C2E2: A Verification Tool For Stateflow Models

Parasara Sridhar Duggirala,

Sayan Mitra, Mahesh Viswanathan, Matthew Potok

Pacemaker - Cardiac Cell System

Pacemaker - Cardiac Cell System

HA = Finite State Machine + Differential Equation

FSatterys Ventfiec Micodel

Stateflow Model of Pacemaker – Cardiac Cell system <u>Features</u>: **Invariants, Guards**, and **Resets**

- Inputs:
 - 1. Model of the system *A*,
 - 2. Initial States Θ , and
 - 3. Unsafe States U
- Output: If the system is safe or unsafe
 ∀x ∈ Θ, ξ(x, t) ∉ U

<u>Solution</u> Reachable Set Computation

Contributions

- Simulation based verification algorithm for <u>Fully Hybrid Systems</u>
- Theoretical guarantees <u>Soundness and Relative Completeness</u>
- Tool Features
 - Stateflow Models, *hyxml* intermediate format
 - Graphical User Interface
 - Visualizing the reachable set

Overview

- ✓Motivation and Problem Statement
- Challenges in Verification
- Building Blocks and Algorithm
- Soundness and Relative Completeness Guarantees
- Tool Features
- Annotations
- Future Work

Safety Verification

Unsafe Set

Stateflow Model of Pacemaker – Cardiac Cell system <u>Features</u>: **Invariants, Guards**, and **Resets**

- Inputs:
 - 1. Model of the system *A*,
 - 2. Initial States Θ , and
 - 3. Unsafe States U
- Output: If the system is safe or unsafe
 ∀x ∈ Θ, ξ(x, t) ∉ U

<u>Solution</u> Reachable Set Computation

Challenges In Reachable Set Computation

Stateflow Model of Pacemaker – Cardiac Cell system <u>Features</u>: **Invariants**, **Guards**, and **Resets**

- Nonlinear ODEs do not even have a closed form solution
- Switching conditions predicates on variables (nondeterminism)

Our Technique: Use simulations for computing Reachable Set

- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x_0 of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set

 $\dot{x} = f(x)$

- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x_0 of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set
- Check intersection/containment with U
- Refine

 $B_{\epsilon}(\xi(x_0,t))$

 $\dot{x} = f(x)$

- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x_0 of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set
- Check intersection/containment with U
- Refine

 $\dot{x} = f(x)$

- Given start () and unsafe
- Compute finite cover of initial set
- Simulate from the center x_0 of each cover
- Bloat simulation so that bloated tube contains trajectories from the cover
- Union = over-approximation of reach set
- Check intersection/containment with U
- Refine
- 1. How do we get the simulations?
- 2. How much to bloat?
- 3. <u>How to handle mode switches?</u>

 $B_{\epsilon}(\xi(x_0,t))$

 $\dot{x} = f(x)$

Building Blocks : Simulations

Simulation from x_0 given as $\xi(x_0, t)$ – no closed form!

simulation (x_0, h, ϵ, T) gives a sequence S_0, \dots, S_k :

- 1. at any time $t \in [ih, (i + 1)h], \xi(x_0, t) \in S_i$
- 2. $dia(S_i) \leq \epsilon$

valSim(**x**₀, **T**, **f**) generates such simulations (CAPD)

Building Blocks : Discrepancy Function

<u>Discrepancy Function</u>: capturing the continuity of ODE solutions executions that start close, stay close

 $\langle K, \gamma \rangle$ is called an exponential discrepancy function of the system if for any two states x_1 and $x_2 \in X$, for any t $|\xi(x_1, t) - \xi(x_2, t)| \le K|x_1 - x_2|e^{\gamma t}$

Discrepancy functions are given as model annotations, i.e. $\langle K, \gamma \rangle$ is given by the user

Simulations + Discrepancy Functions = <u>ReachTubes</u>

 $\psi = reachtube(S, \epsilon, T)$ of $\dot{x} = f(x)$ is a sequence R_0, \dots, R_k such that $dia(R_i) \leq \epsilon$ and from any $x_0 \in S$, for each time $t \in [ih, (i + 1)h], \xi(x_0, t) \in R_i$.

How to compute a ReachTube from validated simulation and annotation?

 $\langle S_0, \dots, S_k, \epsilon_1 \rangle \leftarrow valSim(x_0, T, f)$

Simulations + Discrepancy Functions = <u>ReachTubes</u>

 $\psi = reachtube(S, \epsilon, T)$ of $\dot{x} = f(x)$ is a sequence R_0, \dots, R_k such that $dia(R_i) \leq \epsilon$ and from any $x_0 \in S$, for each time $t \in [ih, (i + 1)h], \xi(x_0, t) \in R_i$.

