
C2E2: A Verification Tool For Stateflow Models

Parasara Sridhar Duggirala1, Sayan Mitra2, Mahesh Viswanathan1, and
Matthew Potok2

1 Department of Computer Science, University of Illinois at Urbana Champaign,
duggira3@illinois.edu, vmahesh@illinois.edu

2 Department of Electrical and Computer Engineering, University of Illinois at Urbana
Champaign,

mitras@illinois.edu

Abstract. Mathwork’s Stateflow is a predominant environment for mod-
eling embedded and cyberphysical systems where control software inter-
act with physical processes. We present Compare-Execute-Check-Engine
(C2E2)—a verification tool for continuous and hybrid Stateflow models.
It checks bounded time invariant properties of models with nonlinear dy-
namics, and discrete transitions with guards and resets. C2E2 transforms
the model, computing simulations using a validated numerical solver,
and then computes reachtube over-approximations with increasing pre-
cision. For this last step it uses annotations that have to be added to the
model. These annotations are extensions of proof certificates studied in
Control Theory and can be automatically obtained for linear dynamics.
The C2E2 algorithm is sound and it is guaranteed to terminate if the sys-
tem is robustly safe (or unsafe) with respect to perturbations to the of
guards and invariants of the model. We present the architecture of C2E2,
its workflow, and examples illustrating its potential role in model-based
design, verification, and validation.

1 Introduction

Cyberphysical systems (CPS) are systems that involve the close interaction be-
tween a software controller and a physical plant. The state of the physical plant
evolves continuously with time and is often modeled using ordinary differ-
ential equations (ODE). The software controller, on the other hand, evolves
through discrete steps and these steps influence the evolution of the physical
process. This results in a “hybrid” behavior of discrete and continuous steps
that makes the formal analysis of these models particularly challenging, so
much so, that even models that are mathematically extremely simple are com-
putationally intractable. In addition, many physical plants have complicated
continuous dynamics that are described by nonlinear differential equations.
Such plants, even without any interaction with a controlling software, are often
unamenable to automated analysis.

On the other hand, the widespread deployment of cyberphysical systems in
safety critical scenarios like automotives, avionics, and medical devices, have
made formal, automated analysis of such systems necessary. This is evident

2

from the extensive activity in the research community [19,18,7]. Given the chal-
lenges of formally verifying cyberphysical systems, the sole analysis technique
that is commonly used to analyze nonlinear systems is numerical simulation.
However, given the large, uncountable space of behaviors, using numerical
simulations to discover design flaws is like searching for a needle in the prover-
bial haystack. In this paper we present a tool C2E2 (Compare-Execute-Check-
Engine) that leverages the power of numerical simulations to formally prove or
disprove the safety of cyberphysical systems over a bounded time interval.

Systems analyzed by C2E2 are described using Stateflow diagrams. Math-
work’s Stateflow is the predominant, even de facto standard, environment for
designing and developing embedded and cyberphysical systems both in the in-
dustry and in academia. C2E2 interprets Stateflow designs as hybrid automata [13],
which is a popular mathematical model, with precise semantics, for describing
cyberphysical systems. The models given as input to C2E2 must be annotated.
The annotations here are similar in spirit to code assertions and contracts used
in the software verification domain. Each mode in the Stateflow diagram has to
be annotated with what we call a discrepancy function by the user. Discrepancy
functions are a generalization of several proof certificates used in control theory
for analyzing convergence and divergence of trajectories. In[8] we define dis-
crepancy functions and discuss how they can be computed automatically for
a reasonably expressive class of models. C2E2 transforms the input model and
compiles it with a numerical simulation library to produce a validated sim-
ulator for the model. This simulator is then used for computing increasingly
precise reach set over-approximations until it proves or disproves the bounded
time safety property.

