
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Meeting a Powertrain Verification Challenge

Parasara Sridhar Duggirala, Chuchu Fan, Sayan Mitra, and Mahesh
Viswanathan

University of Illinois, Urbana-Champaign
duggira3@illinois.edu, cfan10@illinois.edu,
mitras@illinois.edu, vmahesh@illinois.edu.

Abstract. We present the verification of a benchmark powertrain control
system using the hybrid system verification tool C2E2. This model comes
from a suite of benchmarks that were posed as a challenge problem for the
hybrid systems community, and to our knowledge, we are reporting its
first verification. For this work, we implemented the algorithm reported
in [10] in C2E2, to automatically compute local discrepancy (rate of con-
vergence or divergence of trajectories) of the model. We verify the key
requirements of the model, specified in signal temporal logic (STL), for a
set of driver behaviors.

1 A Challenge Problem
As the targets for fuel efficiency, emissions, and drivability become more de-
manding, automakers are becoming interested in pushing the design automa-
tion and verification technologies for automotive control systems. The bench-
mark suite of powertrain control systems were published in [12,11] as challenge
problems that capture some of the difficulties that arise in verification of realis-
tic systems. It consists of a sequence of SimulinkTM/StateflowTM models of the
engine with increasing levels of sophistication and fidelity. At a high-level, the
models take inputs from a driver (throttle angle) and the environment (sensor
failures), and define the dynamics of the engine. The key controlled quantity is
the air to fuel ratio which in turn influences the emissions, the fuel efficiency,
and torque generated. The requirements for the system are stated in signal tem-
poral logic (STL). A typical property, for example, 3t(x ∈ [xeq − ε, xeq + ε]),
states that after t units of time, the continuous variable x is within the range
xeq ± ε. Breach [4] and STaliro [2] have been used for finding counterexamples
(or falsifying) models in [13,12,14,5]. These techniques can show the presence of
executions that violate a requirement, but not their absence. The technique used
in this paper proves that all the executions from a given set of initial states and a
set of switching signals satisfies (or violates) the requirement. To the best of our
knowledge, this is the first time a model in the powertrain control benchmark
is verified.

The model we consider in this paper is polynomial hybrid automata model
(Model 3, Section 3.3) of [12]. Although this model is given as a SimulinkTM

diagram with switch blocks, it can be transformed to a hybrid automaton with
4 locations and 5 continuous variables. The dynamics of the system is given by



2

highly nonlinear polynomial differential equations. The mode transitions are
brought about by the input signal from the driver and there are uncertainties in
the initial set owing to measurement inaccuracies. Using an improved version
of the C2E2 tool [6,7] we are able to perform reachability analysis of this model
and we verify the requirements with respect to a set of relevant driver behav-
iors. In principle, Flow* [3] is designed to handle polynomial hybrid automata
models, however, it was unable to verify the models considered in this paper,
owing to the complexity of nonlinear dynamics.

C2E2 is a verification tool for a general class of nonlinear hybrid systems.
The previous version of C2E2 [6,7] required the user to provide a special type
of annotation for the model, called discrepancy function, which essentially cap-
tures the rate of convergence (or divergence) of neighboring trajectories. Find-
ing discrepancy functions for nonlinear models can be challenging. One of the
main developments that enabled this verification, is the implementation of a
new algorithm in C2E2 (presented in detail in [10]) for automatic computation
of local discrepancy along trajectories of the system. Using this improved C2E2,
we were not only able to find counterexamples, but also verify the key STL re-
quirements of the powertrain benchmark in the order of minutes.

2 Nonlinear Hybrid Powertrain Model
SimulinkTM model for the powertrain control system is shown in Figure 1(a).
The system has four continuous variables p, λ, pe, i (see Figure 1(b)), and four
modes of operation: startup, normal, power, and sensor fail. The mode switches
(also called transitions) are brought about by changes in the input throttle angle
θin or failure events. The rest of the SimulinkTM diagram defines polynomial

(a) Hybrid automata model of pow-
ertrain control system.

Variable Description

p Intake manifold pressure

pe Intake manifold pressure estimate

λ Air-fuel ratio

i Integrator state, control variable

θin Throttle angle

(b) Table with state variables and their descrip-
tion.

Fig. 1: Figure showing the model in (a) and the model variables in (b).

differential equations that govern the evolution of the continuous variables in
the four different modes. As an example, we reproduce the differential equation
for normal mode of operation.