How to compute a ReachTube from validated simulation and annotation?

$$\langle S_0, \dots, S_k, \epsilon_1 \rangle \leftarrow \textit{valSim}(x_0, T, f)$$
For each $i \in [k]$

$$\epsilon_2 \leftarrow \max_{t \in T_i} K e^{\gamma t} \delta;$$

$$R_i \leftarrow B_{\epsilon_2}(S_i)$$

16

 $\langle R_0, \dots, R_k \rangle$ is a *reachtube* $(\boldsymbol{B}_{\delta}(\boldsymbol{x_0}), \boldsymbol{\epsilon_1} + \boldsymbol{\epsilon_2}, \boldsymbol{T})$

Handling Invariants

Tagging: track a region based on a predicate P

$$tagRegion(R, P) = \begin{cases} must & R \subseteq P \\ may & R \cap P \neq \emptyset, \overline{R} \cap P \neq \emptyset \\ not & R \cap P = \emptyset \end{cases}$$

Goal: Reachtube that respects the invariant of the mode

 $\phi = invariantPrefix(\psi, Invariant) \text{ is}$ $\langle R_0, tag_0, \dots, R_m, tag_m \rangle \text{ , such that either}$ $tag_i = must \text{ if all the } R'_j s \text{ before it are must}$

 $tag_i = may$ if all the $R'_j s$ before it are tagged may or must and at least one of them is not must

Handling Guards & Resets

Goal: Compute set of states in Reachtube that change mode based on Guard

 $nextRegions(\phi)$ returns a set of tagged regions N.

 $\langle R', tag' \rangle \in N$ iff $\exists a \in A, \langle R_i, tag_i \rangle \in \phi$ such that $R' = Reset_a(R_i)$ and: $R_i \subseteq Guard_a, tag_i = tag' = must$ $R_i \cap Guard_a \neq \emptyset, R_i \notin Guard_a, tag_i = must, tag' = may$ $R_i \cap Guard_a \neq \emptyset, tag_i = tag' = may$

Tagging is essentially **bookkeeping**

- 1. invariantPrefix discards the invalid trajectories (violating invariant)
- 2. nextRegions tags the regions based on the feasibility of discrete transition

Utility of tagging

- 1. Reachable set is contained in union of *may* and *must* regions inferring safety
- 2. There exists at least one reachable state in every *must* region inferring violation of safety

Guard

Input: Initial Set O, Unsafe set U, Time T, Number of Switches N

```
partition \leftarrow taggedCover(\Theta)
```

 $\forall \left< S, tag \right> \in partition$

 $\psi \leftarrow reachTube(S,T)$

end;

Input: Initial Set O, Unsafe set U, Time T, Number of Switches N

```
partition \leftarrow taggedCover(\Theta)
```

 $\forall \left< S, tag \right> \in partition$

 $\psi \leftarrow reachTube(S,T)$ $\phi \leftarrow invariantPrefix(\psi)$

end;

Input: Initial Set Θ, Unsafe set U, Time T, Number of Switches N

```
partition \leftarrow taggedCover(\Theta)
```

 $\forall \left< S, tag \right> \in partition$

 $\psi \leftarrow reachTube(S,T)$ $\phi \leftarrow invariantPrefix(\psi)$

if (ϕ is safe) then continue;

if (ϕ is **unsafe** and *tag* is *must*) return **unsafe**;

else refine tagged cover;

end;

Input: Initial Set Θ, Unsafe set U, Time T, Number of Switches N

```
partition \leftarrow taggedCover(\Theta)
```

 $\forall \left< S, tag \right> \in partition$

 $\psi \leftarrow reachTube(S,T)$ $\phi \leftarrow invariantPrefix(\psi)$

if (ϕ is safe) then continue;

if (ϕ is **unsafe** and *tag* is *must*) return **unsafe**;

else refine tagged cover;

guard

end;

Input: Initial Set Θ, Unsafe set U, Time T, Number of Switches N

```
partition \leftarrow taggedCover(\Theta)
```

 $\forall \langle S, tag \rangle \in partition$

 $\psi \leftarrow reachTube(S,T)$ $\phi \leftarrow invariantPrefix(\psi)$ $Next \leftarrow nextRegions(\phi)$ if (\$\phi\$ is safe) then check Next; if (\$\phi\$ is unsafe and tag is must) return unsafe; else refine tagged cover;

end;

Input: Initial Set Θ, Unsafe set U, Time T, Number of Switches N

```
partition \leftarrow taggedCover(\Theta)
```

```
\forall \langle S, tag \rangle \in partition
```

```
queueRegions \leftarrow \{\langle S, tag \rangle\}
```

 \forall $\langle S, tag \rangle \in queueRegions$ until N steps and T time

```
\psi \leftarrow reachTube(S,T)
```

```
\phi \leftarrow invariantPrefix(\psi)
```

```
Next \leftarrow nextRegions(\phi)
```

if (ϕ is safe) enque Next to queueRegions;

if (ϕ is **unsafe** and *tag* is *must*) return **unsafe**;

```
else refine tagged cover;
```

end;

end;

Soundness & Relative Completeness

[Soundness]: If the algorithm returns safe(or unsafe), then the system is indeed safe(or unsafe).