Our simulation based verification approach underlying C2E2, was first pre-
sented in [8] and was subsequently used for a significant case study in [9]. The
current paper outlines several enhancements to the C2E2 tool that have been
made since then. First the verification algorithm presented in [8] only worked
for switched systems 3 where the time of mode switches is explicitly given in the
input. In this paper, we extend the algorithm to analyze “full hybrid automata”,
i.e., continuous variables can be reset on mode switches, and mode switches
take place based on enabling guards rather than explicitly given times. These
theoretical improvements enable us to use C2E2 on a new set of examples. We
report our experience in using C2E2 on these examples and its performance as
experimental results. Next, C2E2 has been engineered to be more robust, mov-
ing from an in-house prototype, to something that can be used by the wider
academic community. Finally, the tool now has a few additional features that
make for a better user experience. First, it has been integrated with Stateflow, to
make it useful for a wider community. Second, it can be used through a graph-
ical user interface. And lastly, visualization tools have been added to enable
users to plot various aspects of the reachable state space.

3 Switched system here refers to a design where the state of the physical plant does not
change when a discrete transition is taken.

3

1.1 Related Work

Tools for verifying CPS vary widely based on the complexity of the complex-
ity of the continuous dynamics. Uppaal [14], HyTech [12], and SpaceEx [11] are
tools verifying timed automata, rectangular hybrid automata and linear hybrid
automata respectively. Current tools available for verifying nonlinear dynamics
are d/dt [2], Flow* [5] and Ariadne [3]. Typically these tool use symbolic mod-
els for computing reachable set of states (or their overapproximations) from a
given initial set for inferring safety of the system. Such tools provide formal
soundness guarantees, however, do not typically provide relative complete-
ness. Further, these tools do not analyze Stateflow models and hence a user
has to specify model in the a specific input language, which requires additional
learning curve for using these tools.

Given the popularity of Simulink-Stateflow framework to model CPS, there
are several MATLAB based tools which verify such models. Breach [7] uses
sensitivity analysis for analyzing MTL properties of systems using simulations.
This analysis is sound and relatively complete for linear systems, but does
not provide formal guarantees for nonlinear systems. S-Taliro [18] is a falsifi-
cation engine that search for counterexamples using Monte-Carlo techniques
and hence provides only probabilistic guarantees. STRONG [6] uses robust-
ness analysis for coverage of all executions from the initial set, using Lyapunov
functions, however cannot handle nonlinear systems. C2E2, although requires
additional annotations, can handle nonlinear systems specified in Stateflow
and provide rigorous soundness and completeness guarantees. The simulation
based verification algorithm in [8] has been extended for more general proper-
ties in [9] and to networked input output systems in [10].

2 Hybrid Models and Safety Verification

Hybrid automata is a convenient and widely used mathematical framework for
modeling cyberphysical systems. One of its key features is that it combines two
distinct modeling styles, namely, differential equations and automata. For CPS,
this enables the physical environment to be modeled by differential equations
and software and communication to modeled by discrete state transitions.

Figure 1(a) shows an example of a simplified hybrid model of cardiac cell
with a pacemaker created using MathworksTM StateflowTM. The pacemaker has
two modes or locations of operation: in the stimOn mode the cell is electrically
stimulated by the pacemaker, and in stimOff the stimulus is absent. The con-
tinuous variables u and v model certain electrical properties of the cell. The
stimulus is applied to the cell at regular time intervals as measured by the clock
t. The resulting evolution of one of the continuous variables over time is shown
in Figure 1(b).

Although there is no published formal semantics of StateflowTM models, it
is standard to consider them as hybrid automata [16,4,7]. Let us denote the set
of all the variables (both continuous and discrete) in the model as the set V .

4

This set includes a special variable loc to denote the current location. In this
case, loc can be either stimOff or stimOn. The rest of the variables in V are con-
tinuous and real-valued. The set of all possible valuations of all variables in V
is denoted as val(V)—this defines the set of states of the model. The continu-
ous evolution of the variables is modeled by trajectories. A single trajectory τ is
a function τ : [0, t] → val(V), where t ≥ 0 is the duration τ . The state of the
system at a given time t in τ is τ(t), and the value of a particular variable v ∈ V
at that state is denoted by τ(t).v. A set of trajectories is specified by differen-
tial equations involving the continuous variables (see, for example, Figure 1).
A trajectory τ satisfies an ordinary differential equation (ODE) v̇ = f(v) if at
each time t in the domain of the trajectory, d(τ(t).v)dt = f(τ(t).v). When f is a
nice4 function, the ODE has a unique solution for a given initial state and a
duration. With different initial states and time bounds, an ODE defines a set of
trajectories.