ṗ =c1(2θin(c20p
2 + c21p+ c22)− c12(c2 + c3ωp+ c4ωp

2 + c5ω
2p))

λ̇ =c26(c15 + c16c25Fc + c17c
2
25F

2
c + c18ṁc + c19ṁcc25Fc − λ)

ṗe =c1(2c23θin(c20p
2 + c21p+ c22)− (c2 + c3ωpe + c4ωp

2
e + c5ω

2pe))

i̇ =c14(c24λ− c11).



3

Here Fc = 1
c11

(1 + i + c13(c24λ − c11))(c2 + c3ωpe + c4ωp
2
e + c5ω

2pe), ṁc =

c12(c2 + c3ωp + c4ωp
2 + c5ω

2p), and all the ci’s are constant parameters of the
model.

This model is translated to a hybrid automaton form that is accepted by
C2E2. The operating modes correspond to the locations of the automaton, the
variables correspond to the above continuous variables, the differential equa-
tions define the trajectories, and the discrete transitions among the locations is
defined by a piecewise constant input signal θin from the driver behavior. C2E2
currently handles only closed automaton models. Therefore, for every driver
behavior of interest, we explicitly construct a family of switching signals that
determine the timing of the mode switches. The initial set of the automaton is
a ball in the state space which corresponds to the measurement uncertainty in
state components.

The goal of the powertrain control system is to maintain the air-fuel ratio
at a desired value for optimal functioning of internal combustion engine under
different driving behaviors and conditions. These control objectives or require-
ments are stated in [12] using STL formulas. An example requirement for the
normal mode of operation is the following:

rise ⇒ �(η,ζ)(0.98λref ≤ λ ≤ 1.02λref ), (1)

which can be read as “If the throttle angle θin changes from 0 to 60, denoted by
the event rise , then the air-fuel ratio λ should be in the range [0.98λref , 1.02λref ]
after η time units and stay in that region until ζ time units. Here λref is the
reference (desired) air-fuel ratio and η and ζ are parameters of the property.
We note that this type of requirements can also be expressed as bounded time
invariants— the class of properties currently handled by C2E2. We simply need
to introduce a timer variable that keeps track of time elapsed since the last
occurrence of the relevant events like rise in the above example.

3 Verification using C2E2 with Local Discrepancy

C2E2 implements a generic, simulation-based, algorithm for bounded time ver-
ification of invariant and temporal precedence properties of nonlinear hybrid
models (see [6,7,8] for details). The algorithm iteratively computes more pre-
cise over-approximations of the reachable states of the system until it either
proves the property (the requirement) or finds a counter-example. These over-
approximations are computed for each location and for the duration that the
system is in that location. The set of reachable states at the end of that interval
serves as the starting set for the next location and so on. Thus, the key step in
the algorithm is to compute and refine reach set over-approximations for ODEs
for a given location. This step uses validated simulations and discrepancy func-
tions [6].

A validated simulation of an ordinary differential equation (ODE) ẋ = f(x)
from an initial state x0 with error bound ε is a sequence of time-stamped regions



4

ψ = (R0, t0), . . . , (Rk, tk) such that for each time interval [ti−1, ti] the solution
ξ(x0, .) resides in the region Ri and dia(Ri) ≤ ε. A uniformly continuous func-
tion β : Rn×Rn×R≥0 → R≥0 is a discrepancy function of the above ODE if (a) for
any pair of states x, x′ ∈ Rn, and any time t > 0, ‖ξ(x, t)− ξ(x′, t)‖ ≤ β(x, x′, t),
and (b) for any t, as x → x′, β(., ., t) → 0. Thus, β gives an upper bound on the
rate of divergence of two neighboring trajectories and this bound vanishes as
their initial states approach each other.

In order to check whether the system satisfies an invariant I over a time
horizon T , the C2E2 algorithm starts with a δ-cover of the initial set and pro-
ceeds as follows: from each point x0 in the cover a validated simulation is gen-
erated and then bloated by a factor given by the discrepancy function. This
bloated set is an over-approximation of the reachset from the δ-neighborhood
(Bδ(x0)) of x0. If this set is disjoint from (or contained in) Ic then the algorithm
infers that the initial set Bδ(x0) satisfies (or violates, respectively) I . Otherwise,
a finer cover of Bδ(x0) is created and added to C for computing a more precise
over-approximation of the reach set from Bδ(x0). The first property of the dis-
crepancy function gives the soundness of this algorithm, and the second prop-
erty gives relative completeness (see, Theorem 13 from [6]).