Proof sketch:

- 1. Union of May and Must regions contains the reachable set
- 2. Algorithm returns safe only when all the May and Must regions are safe
- 3. Algorithm returns unsafe only when a *Must* region is contained in the unsafe set

Soundness & Relative Completeness

[Relative Completeness]: If the system is *robustly safe* or *robustly unsafe*, then the algorithm will terminate with correct answer.

Definition

<u>Robustly safe</u>: If there is ϵ separation between reachable set and U

<u>Robustly unsafe</u>: If ϵ shrinkage of invariants, guards, and initial set Θ , is unsafe with respect to ϵ shrinkage of U

Proof sketch:

- 1. Refining the cover enough will ensure that overapproximation is less than ϵ , so if the system is robustly safe, the algorithm returns safe
- 2. If the ϵ shrinkage of invariants, guards, Θ , and U is unsafe, then $\exists R_i$ tagged *must* in the reachable that is unsafe

Overview

- ✓ Motivation and Problem Statement
- ✓ Challenges in Verification
- ✓ Building Blocks and Algorithm
- ✓ Soundness and Relative Completeness Guarantees
- Tool Features
- Annotations
- Future Work

<u>C2E2</u>:

Compare-Execute-Check-Engine

Features:

- Stateflow models
- Graphical User Interface
- Plotting

Architecture of C2E2

C2E2: Features, Architecture, & Usability

<u>Stateflow</u> models: No formal semantics from MATHWORKS, Hybrid automata semantics by Tiwari ['02], Manamcheri et.al.['10]

Bloating the guard set: for providing robust counterexamples

 $t \geq 5 \Rightarrow t \geq 5 - \epsilon, t \leq 5 + \epsilon$

C2E2: Features, Architecture, & Usability

- GUI for viewing model, properties
- Saving model in *hyxml* format
- Interface for plotting reachable set

C2E2				
Model 🗢 Variables		Parameters Partitioning:	0.2	
x, y, vx, vy	Add Departy	Time-step:	0.01	4
P Zonel	Property name: Property1	Taylor model order:	10.0	-
 ∠ Zone2 ▷ Zone3 ▷ Zone4 ▷ Transitions 	re sarety Initial set: Zone1: x>=0.45 && x<=0.58 &y=0.45& &y = 0.58 &y==0.58 &y==0.45 & y==0.45	Properties Properties Statu	us Result	
	Deafs se: y>=3			

More in the Tool Demo Market

Comparison with Existing Approaches on Academic Benchmarks [DMV'13]

Benchmark	Variables	Sims.	C2E2 (time)	Flow* (time)	Ariadne (time)
Moore-G. Jet					
Engine	2	36	1.56	10.54	56.57
Brussellator System	2	115	5.26	16.77	72.75
VanDerPol					
Oscillator	2	17	0.75	8.93	98.36
Coupled VanDerPol	4	62	1.43	90.96	270.61
Sinusoidal					
Tracking	6	84	3.68	48.63	763.32
Linear Adaptive	3	16	0.47	NA	NA
Nonlinear Adaptive	2	32	1.23	NA	NA
Nonlinear Disturbance	3	48	1.52	NA	NA

Discrepancy Functions – Model Annotations

- Sufficient conditions for finding discrepancy functions (borrowed from Control Theory)
 - <u>Lipschitz continuity</u>: $\dot{x} = f(x)$ has Lipschitz constant *L*, then $|x_1(t) x_2(t)| \le |x_1 x_2|e^{Lt}$
 - <u>Contraction Metric</u>: If $J^T M + M J + b_M M \leq 0$, then $\exists k, \delta > 0$, $|x_1(t) x_2(t)|^2 \leq k|x_1 x_2|^2 e^{-\delta t}$
 - Incremental Lyapunov Function: With function V, then $|x_1(t) x_2(t)| \le k |x_1 x_2|$; k = F(V)
- Finding such discrepancy function automatically
 - Nonlinear optimization for Lipschitz continuity
 - For $\dot{v} = Av$ that are exponentially stable, compute Lyapunov function
 - Solving LMIs using Sum-Of-Squares tools to compute contraction metric
 - Manual proof methods using coordinate transformation and eigen values of Jacobian

Summary & Future Work

- Simulation based verification algorithm for Fully Hybrid Systems
- Soundness and Relative completeness guarantees
- Tool features:
 - Stateflow models
 - GUI and usability enhancements
 - Plotting for visualizing reachable set

<u>Future Work</u>

- Automatically finding discrepancy functions
- Theoretical Result: Minimum number of simulations to verify a given system

Thank You, Questions?