C2E2: A Verification Tool For
Stateflow Models

Parasara Sridhar Duggirala,

Sayan Mitra,

Mahesh Viswanathan,
Matthew Potok

Il I L LI NOTIS

M| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Pacemaker — Cardiac Cell System




Pacemaker — Cardiac Cell System

HA = Finite State Machine + Differential Equation

I U(t) [\ X1 (t)

1 1 ‘

Stimulus from pacemaker Behavior of a cardiac cell

3 [



F8afergs Bt tifecMiodel

l{t=0;u=0;v=0}
S ~, stimOff
timon [t>=5}{t=0;} | du:
tud ot ot dot=1;
_dot=1, u_dot=-0.9"u"u-u*u*u-0.9*u-v;

- R R L0 O t=20t=0,
u_dot=-0.9*u"u-u*u"u-0.9"u-v+1; [ t>= 20 [{t=0} v dotou-2"v:

. e
v_dot=u-2"v;
@annotation-mode=stimOn; @annotation-iode=stimCff;
k=3.8: k=3.8
gamima=-0.2; gamna=-0.2; .
A S time

Stateflow Model of Pacemaker - Cardiac Cell system
Features:|Invariants, |Guards, and Resets

" [nputs:
1. Model of the system A,
2. Initial States ©, and
3. Unsafe States U

» Qutput: If the system is safe or unsafe

Vx € 0,&(x,t) ¢ U

Solution

Reachable Set Computation




Contributions

= Simulation based verification algorithm for Fully Hybrid Systems

» Theoretical guarantees — Soundness and Relative Completeness

» Tool Features
o Stateflow Models, hyxml intermediate format
* Graphical User Interface
* Visualizing the reachable set




Overview

v'Motivation and Problem Statement

* Challenges in Verification

* Building Blocks and Algorithm

» Soundness and Relative Completeness Guarantees
» Tool Features

" Annotations

= Future Work




Satety Verification

l{t=0;u=0;v=0}
S ~, stimOff
timon [t>=5}{t=0;} | du:
tud ot ot dot=1;
_dot=1, u_dot=-0.9"u"u-u*u*u-0.9*u-v;

- R R L0 O t=20t=0,
u_dot=-0.9*u"u-u*u"u-0.9"u-v+1; [ t>= 20 [{t=0} v dotou-2"v:

. e
v_dot=u-2"v;
@annotation-mode=stimOn; @annotation-iode=stimCff;
k=3.8: k=3.8
gamima=-0.2; gamna=-0.2; .
A S time

Stateflow Model of Pacemaker - Cardiac Cell system
Features: Invariants, Guards, and Resets

" [nputs:
1. Model of the system A,
2. Initial States ©, and
3. Unsafe States U

» Qutput: If the system is safe or unsafe

Vx € 0,&(x,t) ¢ U

Solution
Reachable Set Computation




Challenges In Reachable Set Computation

l{t=0;u=0;v=0}

S ~, stimOff

timon [t>=51}t=0} | du:

T ote =t dot=1;

U dot=-0.9"U*u-u*u*u-0.9*u-y+1; [ t>= 20 [{t=0;} u_dot=-0.9°u"u-u"u"u-0.9"u-v; u(t)

v dot=U-o*y: s v_dot=u-2"v;

@annotation-mode=stimOn; @annotation-iode=stimCff;

k=3.8: k=3.8

gamima=-0.2; gamna=-0.2; .
p oy time

Stateflow Model of Pacemaker - Cardiac Cell system
Features: Invariants, Guards, and Resets

= Nonlinear ODEs - do not even have a closed form solution

» Switching conditions - predicates on variables (nondeterminism)

Our Technique: Use simulations for computing Reachable Set




A Simple (Often The Only) Strategy
= Given start @29 and unsafe o

» Compute finite cover of initial set

Be(f(xO» t))

* Simulate from the center xy of each cover

= Bloat simulation so that bloated tube contains
trajectories from the cover

* Union = over-approximation of reach set




A Simple (Often The Only) Strategy
= Given start @29 and unsafe o

» Compute finite cover of initial set

B (§(x0, 1))

