
C2E2: A Verification Tool For
Stateflow Models

Parasara Sridhar Duggirala,
Sayan Mitra,
Mahesh Viswanathan,
Matthew Potok

Pacemaker – Cardiac Cell System

2

+

Pacemaker – Cardiac Cell System

3

𝑞0

𝑞2𝑞3…

stimulating
pulse

Pacemaker
𝑞1

HA = Finite State Machine + Differential Equation

time

𝑢(𝑡) 𝑥1(𝑡)

time

Stimulus from pacemaker Behavior of a cardiac cell

Safety Verification

 Inputs:
1. Model of the system 𝐴,
2. Initial States Θ, and
3. Unsafe States 𝑈

 Output: If the system is safe or unsafe
∀𝑥 ∈ Θ, 𝜉 𝑥, 𝑡 ∉ 𝑈

4

𝑥1(𝑡)

time

Unsafe Set

Stateflow Model of Pacemaker – Cardiac Cell system
Features: Invariants, Guards, and Resets

Solution
Reachable Set Computation

Features of the Model

Contributions

 Simulation based verification algorithm for Fully Hybrid Systems

 Theoretical guarantees – Soundness and Relative Completeness

 Tool Features
• Stateflow Models, hyxml intermediate format
• Graphical User Interface
• Visualizing the reachable set

5

Overview

Motivation and Problem Statement

 Challenges in Verification

 Building Blocks and Algorithm

 Soundness and Relative Completeness Guarantees

 Tool Features

 Annotations

 Future Work

6

Safety Verification

 Inputs:
1. Model of the system 𝐴,
2. Initial States Θ, and
3. Unsafe States 𝑈

 Output: If the system is safe or unsafe
∀𝑥 ∈ Θ, 𝜉 𝑥, 𝑡 ∉ 𝑈

7

𝑢(𝑡)

time

Unsafe Set

Stateflow Model of Pacemaker – Cardiac Cell system
Features: Invariants, Guards, and Resets

Solution
Reachable Set Computation

Challenges In Reachable Set Computation

 Nonlinear ODEs – do not even have a closed form solution

 Switching conditions – predicates on variables (nondeterminism)

8

Our Technique: Use simulations for computing Reachable Set

𝑢(𝑡)

time

Unsafe Set

Stateflow Model of Pacemaker – Cardiac Cell system
Features: Invariants, Guards, and Resets

9

 Given start and unsafe

 Compute finite cover of initial set

 Simulate from the center 𝑥0 of each cover

 Bloat simulation so that bloated tube contains
all trajectories from the cover

 Union = over-approximation of reach set

Θ

𝑥0

𝑈

A Simple (Often The Only) Strategy

ሶ𝑥 = 𝑓(𝑥)

𝐵𝜖(𝜉(𝑥0, 𝑡))

10

 Given start and unsafe

 Compute finite cover of initial set

 Simulate from the center 𝑥0 of each cover

 Bloat simulation so that bloated tube contains
all trajectories from the cover

 Union = over-approximation of reach set

 Check intersection/containment with 𝑈

 Refine

Θ

𝑥0

𝑈

A Simple (Often The Only) Strategy

ሶ𝑥 = 𝑓(𝑥)

𝐵𝜖(𝜉(𝑥0, 𝑡))

11

 Given start and unsafe

 Compute finite cover of initial set

 Simulate from the center 𝑥0 of each cover

 Bloat simulation so that bloated tube contains
all trajectories from the cover

 Union = over-approximation of reach set

 Check intersection/containment with 𝑈

 Refine

Θ

𝑥0

𝑈

A Simple (Often The Only) Strategy

ሶ𝑥 = 𝑓(𝑥)

𝐵𝜖(𝜉(𝑥0, 𝑡))

12

 Given start and unsafe

 Compute finite cover of initial set

 Simulate from the center 𝑥0 of each cover

 Bloat simulation so that bloated tube contains
all trajectories from the cover

 Union = over-approximation of reach set

 Check intersection/containment with 𝑈

 Refine

1. How do we get the simulations?

2. How much to bloat?

3. How to handle mode switches?

Θ

𝑥0

𝑈

A Simple (Often The Only) Strategy

ሶ𝑥 = 𝑓(𝑥)

𝐵𝜖(𝜉(𝑥0, 𝑡))

Building Blocks : Simulations

Simulation from 𝑥0 given as 𝜉(𝑥0, 𝑡) – no closed form!

