = f(x)$

- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set
- Check intersection/containment with U
- Refine

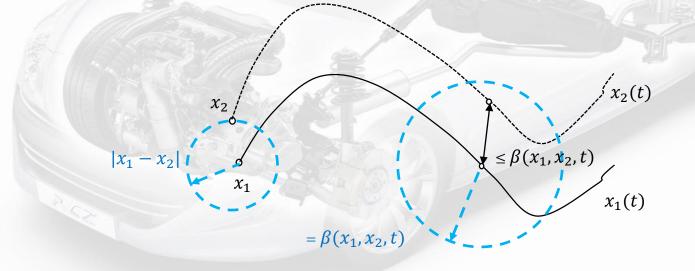
 $B_{\epsilon}(x(t))$

 $\dot{x} = f(x)$

Discrepancy Function

Discrepancy Function: capturing the continuity of ODE solutions executions that start close, stay close

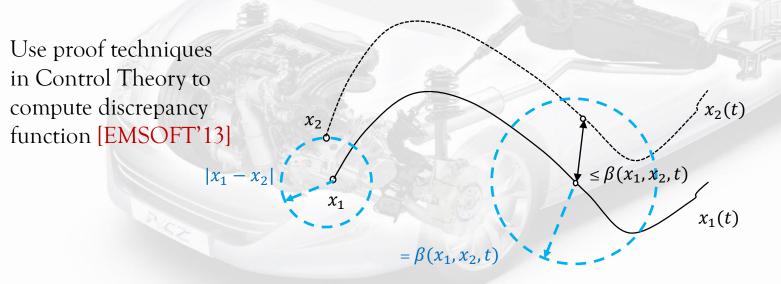
 β is called a discrepancy function of the system if for any two states x_1 and x_2 , $|x_1(t) - x_2(t)| \le \beta(x_1, x_2, t)$



Discrepancy Function

Discrepancy Function: capturing the continuity of ODE solutions executions that start close, stay close

 β is called a discrepancy function of the system if for any two states x_1 and x_2 , $|x_1(t) - x_2(t)| \le \beta(x_1, x_2, t)$



Discrepancy functions are given as model annotations, i.e. β is given by the user

Discrepancy Function

$$\begin{split} \dot{p} &= c_1 (2\theta (c_{20}p^2 + c_{21}p + c_{22}) - c_{12} (c_2 + c_3\omega p + c_4\omega p^2 + c_5\omega p^2)) \\ \dot{\lambda} &= c_{26} (c_{15} + c_{16}c_{25}F_c + c_{17}c_{25}^2F_c^2 + c_{18}\dot{m_c} + c_{19}\dot{m_c}c_{25}F_c - \lambda) \\ \dot{p_e} &= c_1 (2c_{23}\theta (c_{20}p^2 + c_{21}p + c_{22}) - (c_2 + c_3\omega p + c_4\omega p^2 + c_5\omega p^2)) \\ \dot{i} &= c_{14} (c_{24}\lambda - c_{11}) \end{split}$$

where

$$F_{c} = \frac{1}{c_{11}} (1 + i + c_{13}(c_{24}\lambda - c_{11}))(c_{2} + c_{3}\omega p + c_{4}\omega p^{2} + c_{5}\omega p^{2})$$

$$\dot{m_{c}} = c_{12}(c_{2} + c_{3}\omega p + c_{4}\omega p^{2} + c_{5}\omega p^{2})$$

All known tools failed to find any discrepancy functions

Discrepancy functions are given as model annotations, i.e. β is given by the user

 Computing discrepancy function from simulations and static analysis Fan & Mitra [ATVA'15]

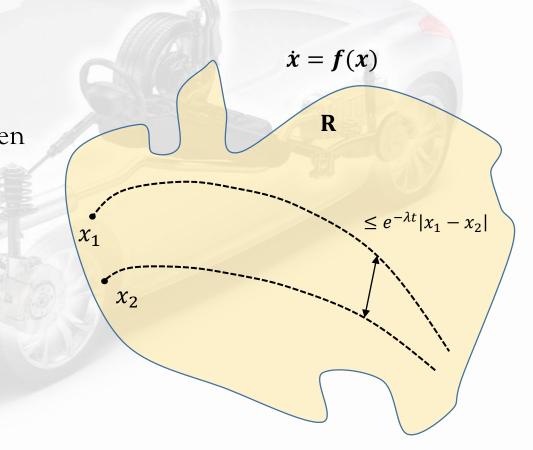
 $\dot{x} = f(x)$

R

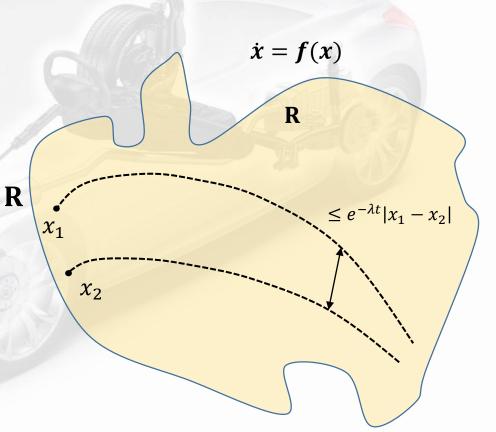
On-The-Fly Discrepancy

- Computing discrepancy function from simulations and static analysis Fan & Mitra [ATVA'15]
- Key principle
 - $J = \frac{\partial f}{\partial x}$
 - If $eig(J + J^T) < 0$ in **R** then trajectories converge in **R**

- Computing discrepancy function from simulations and static analysis Fan & Mitra [ATVA'15]
- Key principle
 - $J = \frac{\partial f}{\partial x}$
 - If $eig(J + J^T) < 0$ in **R** then trajectories converge in **R**