* Simulate from the center xy of each cover

= Bloat simulation so that bloated tube contains
trajectories from the cover

* Union = over-approximation of reach set
* Check intersection/containment with U

= Refine




A Simple (Often The Only) Strategy
= Given start @29 and unsafe o

» Compute finite cover of initial set

BE(S;(XO» t))

* Simulate from the center xy of each cover

= Bloat simulation so that bloated tube contains
trajectories from the cover

* Union = over-approximation of reach set
* Check intersection/containment with U

= Refine




A Simple (Often The Only) Strategy
= Given start @29 and unsafe o

» Compute finite cover of initial set

B (§(x0, 1))

* Simulate from the center xy of each cover

= Bloat simulation so that bloated tube contains
trajectories from the cover

* Union = over-approximation of reach set
* Check intersection/containment with U

= Refine

1. How do we get the simulations?

2. How much to bloat?

3. How to handle mode switches?
12 E




Building Blocks : Simulations

Simulation from X, given as € (xg,t) - no closed form!

simulation(xg, h, €, T) gives a sequence Sy, ..., Sk:
1. atanytimet € [ih, (i + 1)h], é(xy, t) € S;
2. dia(S;) <e€

B oy

valSim(x,, T, f) generates such simulations (CAPD)




Building Blocks : Discrepancy Function

Discrepancy Function: capturing the continuity of ODE solutions
executions that start close, stay close

(K,y) is called an exponential discrepancy function of the system if for any two states
x;and x, € X, forany t [(xq,t) — E(xy, 0)| < K|x; — x,|e??

________
rrrrr
, ~
~
~.
~,
S
~,

SS
N
N
S
~

o S /‘I g(xz, t)
‘\\ \ ,"
N, \ ,//
\___,"
< K|x; + x,|e?t

Discrepancy functions are given as model annotations, i.e. (K, y) is given by the user

o [




Simulations + Discrepancy Functions =

ReachTubes

Y = reachtube(S,€,T) of x = f(x) is a sequence Ry, ..., Ry such that
dia(R;) < € and from any x € S, for each time t € [ih, (i + 1)h], £(xo,t) € R;.

How to compute a ReachTube from validated simulation and annotation?

(So, «e) Sk, €1) <« valSim(x,, T, f)

7.
/
Ig Z




Simulations + Discrepancy Functions =

ReachTubes

Y = reachtube(S,€,T) of x = f(x) is a sequence Ry, ..., Ry such that
dia(R;) < € and from any x € S, for each time t € [ih, (i + 1)h], £(xo,t) € R;.

How to compute a ReachTube from validated simulation and annotation?

(So, ) Sk, €1) <« valSim(x,, T, f)

For each i € [k]

€, « max Ke''§;
teT;

Ri < Bez (Si)

(R, ..., Ry) is a reachtubeBgs(xg), €1 + €5, T)

v" How do we get the simulations?

Invariants
v How much to bloat? :
*  How to handle mode switches? Guards 16 ;W[




Handling Invariants

Tageing: track a region based on a predicate P

must RcP
tagRegion(R,P) = <may RNP+*Q,RNP #0Q
not RNP=¢Q

Goal: Reachtube that respects the invariant of the mode

¢ = invariantPrefix(Y, Invariant) is
(Ro, tagy, ..., Rm, tagy,) , such that either

tag; = must if all the R]{ S before it are must

tag; = may if all the R]{ S before it are tagged may or must and at least one of
them is not must
. [




Handling Guards & Resets

Goal: Compute set of states in Reachtube that chanee mode based on Guard

nextRegions(¢) returns a set of tagged regions N.