(a) Model. (b) Behavior.

Fig. 1: (a) Simplified StateflowTM model of a cardiac cell and a pacemaker. (b) A
simulation of the model from an initial state.

The discrete transitions between the two locations are specified by a set A
of actions (see Figure 1). An action a ∈ A is enabled at a state whenever the
state satisfies a special predicate Guarda that is associates with the action. The
discrete transition from the location stimOn to stimOff is enabled only when
t >= 5, that is the clock has counted 5 units in stimOn. When the system takes
a discrete transition, the new state of the system after the transition is defined
by a function Reseta that maps the old state to a new state (and possibly a
new location). For example, the reset function for stimOn to stimOff sets t = 0,
loc = stimOff , and leaves the other continuous variables u and v unchanged.
All of these components together defines the behavior of the hybrid automaton
in terms of a sequence of alternating trajectories and transitions.

Definition 1. A Hybrid Automata (HA) A is a tuple 〈V,Loc,A,D, T 〉 where

4 For example, Lipschitz continuous or smooth. A continuous function f : Rn×R→ R
is smooth if all its higher derivatives and partial derivatives exist and are also contin-
uous. It has a Lipschitz constant K ≥ 0 if for every x1, x2 ∈ Rn, ||f(x1) − f(x2)|| ≤
K||x1 − x2||.

5

(a) V = X ∪ {loc} is a set of variables. Here loc is a discrete variable of finite type
Loc. Valuations of loc are called locations. Each x ∈ X is a continuous variable
of type R. Elements of val(V) are called states.

(b) A is a finite set of actions or transition labels.
(c) D ⊆ val(V)×A×val(V) is the set of discrete transitions. A transition (v, a,v′) ∈
D is written as v

a→ v′. The discrete transitions are specified by finitely many
guards and reset maps involving V .

(d) T is a set of trajectories forX which is closed under suffix, prefix and concatenation
(see [13] for details). For each l ∈ Loc, a set of trajectories Tl for location l are
specified by differential equations El and an invariant Il ⊆ val(X). Over any
trajectory τ ∈ Tl, loc remains constant and the variables in X evolve according to
El such that for all at each time in the domain of τ , τ(t) satisfies the invariant Il.

An execution of a hybrid automaton A records all the information (about
variables) over a particular run. Formally, an execution is an alternating se-
quence of trajectories and actions σ = τ0a1τ1 . . . where each τi is a closed trajec-
tory and τi(t)

ai+1→ τi+1(0), where t is the last time point in τi. The duration of an
execution is the total duration of all the trajectories. The set of all executions is
denoted as execs(A). In this paper, we only consider executions with bounded
number of switches and with bounded duration. Given a set of initial states
Θ ⊆ val(V), the set of executions from Θ are those executions in execs(A) with
their first state, τ0(0), in Θ. The set of executions starting from Θ of duration at
most T and with at most N transitions will be denoted as exec(A, Θ, T,N).

Definition 2 (Safe and Unsafe). Given a hybrid automata A with an initial set Θ,
unsafe set U , time bound T , and transition bound N , it is said to be unsafe, if there
exists an execution τ0a1 . . . τk ∈ exec(A, Θ, T,N) such that τk(t) ∈ U , where t is the
last time point in τk. Otherwise, A is said to be safe.