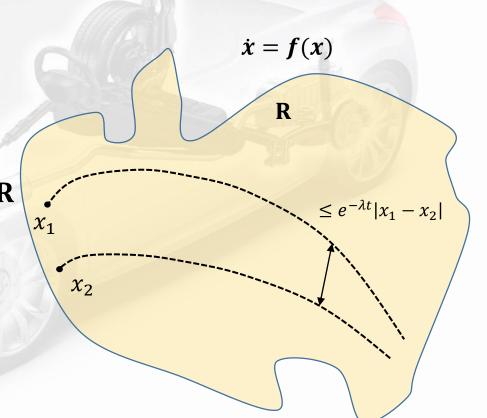


- Computing discrepancy function from simulations and static analysis Fan & Mitra [ATVA'15]
- Key principle
 - $J = \frac{\partial f}{\partial x}$
 - If $\operatorname{eig}(J + J^T) < 0$ in **R** then trajectories converge in **R**
 - Compute $\max \operatorname{eig}(J + J^T)$ in **R**
 - Gives a local discrepancy function in region R



- Computing discrepancy function from simulations and static analysis Fan & Mitra [ATVA'15]
- Key principle
 - $J = \frac{\partial f}{\partial x}$
 - If $eig(J + J^T) < 0$ in **R** then trajectories converge in **R**
 - Compute $\max \operatorname{eig}(J + J^T)$ in **R**
 - Gives a local discrepancy function in region R

We apply on-the-fly discrepancy function for verifying powertrain control system



Engineering

Domain Transformation:

If $eig(J + J^T)$ returns values close to 0, fails to prove convergence of traj. Performs linear basis transformation for getting useful discrepancy function. Involves multiplicative costs.

Model reduction:

The differential equation was *reduced* to a simpler one in power and start-up mode.

Engineering

Domain Transformation:

If $eig(J + J^T)$ returns values close to 0, fails to prove convergence of traj. Performs linear basis transformation for getting useful discrepancy function. Involves multiplicative costs.

Model reduction:

The differential equation was *reduced* to a simpler one in power and start-up mode.

Performance Tuning:

How often to perform domain transformation

Implementation in C2E2 [TACAS'15]:

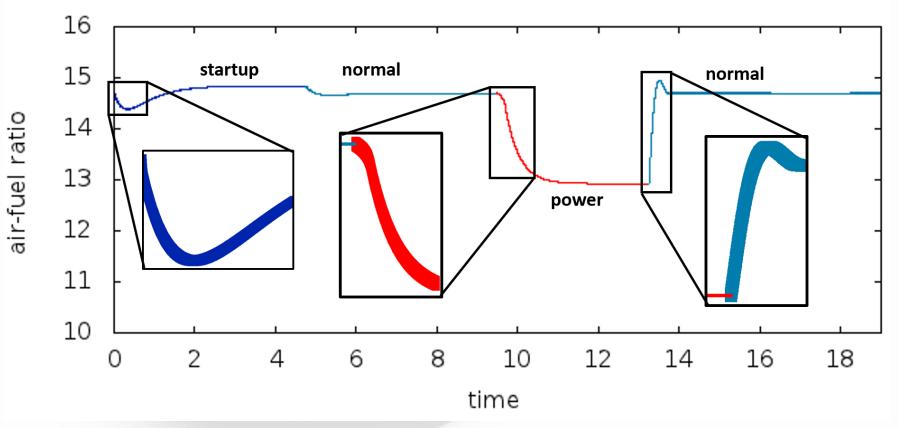
Extension of C2E2 tool using eigen library and interval arithmetic for matrix norms.

Powertrain Verification Results

Verified many key specification for a given set of driver behaviors

				1200	
Property	Mode	Sat	Sim.	Time	
$\Box \ \lambda \in [0.8\lambda_{ref}, 1.2\lambda_{ref}]$	all modes	Yes	53	11m58s	
$\Box \ \lambda \in [0.8\lambda_{ref}, 1.2\lambda_{ref}]$	startup	Yes	50	10m21s	Safety properties
$\Box \ \lambda \in [0.8\lambda_{ref}, 1.2\lambda_{ref}]$	normal	Yes	50	10m21s	
$\Box \ \lambda \in [0.8\lambda_{ref}^{pwr}, 1.2\lambda_{ref}^{pwr}]$	power	Yes	53	11m12s	
$\Box \ \lambda \in [0.8 \lambda'_{ref}, 1.2 \lambda'_{ref}]$	power	No	4	0m43s	
$rise \Rightarrow \Box_{(\eta,\xi)} \lambda \in [0.98 \lambda_{ref}, 1.02 \lambda_{ref}]$	normal	Yes	50	10m15s	
$(l = pwr) \Rightarrow \Box_{(\eta,\xi)} \lambda \in [0.95 \lambda_{ref}, 1.05 \lambda_{ref}]$	power	Yes	53	11m35s	Performance properties
$(l = pwr) \Rightarrow \Box_{(\eta/2,\xi)} \lambda \in [0.95 \lambda_{ref}, 1.05\lambda_{ref}]$	power	No	4	0m45s	

Reachable Set



Conclusions and Future Work

- Verified the polynomial hybrid system model in the Powertrain Control Benchmark
- Scalability of dynamic analysis tool C2E2 to handle systems of industrial complexity

Future Work:

- Handling properties with path integrals
- New algorithms for handling other models in the benchmark

Thank You

- Xiaoqing Jin
- Jyotirmoy Deshmukh
- Jim Kapinski
- Koichi Ueda
- Ken Butts

Questions?