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Safety Verification

 Inputs: 
1. Model of the system 𝐴,
2. Initial States Θ, and 
3. Unsafe States 𝑈

 Output: If the system is safe or unsafe
∀𝑥 ∈ Θ, 𝜉 𝑥, 𝑡 ∉ 𝑈
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𝑥1(𝑡)

time

Unsafe Set

Stateflow Model of Pacemaker – Cardiac Cell system
Features: Invariants, Guards, and Resets

Solution
Reachable Set Computation

Features of the Model



Contributions

 Simulation based verification algorithm for Fully Hybrid Systems

 Theoretical guarantees – Soundness and Relative Completeness

 Tool Features
• Stateflow Models, hyxml intermediate format
• Graphical User Interface
• Visualizing the reachable set
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Overview

Motivation and Problem Statement

 Challenges in Verification

 Building Blocks and Algorithm

 Soundness and Relative Completeness Guarantees

 Tool Features

 Annotations

 Future Work
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Safety Verification

 Inputs: 
1. Model of the system 𝐴,
2. Initial States Θ, and 
3. Unsafe States 𝑈

 Output: If the system is safe or unsafe
∀𝑥 ∈ Θ, 𝜉 𝑥, 𝑡 ∉ 𝑈
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𝑢(𝑡)

time

Unsafe Set

Stateflow Model of Pacemaker – Cardiac Cell system
Features: Invariants, Guards, and Resets

Solution
Reachable Set Computation



Challenges In Reachable Set Computation

 Nonlinear ODEs – do not even have a closed form solution

 Switching conditions – predicates on variables (nondeterminism)
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Our Technique: Use simulations for computing Reachable Set

𝑢(𝑡)

time

Unsafe Set

Stateflow Model of Pacemaker – Cardiac Cell system
Features: Invariants, Guards, and Resets
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 Given start            and unsafe

 Compute finite cover of initial set

 Simulate from the center 𝑥0 of each cover 

 Bloat simulation so that bloated tube contains 
all trajectories from the cover

 Union = over-approximation of reach set

Θ

𝑥0

𝑈

A Simple (Often The Only) Strategy

ሶ𝑥 = 𝑓(𝑥)

𝐵𝜖(𝜉(𝑥0, 𝑡))
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 Given start            and unsafe

 Compute finite cover of initial set

 Simulate from the center 𝑥0 of each cover 

 Bloat simulation so that bloated tube contains 
all trajectories from the cover

 Union = over-approximation of reach set

 Check intersection/containment with 𝑈

 Refine

1. How do we get the simulations?

2. How much to bloat?

3. How to handle mode switches?

Θ

𝑥0

𝑈

A Simple (Often The Only) Strategy

ሶ𝑥 = 𝑓(𝑥)

𝐵𝜖(𝜉(𝑥0, 𝑡))



Building Blocks : Simulations

Simulation from 𝑥0 given as 𝜉(𝑥0, 𝑡) – no closed form!
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𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏(𝒙𝟎, 𝒉, 𝝐, 𝑻) gives a sequence S0, … , 𝑆𝑘:
1. at any time 𝑡 ∈ [𝑖ℎ, 𝑖 + 1 ℎ], 𝜉 𝑥0, 𝑡 ∈ 𝑆𝑖
2. 𝑑𝑖𝑎 𝑆𝑖 ≤ 𝜖

𝒗𝒂𝒍𝑺𝒊𝒎(𝒙𝟎, 𝑻, 𝒇) generates such simulations (CAPD)



Building Blocks : Discrepancy Function

Discrepancy Function: capturing the continuity of ODE solutions
executions that start close, stay close

〈𝐾, 𝛾〉 is called an exponential discrepancy function of the system if for any two states 
𝑥1 and 𝑥2 ∈ 𝑋, for any t |𝜉(𝑥1, 𝑡) − 𝜉(𝑥2, 𝑡)| ≤ 𝐾 𝑥1 − 𝑥2 𝑒

𝛾𝑡
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|𝑥1 − 𝑥2|

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

≤ 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1

= 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1

Discrepancy functions are given as model annotations, i.e. 〈𝐾, 𝛾〉 is given by the user



Simulations + Discrepancy Functions = 
ReachTubes

𝝍 = 𝒓𝒆𝒂𝒄𝒉𝒕𝒖𝒃𝒆 𝑺, 𝝐, 𝑻 of ሶ𝑥 = 𝑓 𝑥 is a sequence 𝑅0, … , 𝑅𝑘 such that 
𝑑𝑖𝑎(𝑅𝑖) ≤ 𝜖 and from any 𝑥0 ∈ 𝑆, for each time 𝑡 ∈ [𝑖ℎ, (𝑖 + 1)ℎ], 𝜉 𝑥0, 𝑡 ∈ 𝑅𝑖 . 

How to compute a ReachTube from validated simulation and annotation?