13

𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏(𝒙𝟎, 𝒉, 𝝐, 𝑻) gives a sequence S0, … , 𝑆𝑘:
1. at any time 𝑡 ∈ [𝑖ℎ, 𝑖 + 1 ℎ], 𝜉 𝑥0, 𝑡 ∈ 𝑆𝑖
2. 𝑑𝑖𝑎 𝑆𝑖 ≤ 𝜖

𝒗𝒂𝒍𝑺𝒊𝒎(𝒙𝟎, 𝑻, 𝒇) generates such simulations (CAPD)

Building Blocks : Discrepancy Function

Discrepancy Function: capturing the continuity of ODE solutions
executions that start close, stay close

〈𝐾, 𝛾〉 is called an exponential discrepancy function of the system if for any two states
𝑥1 and 𝑥2 ∈ 𝑋, for any t |𝜉(𝑥1, 𝑡) − 𝜉(𝑥2, 𝑡)| ≤ 𝐾 𝑥1 − 𝑥2 𝑒

𝛾𝑡

14

|𝑥1 − 𝑥2|

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

≤ 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1

= 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1

Discrepancy functions are given as model annotations, i.e. 〈𝐾, 𝛾〉 is given by the user

Simulations + Discrepancy Functions =
ReachTubes

𝝍 = 𝒓𝒆𝒂𝒄𝒉𝒕𝒖𝒃𝒆 𝑺, 𝝐, 𝑻 of ሶ𝑥 = 𝑓 𝑥 is a sequence 𝑅0, … , 𝑅𝑘 such that
𝑑𝑖𝑎(𝑅𝑖) ≤ 𝜖 and from any 𝑥0 ∈ 𝑆, for each time 𝑡 ∈ [𝑖ℎ, (𝑖 + 1)ℎ], 𝜉 𝑥0, 𝑡 ∈ 𝑅𝑖 .

How to compute a ReachTube from validated simulation and annotation?

𝑆0, … , 𝑆𝑘 , 𝜖1 ← 𝒗𝒂𝒍𝑺𝒊𝒎(𝑥0, 𝑇, 𝑓)

15

Simulations + Discrepancy Functions =
ReachTubes

𝝍 = 𝒓𝒆𝒂𝒄𝒉𝒕𝒖𝒃𝒆 𝑺, 𝝐, 𝑻 of ሶ𝑥 = 𝑓 𝑥 is a sequence 𝑅0, … , 𝑅𝑘 such that
𝑑𝑖𝑎(𝑅𝑖) ≤ 𝜖 and from any 𝑥0 ∈ 𝑆, for each time 𝑡 ∈ [𝑖ℎ, (𝑖 + 1)ℎ], 𝜉 𝑥0, 𝑡 ∈ 𝑅𝑖 .

How to compute a ReachTube from validated simulation and annotation?

𝑆0, … , 𝑆𝑘 , 𝜖1 ← 𝒗𝒂𝒍𝑺𝒊𝒎(𝑥0, 𝑇, 𝑓)

For each 𝑖 ∈ 𝑘
𝜖2 ← max

𝑡∈𝑇𝑖
𝐾𝑒𝛾𝑡𝛿;

𝑅𝑖 ← 𝐵𝜖2 𝑆𝑖

𝑅0, … , 𝑅𝑘 is a reachtube(𝑩𝜹 𝒙𝟎 , 𝝐𝟏 + 𝝐𝟐, 𝑻)

16

 How do we get the simulations?
 How much to bloat?
• How to handle mode switches?

Invariants

Guards

Handling Invariants

Tagging: track a region based on a predicate 𝑃

𝒕𝒂𝒈𝑹𝒆𝒈𝒊𝒐𝒏 𝑹,𝑷 = ቐ
𝑚𝑢𝑠𝑡 𝑅 ⊆ 𝑃
𝑚𝑎𝑦 𝑅 ∩ 𝑃 ≠ ∅, ത𝑅 ∩ 𝑃 ≠ ∅
𝑛𝑜𝑡 𝑅 ∩ 𝑃 = ∅

𝝓 = 𝒊𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒕𝑷𝒓𝒆𝒇𝒊𝒙(𝝍, 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒕) is

〈𝑅0, 𝑡𝑎𝑔0, … , 𝑅𝑚, 𝑡𝑎𝑔𝑚〉 , such that either

𝑡𝑎𝑔𝑖 = 𝑚𝑢𝑠𝑡 if all the 𝑅𝑗
′𝑠 before it are must

𝑡𝑎𝑔𝑖 = 𝑚𝑎𝑦 if all the 𝑅𝑗
′𝑠 before it are tagged may or must and at least one of

them is not must

17

Goal: Reachtube that respects the invariant of the mode

Handling Guards & Resets

𝒏𝒆𝒙𝒕𝑹𝒆𝒈𝒊𝒐𝒏𝒔(𝝓) returns a set of tagged regions N.