(R',tag' ) e Niffda € A,(R;, tag;) € ¢ such that R' = Reset,(R;) and:
R; € Guard,,tag; = tag' = must

R; N Guard, + @,R; ¢ Guard, ,tag; = must,tag’' = may
R; N Guard, +# O,tag; = tag' = may

A~

Tagging is essentially bookkeeping
1. invariantPrefix discards the invalid trajectories (violating invariant)

2. nextRegions tags the regions based on the feasibility of discrete transition

Utility of tagging
1. Reachable set is contained in union of may and must regions - inferring safety

2. There exists at least one reachable state in every must region - inferring violation of

safety 5




Algorithm for Hybrid Systems

Input: Initial Set ©, Unsafe set U, Time T, Number of Switches N

partition « taggedCover(0)
vV (S,tag) € partition

Y < reachTube(S,T)

end;




Algorithm for Hybrid Systems

Input: Initial Set ©, Unsafe set U, Time T, Number of Switches N

partition « taggedCover(0)
vV (S,tag) € partition

Y < reachTube(S,T)

¢ « invariantPrefix(y) invariant

end;




Algorithm for Hybrid Systems

Input: Initial Set ©, Unsafe set U, Time T, Number of Switches N

partition « taggedCover(0)
vV (S,tag) € partition

Y < reachTube(S,T)

¢ « invariantPrefix(y) invariant

if (¢ is safe) then continue;
if (¢ is unsafe and tag is must) return unsafe;

else refine tagged cover;

end;

return safe;




Algorithm for Hybrid Systems

Input: Initial Set ©, Unsafe set U, Time T, Number of Switches N

partition « taggedCover(0) guard

vV (S,tag) € partition

Y < reachTube(S,T)
¢ « invariantPrefix(y)

if (¢ is safe) then continue;
if (¢ is unsafe and tag is must) return unsafe;

else refine tagged cover;

end;

return safe; 'Il[
22




Algorithm for Hybrid Systems

Input: Initial Set ©, Unsafe set U, Time T, Number of Switches N

partition « taggedCover(0)

V (S, tag) € partition l

guard

Y < reachTube(S,T)

¢ « invariantPrefix(y)
Next <« nextRegions(¢)

if (¢ is safe) then check Next;

if (¢ is unsafe and tag is must) return unsafe;

else refine tagged cover;

end;

return safe; 'Il[
23




Algorithm for Hybrid Systems

Input: Initial Set ©, Unsafe set U, Time T, Number of Switches N

partition « taggedCover(0) guard

vV (S,tag) € partition

queueRegions « {(S,tag)}

V (S, tag) € queueRegions until N steps and T time
Y < reachTube(S,T)

¢ « invariantPrefix(y)

Next <« nextRegions(¢)

if (¢ is safe) enque Next to queueRegions;

if (¢ is unsafe and tag is must) return unsafe;

else refine tagged cover;

end;

end;

return safe; 'Il[
24




Soundness & Relative Completeness

[Soundness]: If the algorithm returns safe(or unsafe), then the system
is indeed safe(or unsafe).

Proof sketch:
1. Union of May and Must regions contains the reachable set

2. Algorithm returns safe only when all the May and Must regions
are safe

3. Algorithm returns unsafe only when a Must region is contained
in the unsafe set




Soundness & Relative Completeness

[Relative Completeness]: If the system is robustly safe or robustly
unsafe, then the algorithm will terminate with correct answer.

Definition

Robustly safe: If there is € separation between reachable set and U

Robustly unsafe: If € shrinkage of invariants, guards, and initial set O, is unsafe
with respect to € shrinkage of U

Proof sketch:

1. Refining the cover enough will ensure that overapproximation is less than €,
so if the system is robustly safe, the algorithm returns safe

2. If the € shrinkage of invariants, guards, O, and U is unsafe, then 3 R; tagged
must in the reachable that is unsafe

[l




Overview

v'Motivation and Problem Statement

v'Challenges in Verification

v'Building Blocks and Algorithm

v'Soundness and Relative Completeness Guarantees
» Tool Features

" Annotations

= Future Work




C2E2
Compare-Execute-Check-Engine

Features:

e Stateflow models

* Graphical User Interface

* Plotting
r N
Front end Back end
P | Annotations & |
Annotated liEEr Property GLPK
Stateflow J: CAPD
Model 3
+ o B
Simulator Simulator .
7 I— — —_— lat
Property Generator %| Code [ g+t ] Simulator
(hyxml file
with property) Plott Verification Result & |, Core (.:ZEZ
\ otter Reach Set N Engine
. J
Architecture of C2E2