𝑆0, … , 𝑆𝑘 , 𝜖1 ← 𝒗𝒂𝒍𝑺𝒊𝒎(𝑥0, 𝑇, 𝑓)
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Simulations + Discrepancy Functions = 
ReachTubes

𝝍 = 𝒓𝒆𝒂𝒄𝒉𝒕𝒖𝒃𝒆 𝑺, 𝝐, 𝑻 of ሶ𝑥 = 𝑓 𝑥 is a sequence 𝑅0, … , 𝑅𝑘 such that 
𝑑𝑖𝑎(𝑅𝑖) ≤ 𝜖 and from any 𝑥0 ∈ 𝑆, for each time 𝑡 ∈ [𝑖ℎ, (𝑖 + 1)ℎ], 𝜉 𝑥0, 𝑡 ∈ 𝑅𝑖 . 

How to compute a ReachTube from validated simulation and annotation?

𝑆0, … , 𝑆𝑘 , 𝜖1 ← 𝒗𝒂𝒍𝑺𝒊𝒎(𝑥0, 𝑇, 𝑓)

For each 𝑖 ∈ 𝑘
𝜖2 ← max

𝑡∈𝑇𝑖
𝐾𝑒𝛾𝑡𝛿;

𝑅𝑖 ← 𝐵𝜖2 𝑆𝑖

𝑅0, … , 𝑅𝑘 is a reachtube(𝑩𝜹 𝒙𝟎 , 𝝐𝟏 + 𝝐𝟐, 𝑻)
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 How do we get the simulations?
 How much to bloat?
• How to handle mode switches?

Invariants

Guards



Handling Invariants

Tagging: track a region based on a predicate 𝑃

𝒕𝒂𝒈𝑹𝒆𝒈𝒊𝒐𝒏 𝑹,𝑷 = ቐ
𝑚𝑢𝑠𝑡 𝑅 ⊆ 𝑃
𝑚𝑎𝑦 𝑅 ∩ 𝑃 ≠ ∅, ത𝑅 ∩ 𝑃 ≠ ∅
𝑛𝑜𝑡 𝑅 ∩ 𝑃 = ∅

𝝓 = 𝒊𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒕𝑷𝒓𝒆𝒇𝒊𝒙(𝝍, 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒕) is

〈𝑅0, 𝑡𝑎𝑔0, … , 𝑅𝑚, 𝑡𝑎𝑔𝑚〉 , such that either 

𝑡𝑎𝑔𝑖 = 𝑚𝑢𝑠𝑡 if all the 𝑅𝑗
′𝑠 before it are must

𝑡𝑎𝑔𝑖 = 𝑚𝑎𝑦 if all the 𝑅𝑗
′𝑠 before it are tagged may or must and at least one of 

them is not must
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Goal: Reachtube that respects the invariant of the mode



Handling Guards & Resets

𝒏𝒆𝒙𝒕𝑹𝒆𝒈𝒊𝒐𝒏𝒔(𝝓) returns a set of tagged regions N. 

𝑅′, 𝑡𝑎𝑔′ ∈ 𝑁 iff ∃ 𝑎 ∈ 𝐴, 〈𝑅𝑖 , 𝑡𝑎𝑔𝑖〉 ∈ 𝜙 such that 𝑅′ = 𝑅𝑒𝑠𝑒𝑡𝑎 𝑅𝑖 and:
𝑅𝑖 ⊆ 𝐺𝑢𝑎𝑟𝑑𝑎 , 𝑡𝑎𝑔𝑖 = 𝑡𝑎𝑔′ = 𝑚𝑢𝑠𝑡
𝑅𝑖 ∩ 𝐺𝑢𝑎𝑟𝑑𝑎 ≠ ∅, 𝑅𝑖 ∉ 𝐺𝑢𝑎𝑟𝑑𝑎 , 𝑡𝑎𝑔𝑖 = 𝑚𝑢𝑠𝑡, 𝑡𝑎𝑔′ = 𝑚𝑎𝑦
𝑅𝑖 ∩ 𝐺𝑢𝑎𝑟𝑑𝑎 ≠ ∅, 𝑡𝑎𝑔𝑖 = 𝑡𝑎𝑔′ = 𝑚𝑎𝑦

Tagging is essentially bookkeeping

1. 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥 discards the invalid trajectories (violating invariant)

2. 𝑛𝑒𝑥𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠 tags the regions based on the feasibility of discrete transition

Utility of tagging

1. Reachable set is contained in union of may and must regions – inferring safety

2. There exists at least one reachable state in every must region – inferring violation of 
safety
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Goal: Compute set of states in Reachtube that change mode based on Guard



Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

end;
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𝑥0



Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

end;
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Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

if (𝜙 is safe) then continue;

if (𝜙 is unsafe and 𝑡𝑎𝑔 is 𝑚𝑢𝑠𝑡) return unsafe;

else refine tagged cover;

end;

return safe;
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Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

𝑁𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠(𝜙)

if (𝜙 is safe) then check 𝑁𝑒𝑥𝑡;

if (𝜙 is unsafe and 𝑡𝑎𝑔 is 𝑚𝑢𝑠𝑡) return unsafe;

else refine tagged cover;

end;

return safe;
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Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝑞𝑢𝑒𝑢𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝑠 ← {〈𝑆, 𝑡𝑎𝑔〉}

∀ 𝑆, 𝑡𝑎𝑔 ∈ 𝑞𝑢𝑒𝑢𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝑠 until 𝑁 steps and 𝑇 time

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

𝑁𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠(𝜙)

if (𝜙 is safe) enque 𝑁𝑒𝑥𝑡 to 𝑞𝑢𝑒𝑢𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝑠;

if (𝜙 is unsafe and 𝑡𝑎𝑔 is 𝑚𝑢𝑠𝑡) return unsafe;

else refine tagged cover;

end;

end;

return safe;
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Soundness & Relative Completeness

[Soundness]: If the algorithm returns safe(or unsafe), then the system 
is indeed safe(or unsafe).