𝑅′, 𝑡𝑎𝑔′ ∈ 𝑁 iff ∃ 𝑎 ∈ 𝐴, 〈𝑅𝑖 , 𝑡𝑎𝑔𝑖〉 ∈ 𝜙 such that 𝑅′ = 𝑅𝑒𝑠𝑒𝑡𝑎 𝑅𝑖 and:
𝑅𝑖 ⊆ 𝐺𝑢𝑎𝑟𝑑𝑎 , 𝑡𝑎𝑔𝑖 = 𝑡𝑎𝑔′ = 𝑚𝑢𝑠𝑡
𝑅𝑖 ∩ 𝐺𝑢𝑎𝑟𝑑𝑎 ≠ ∅, 𝑅𝑖 ∉ 𝐺𝑢𝑎𝑟𝑑𝑎 , 𝑡𝑎𝑔𝑖 = 𝑚𝑢𝑠𝑡, 𝑡𝑎𝑔′ = 𝑚𝑎𝑦
𝑅𝑖 ∩ 𝐺𝑢𝑎𝑟𝑑𝑎 ≠ ∅, 𝑡𝑎𝑔𝑖 = 𝑡𝑎𝑔′ = 𝑚𝑎𝑦

Tagging is essentially bookkeeping

1. 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥 discards the invalid trajectories (violating invariant)

2. 𝑛𝑒𝑥𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠 tags the regions based on the feasibility of discrete transition

Utility of tagging

1. Reachable set is contained in union of may and must regions – inferring safety

2. There exists at least one reachable state in every must region – inferring violation of
safety

18

Goal: Compute set of states in Reachtube that change mode based on Guard

Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

end;

19

𝑥0

Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

end;

20

invariant

Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

if (𝜙 is safe) then continue;

if (𝜙 is unsafe and 𝑡𝑎𝑔 is 𝑚𝑢𝑠𝑡) return unsafe;

else refine tagged cover;

end;

return safe;
21

invariant

Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

if (𝜙 is safe) then continue;

if (𝜙 is unsafe and 𝑡𝑎𝑔 is 𝑚𝑢𝑠𝑡) return unsafe;

else refine tagged cover;

end;

return safe;
22

guard

Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

𝑁𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠(𝜙)

if (𝜙 is safe) then check 𝑁𝑒𝑥𝑡;

if (𝜙 is unsafe and 𝑡𝑎𝑔 is 𝑚𝑢𝑠𝑡) return unsafe;

else refine tagged cover;

end;

return safe;
23

guard

Algorithm for Hybrid Systems

Input: Initial Set Θ, Unsafe set 𝑈, Time 𝑇, Number of Switches 𝑁

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑎𝑔𝑔𝑒𝑑𝐶𝑜𝑣𝑒𝑟(Θ)

∀ 〈𝑆, 𝑡𝑎𝑔〉 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

𝑞𝑢𝑒𝑢𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝑠 ← {〈𝑆, 𝑡𝑎𝑔〉}

∀ 𝑆, 𝑡𝑎𝑔 ∈ 𝑞𝑢𝑒𝑢𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝑠 until 𝑁 steps and 𝑇 time

𝜓 ← 𝑟𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒(𝑆, 𝑇)

𝜙 ← 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑃𝑟𝑒𝑓𝑖𝑥(𝜓)

𝑁𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠(𝜙)

if (𝜙 is safe) enque 𝑁𝑒𝑥𝑡 to 𝑞𝑢𝑒𝑢𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝑠;

if (𝜙 is unsafe and 𝑡𝑎𝑔 is 𝑚𝑢𝑠𝑡) return unsafe;

else refine tagged cover;

end;

end;

return safe;
24

guard

Soundness & Relative Completeness

[Soundness]: If the algorithm returns safe(or unsafe), then the system
is indeed safe(or unsafe).