C2E2: Features, Architecture, &
Usability

Stateflow models: No formal semantics from MATHWORKS,
Hybrid automata semantics by Tiwari [‘02], Manamcheri et.al.[ 10]

Urgent semantics:

l{t=0;u=0;v=0} (
stimOff

A 4

t>5t=

/et ™~
shrnOn t>=5]1=0} | du
du: N
t_dot=1; ———— & tdot=1;

T dot=-0.0* U U-U U U-0. O Uy« || T >= 20 [{t=0;}| U_dot=-0.9"u"u-u"u"u-0.9"u-v;
v _dot=u-2*v: 7 Ty _dot=u-2"v;

@annotation-mode=stinOn; @annotation-imode=stimOff;
k=3.8 k=3.8:
gamma=-0.2;
S

gamma=-0.2;

Bloating the guard set: for providing robust counterexamples

t>5=>t>25—¢t<5+4+c¢€




C2E2: Features, Architecture, &
Usability

eeeeeeee

Prameters

» GUI for viewing model, properties
» Saving model in hyxml format
* Interface for plotting reachable set

200+ BE

More in the Tool Demo Market




Comparison with Existing Approaches on

Academic Benchmarks [DMV’13]

*
time time time

Moore-G. Jet 10
Engine 2 36 1.56 10.54 56.57 -
Brussellator
System 2 115 5.26 16.77 72.75 ¥ s
VanDerPol by
Oscillator 2 17 0.75 8.93 98.36
Coupled o o5 o6 o7 o oo 1 a1 1z 1a
VanDerPol 4 62 1.43 90.96 270.61 1
Sinusoidal os |
Tracking 6 84 3.68 48.63 763.32 ol
Linear Lo
Adaptive 3 16 0.47 NA NA M “
Nonlinear 25 |
Adaptive 2 32 1.23 NA NA .
Nonlinear T <
Disturbance 3 48 1.52 NA NA




Discrepancy Functions — Model
Annotations

l{t=0;u=0;v=0}
S ~, stimOff
timon [t>=5t=0;} | du:
T ote —={t_dot=1;
T dot=-0.9" U U-u* u"u-0.9"u-y+1; [ 1 >= 20 J{t=0;| U-dot=-0 9" u-u"uru-0.9"u-v;
v dot=U-o*y: ' v_dot=u-2"v,
rEam*mtaﬁcv.r?-.l*mm‘e:sf.r'mti')ﬂ; (@annotation-mode=stimOff:
k=3.8: k=3.8:
Lgramr:*:fa=-f.'.'..2; gammia=-0.2;
— S
<

Exponential discrepancy function

— (K = 3.8,y = —0.2)

= Sufficient conditions for finding discrepancy functions (borrowed from Control Theory)
e Lipschitz continuity: ¥ = f(x) has Lipschitz constant L, then |x; (£) — x5 ()| < |x; — x,|e™t

« Contraction Metric: If JTM + M ] + byyM < 0, then 3k, 8 > 0, |x(t) — x,(t) |* < k|x; — x,|%e70¢

 Incremental Lyapunov Function: With function V, then |x{(t) — x,(t) | < k |x; — x3|; k = F(V)

» Finding such discrepancy function automatically

* Nonlinear optimization for Lipschitz continuity

* For v = Av that are exponentially stable, compute Lyapunov function

* Solving LMIs using Sum-Of-Squares tools to compute contraction metric

* Manual proof methods using coordinate transformation and eigen values of Jacobian 1 ]




Summary & Future Work

» Simulation based verification algorithm for Fully Hybrid Systems
» Soundness and Relative completeness guarantees

= Tool features:
e Stateflow models
e GUI and usability enhancements

* Plotting for visualizing reachable set

Future Work

» Automatically finding discrepancy functions

" Theoretical Result: Minimum number of simulations to verify a
given system

Thank You, Questions?