Proof sketch: 

1. Union of May and Must regions contains the reachable set

2. Algorithm returns safe only when all the May and Must regions 
are safe

3. Algorithm returns unsafe only when a Must region is contained 
in the unsafe set
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Soundness & Relative Completeness

[Relative Completeness]: If the system is robustly safe or robustly 
unsafe, then the algorithm will terminate with correct answer. 

Definition
Robustly safe: If there is 𝜖 separation between reachable set and 𝑈

Robustly unsafe: If 𝜖 shrinkage of invariants, guards, and initial set Θ, is unsafe
with respect to 𝜖 shrinkage of 𝑈

Proof sketch:

1. Refining the cover enough will ensure that overapproximation is less than 𝜖, 
so if the system is robustly safe, the algorithm returns safe

2. If the 𝜖 shrinkage of invariants, guards, Θ, and 𝑈 is unsafe, then ∃ 𝑅𝑖 tagged 
𝑚𝑢𝑠𝑡 in the reachable that is unsafe
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C2E2 :
Compare-Execute-Check-Engine

Features:
• Stateflow models
• Graphical User Interface
• Plotting
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Architecture of C2E2



𝑡 ≥ 5; 𝑡 = 0

C2E2: Features, Architecture, & 
Usability

Stateflow models: No formal semantics from MATHWORKS, 
Hybrid automata semantics by Tiwari [‘02], Manamcheri et.al.[‘10]

Urgent semantics:

Bloating the guard set: for providing robust counterexamples

𝑡 ≥ 5 ⇒ 𝑡 ≥ 5 − 𝜖, 𝑡 ≤ 5 + 𝜖
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C2E2: Features, Architecture, & 
Usability

30

• GUI for viewing model, properties
• Saving model in hyxml format
• Interface for plotting reachable set

More in the Tool Demo Market



Comparison with Existing Approaches on 
Academic Benchmarks [DMV’13]

31

Benchmark Variables Sims. C2E2
(time)

Flow*
(time)

Ariadne
(time)

Moore-G. Jet 
Engine 2 36 1.56 10.54 56.57

Brussellator
System 2 115 5.26 16.77 72.75

VanDerPol
Oscillator 2 17 0.75 8.93 98.36

Coupled 
VanDerPol 4 62 1.43 90.96 270.61

Sinusoidal 
Tracking 6 84 3.68 48.63 763.32

Linear 
Adaptive 3 16 0.47 NA NA 

Nonlinear 
Adaptive 2 32 1.23 NA NA 

Nonlinear 
Disturbance 3 48 1.52 NA NA 

C2E2 Flow*



Discrepancy Functions – Model 
Annotations

 Sufficient conditions for finding discrepancy functions (borrowed from Control Theory)
• Lipschitz continuity: ሶ𝑥 = 𝑓(𝑥) has Lipschitz constant 𝐿, then 𝑥1(𝑡) − 𝑥2(𝑡) ≤ |𝑥1 − 𝑥2|𝑒

𝐿𝑡

• Contraction Metric: If 𝐽𝑇𝑀+𝑀 𝐽 + 𝑏𝑀𝑀 ≼ 0, then ∃𝑘, 𝛿 > 0, 𝑥1 𝑡 − 𝑥2 𝑡 2 ≤ 𝑘 𝑥1 − 𝑥2
2𝑒−𝛿𝑡

• Incremental Lyapunov Function: With function 𝑉, then 𝑥1 𝑡 − 𝑥2(𝑡) ≤ 𝑘 𝑥1 − 𝑥2 ; 𝑘 = 𝐹(𝑉)

 Finding such discrepancy function automatically
• Nonlinear optimization for Lipschitz continuity
• For ሶ𝑣 = 𝐴𝑣 that are exponentially stable, compute Lyapunov function
• Solving LMIs using Sum-Of-Squares tools to compute contraction metric
• Manual proof methods using coordinate transformation and eigen values of Jacobian 32

Exponential discrepancy function
〈𝐾 = 3.8, 𝛾 = −0.2〉



Summary & Future Work

 Simulation based verification algorithm for Fully Hybrid Systems

 Soundness and Relative completeness guarantees

 Tool features:
• Stateflow models
• GUI and usability enhancements
• Plotting for visualizing reachable set

Future Work

 Automatically finding discrepancy functions

 Theoretical Result: Minimum number of simulations to verify a 
given system
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Thank You, Questions?