Proof sketch:

1. Union of May and Must regions contains the reachable set

2. Algorithm returns safe only when all the May and Must regions
are safe

3. Algorithm returns unsafe only when a Must region is contained
in the unsafe set

25

Soundness & Relative Completeness

[Relative Completeness]: If the system is robustly safe or robustly
unsafe, then the algorithm will terminate with correct answer.

Definition
Robustly safe: If there is 𝜖 separation between reachable set and 𝑈

Robustly unsafe: If 𝜖 shrinkage of invariants, guards, and initial set Θ, is unsafe
with respect to 𝜖 shrinkage of 𝑈

Proof sketch:

1. Refining the cover enough will ensure that overapproximation is less than 𝜖,
so if the system is robustly safe, the algorithm returns safe

2. If the 𝜖 shrinkage of invariants, guards, Θ, and 𝑈 is unsafe, then ∃ 𝑅𝑖 tagged
𝑚𝑢𝑠𝑡 in the reachable that is unsafe

26

Overview

Motivation and Problem Statement

Challenges in Verification

Building Blocks and Algorithm

Soundness and Relative Completeness Guarantees

 Tool Features

 Annotations

 Future Work

27

C2E2 :
Compare-Execute-Check-Engine

Features:
• Stateflow models
• Graphical User Interface
• Plotting

28

Architecture of C2E2

𝑡 ≥ 5; 𝑡 = 0

C2E2: Features, Architecture, &
Usability

Stateflow models: No formal semantics from MATHWORKS,
Hybrid automata semantics by Tiwari [‘02], Manamcheri et.al.[‘10]

Urgent semantics:

Bloating the guard set: for providing robust counterexamples

𝑡 ≥ 5 ⇒ 𝑡 ≥ 5 − 𝜖, 𝑡 ≤ 5 + 𝜖

29

C2E2: Features, Architecture, &
Usability

30

• GUI for viewing model, properties
• Saving model in hyxml format
• Interface for plotting reachable set

More in the Tool Demo Market

Comparison with Existing Approaches on
Academic Benchmarks [DMV’13]

31

Benchmark Variables Sims. C2E2
(time)

Flow*
(time)

Ariadne
(time)

Moore-G. Jet
Engine 2 36 1.56 10.54 56.57

Brussellator
System 2 115 5.26 16.77 72.75

VanDerPol
Oscillator 2 17 0.75 8.93 98.36

Coupled
VanDerPol 4 62 1.43 90.96 270.61

Sinusoidal
Tracking 6 84 3.68 48.63 763.32

Linear
Adaptive 3 16 0.47 NA NA

Nonlinear
Adaptive 2 32 1.23 NA NA

Nonlinear
Disturbance 3 48 1.52 NA NA

C2E2 Flow*

Discrepancy Functions – Model
Annotations

 Sufficient conditions for finding discrepancy functions (borrowed from Control Theory)
• Lipschitz continuity: ሶ𝑥 = 𝑓(𝑥) has Lipschitz constant 𝐿, then 𝑥1(𝑡) − 𝑥2(𝑡) ≤ |𝑥1 − 𝑥2|𝑒

𝐿𝑡

• Contraction Metric: If 𝐽𝑇𝑀+𝑀 𝐽 + 𝑏𝑀𝑀 ≼ 0, then ∃𝑘, 𝛿 > 0, 𝑥1 𝑡 − 𝑥2 𝑡 2 ≤ 𝑘 𝑥1 − 𝑥2
2𝑒−𝛿𝑡

• Incremental Lyapunov Function: With function 𝑉, then 𝑥1 𝑡 − 𝑥2(𝑡) ≤ 𝑘 𝑥1 − 𝑥2 ; 𝑘 = 𝐹(𝑉)

 Finding such discrepancy function automatically
• Nonlinear optimization for Lipschitz continuity
• For ሶ𝑣 = 𝐴𝑣 that are exponentially stable, compute Lyapunov function
• Solving LMIs using Sum-Of-Squares tools to compute contraction metric
• Manual proof methods using coordinate transformation and eigen values of Jacobian 32

Exponential discrepancy function
〈𝐾 = 3.8, 𝛾 = −0.2〉

Summary & Future Work

 Simulation based verification algorithm for Fully Hybrid Systems

 Soundness and Relative completeness guarantees

 Tool features:
• Stateflow models
• GUI and usability enhancements
• Plotting for visualizing reachable set

Future Work

 Automatically finding discrepancy functions

 Theoretical Result: Minimum number of simulations to verify a
given system

33
Thank You, Questions?