This approach requires the user to provide discrepancy functions which can
be burdensome. Although Lipschitz constants, contraction metrics [15], and in-
cremental Lyapunov functions [1] can be used to get discrepancy for certain
classes of models, none of these approaches give an algorithm for computing
β for general nonlinear ODEs. In this paper, we use the algorithm presented
in [10] for computing local discrepancy functions on-the-fly along validated
simulations. This algorithm uses the Jacobian Jf and a Lipschitz constant Lf of
the ODE. First it computes a coarse over-approximation S(xi) of the reach set
from a simulation point for a short duration. Then it computes an exponential
(possibly negative) bound on the divergence rate of trajectories over S(x0) by
finding a bound on the maximum eigenvalue of the symmetric part of the Ja-
cobian Jf over the region S(x0). We refer the reader to the technical report [10]
for the details of this algorithm.

3.1 Tool Implementation and Engineering

Implementation. For verifying the powertrain system, we implemented the local
discrepancy algorithm in C2E21. This modified implementation only requires
the user to supply the Jacobian matrix of the system. The eigenvalues of the
symmetric parts of the Jacobian are computed using Eigen library [9]. For max-
imizing the norm of error matrices our implementation uses interval arithmetic.

Coordinate Transformation. An important technical detail that makes the im-
plementation scale is the coordinate transformation proposed in [10]. For Ja-
cobian matrices with complex eigenvalues the local discrepancy computed di-
rectly using the above algorithm can be a positive exponential even though

1 The modified tool and related files are available from
http://publish.illinois.edu/c2e2-tool/powertrain-challenge/

http://publish.illinois.edu/c2e2-tool/powertrain-challenge/


5

the actual trajectories are not diverging. This problem can be avoided by first
computing a local coordinate transformation and then applying the algorithm.
Coordinate transformation provides better convergence, but comes with a mul-
tiplicative cost in the error term. This trade-off between the exponential diver-
gence rate and the multiplicative error has be tuned by choosing the time hori-
zon over which the coordinate transformation is computed.

Model Reduction. In start up and power mode of the system, the differential
equation does not update the value of the integrator variable i, i.e., i̇ = 0. More-
over, i does not appear in the right hand side of the differential equations for
variables p, λ, pe. We take advantage of these observations, and consider only
the dynamics of the variables p, λ, and pe for computing local discrepancy.

4 Experimental Results on Powertrain Challenge

We have implemented the algorithm described in Section 3 as a prototype ex-
tension of the tool C2E2. Verification of key properties of powertrain systems
is typically performed on a standard set of driver behaviors as the number of
switching signals corresponding to driver behaviors are infinite. In this paper,
we pick two sets of driver behaviors provided in [12] that visit all the modes of
the system. Further, to enable verification with C2E2, the STL properties were
encoded as bounded time safety properties. Hence, the properties in [12] which
involved integrals over paths, could not be verified. Table 1 provides the results
of verifying different STL properties.

Property Mode Sat. Sim. Time

�Ts,Tλ ∈ [0.8λref , 1.2λref ] all modes yes 53 11m58s

�[0,Ts]λ ∈ [0.8λref , 1.2λref ] startup yes 50 10m21s

�[Ts,T ]λ ∈ [0.95λref , 1.05λref ] normal yes 50 10m28s

�[Ts,T ]λ ∈ [0.8λpwrref , 1.2λ
pwr
ref ] power yes 53 11m12s

�[0,Ts]λ ∈ [0.98λref , 1.02λref ] startup no 2 0m24s

�[Ts,T ]λ ∈ [0.9λpwrref , 1.1λ
pwr
ref ] power no 4 0m43s

rise ⇒ �(η,ζ)λ ∈ [0.9λref , 1.1λref ] startup yes 50 10m40s

rise ⇒ �(η,ζ)λ ∈ [0.98λref , 1.02λref ] normal yes 50 10m15s

(` = power) ⇒ �(ηpwr,ζ)λ ∈ [0.95λpwrref , 1.05λ
pwr
ref ] power yes 53 11m35s

(` = power) ⇒ �(ηs,ζ)λ ∈ [0.95λpwrref , 1.05λ
pwr
ref ] power no 4 0m45s

Table 1: Table showing the result and the time taken for verifying STL specification of
the powertrain control system. Sat: Satisfied, Sim: Number of simulations performed.
All the experiments are performed on Intel Quad-Core i7 processor, with 8 GB ram, on
Ubuntu 11.10.

The first six properties provided in Table 1 are invariant properties. These
invariant properties can be global (i.e. correspond to all modes) or could be
restricted to a certain mode of operation provided in the Mode column. The in-
variants assert that the air-fuel ratio should not go out of the specified bounds.



6

Fig. 2: Figure showing the reachable set of the powertrain control system for a given
user behavior that visits different modes.

Observe that C2E2 could not only prove that the given specification is satis-
fied, but also that a stricter version of invariants for startup and power modes
is violated. The next four properties are about the settling time requirements.
These requirements enforce that in a given mode, whenever an action is trig-
gered, the fuel air ratio should be in the given range provided after η (or ηpwr

for power mode) time units. Similar to the invariant properties, C2E2 could also
find counterexample for a stricter version of the settling time requirement (ηs

settling time instead of η) in power mode. When C2E2 finds an overapproxima-
tion that violates a given property, it immediately terminates and hence C2E2
takes less time when it finds counterexamples. The parameters used for verifi-
cation are η = ηpwr = 1, ηs = 0.5, Ts = 9, T = 20, λref = 14.7, λpwrref = 12.5,
and ζ = 4. Set of reachable states of the powertrain control system for a given
driver behavior is provided in Figure 2.

5 Conclusions And Future Work

In this paper, we have successfully applied the simulation based verification
technique with local discrepancy functions to find counterexamples and verify
the polynomial hybrid automata model of powertrain benchmark challenge.
This case study suggests that verification using on-the-fly discrepancy function
along with the coordinate transformation can handle complex nonlinear dy-
namics. In future, we wish to extend these techniques to handle higher fidelity
models in the powertrain verification challenge. These models contain delay
differential equations, actuation delays, and look up tables, which C2E2 cannot
currently handle.

Acknowledgment: We thank Jim Kapinski, Jyo Desmukh, and Xiaoqing Jin of
Toyota for several useful discussions on the powertrain models. This research
is funded by research grants from the National Science Foundation (grant: CAR
1054247 and NSF CSR 1016791) and the Air Force Office of Scientific Research
(AFOSR YIP FA9550-12-1-0336).



7

References

1. David Angeli. A lyapunov approach to incremental stability properties. In IEEE
Transactions on Automatic Control, 2000.

2. Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. S-TaLiRo: A tool for temporal logic falsification for hybrid systems. In
International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. Springer, 2011.

3. Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pages 258–263,
2013.

4. Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In Computer Aided Verification, pages 167–170. Springer, 2010.

5. Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Jyotirmoy V
Deshmukh, and Xiaoqing Jin. Efficient guiding strategies for testing of temporal
properties of hybrid systems. In Proceedings of NASA Formal Methods Conference (to
appear)., 2015.

6. Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. Verification of
annotated models from executions. In Proceedings of the International Conference on
Embedded Software, EMSOFT 2013, pages 1–10. IEEE, 2013.

7. Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew Po-
tok. C2E2: A verification tool for stateflow models. In 21st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2015), 2015.

8. Parasara Sridhar Duggirala, Le Wang, Sayan Mitra, Mahesh Viswanathan, and César
Muñoz. Temporal precedence checking for switched models and its application to a
parallel landing protocol. In FM 2014: Formal Methods - 19th International Symposium,
Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer
Science, pages 215–229. Springer, 2014.

9. Eigen. a C++ template library for linear algebra, (accessed February, 2015). http:
//eigen.tuxfamily.org.

10. Chuchu Fan and Sayan Mitra. Bounded verification using on-the-fly discrepancy
computation. Technical Report UILU-ENG-15-2201, Coordinated Science Labora-
tory, University of Illinois at Urbana-Champaign, February 2015.

11. Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts.
Benchmarks for model transformations and conformance checking. In 1st Inter-
national Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH),
2014.

12. Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts.
Powertrain control verification benchmark. In Proceedings of the 17th international
conference on Hybrid systems: computation and control, pages 253–262. ACM, 2014.

13. Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Min-
ing requirements from closed-loop control models. In Proceedings of the 16th interna-
tional conference on Hybrid systems: computation and control, pages 43–52. ACM, 2013.

14. Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Min-
ing requirements from closed-loop control models. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (to appear), 2016.

15. W. Lohmiller and J. J. E. Slotine. On contraction analysis for non-linear systems.
Automatica, 1998.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

	Meeting a Powertrain Verification Challenge
	A Challenge Problem
	Nonlinear Hybrid Powertrain Model
	Verification using C2E2 with Local Discrepancy
	Tool Implementation and Engineering

	Experimental Results on Powertrain Challenge
	Conclusions And Future Work