Our algorithm for safety verification as well as its analysis rely heavily on
the notion of distance between continuous states and trajectories of the automa-
ton. To state our results formally, we need to introduce a we notations first.
For a vector x ∈ Rn, ||x|| denotes the `2 norm. For x1, x2 ∈ Rn, ||x1 − x2||
is the Euclidean distance between the points. For δ > 0, Bδ(x1) ⊆ Rn de-
notes the set of points that is a closed ball of radius δ centered at x1. For a
set S ⊆ Rn, Bδ(S) = ∪x∈SBδ(x). Bδ(S) expands S by δ. We will find it con-
venient to also define the notion of shrinking S by δ: For δ < 0, and S ⊆ Rn,
Bδ(S) = {x ∈ S | B−δ(x) ⊆ S}. For a bounded set S, a δ-cover of S is a finite
collection of balls X = {Bδ(xi)}mi=1 such that S ⊆

⋃m
i=1Bδ(xi). Its diameter

dia(S)
∆
= supx1,x2∈S ||x1 − x2||.

Definition 3 (Perturbing a Hybrid Automata). Given a hybrid automata A =
〈V,Loc,A,D, T 〉, we define an ε-perturbation of A as a new automaton Aε that has
identical components as A, except, (a) for each location ` ∈ Loc, IAε` = Bε(I

A
`) and

(b) for each action a ∈ A, GuardAεa = Bε(GuardAa).

6

Here IAloc is the invariant of the location of a hybrid automataA and GuardAa
denotes the guard set for action a. The definition permits ε < 0 for perturbation
of a hybrid automaton. Informally, a positive perturbation of a hybrid automata
A bloats the invariants and guard sets and therefore enlarges the set of execu-
tions. A negative perturbation on the other hand, shrinks the invariants and the
guards and therefore reduces the set of executions.

Definition 4 (Robust safety and unsafety). Given a hybrid automata A with an
initial set Θ, unsafe set U , time bound T , and bound on discrete transitions N , it is
said to be robustly safe if and only if ∃ε > 0, such that Aε, with initial set Θε, unsafe
set Uε, time bound T , and transition bound N is safe. It is said to be robustly unsafe
if and only if ∃ε < 0 such that Aε, with initial set Θε, unsafe set Uε, time bound T ,
and transition bound N , is unsafe.

For safety verification C2E2 expects the users to provide annotations for
the ODEs defining the trajectories of the hybrid automaton in question. These
annotations are called discrepancy function. For a differential equation ẋ =
f(x, t), the general definition of discrepancy function is given in [8]. In this pa-
per, we consider a special form of discrepancy function given in Definition 5.

Definition 5. Given a differential equation ẋ = f(x), the tuple 〈K, γ〉 is called an
exponential discrepancy function for the dynamics, if and only if for any two trajectories
τ1, τ2 satisfying the differential equation, it holds that:

||τ1(t)− τ2(t)|| ≤ K||τ1(0)− τ2(0)||eγt (1)

We call K as the multiplicity factor and γ as the exponential factor of the annotation.

Along with the input models, we expect the user to specify the discrep-
ancy function by providing values for 〈K, γ〉. Also, if the differential equation
is Lipschitz continuous with constant L, then 〈K, γ〉 = 〈1, L〉 would be a valid
annotation. In Figure 1, the annotations for both the locations are provided as
〈K, γ〉 = 〈3.8,−0.2〉.

3 Verifying Hybrid Systems From Simulations

We give an overview of the verification algorithm implemented in C2E2. In
brief, the algorithm generates a cover of the initial set and then performs four
steps repeatedly until it reaches a safe/unsafe decision for each cover or its
refinement. In making this decision, it generates a simulation from the cover
and then bloats this simulation by a factor computed from the given anno-
tation to compute an over-approximation of the reachable states. If the over-
approximation, decides safe/unsafe then it moves on to another cover, other-
wise, it refines the cover. These operations are performed by several subrou-
tines which we describe next.

7

3.1 Building Blocks

The first building block for the algorithm is a subroutine called valSim that gen-
erates validated simulations for the individual dynamical systems or locations
of the hybrid automaton. Given a trajectory τ starting from a given state, valSim
subroutine computes overapproximation of τ with specific error.

Definition 6 (Validated Simulation). Given an error bound ε > 0, a time step
h > 0, a time bound T = (k+1)h, and an initial state x0, an (x0, ε, h, T)-simulation
of the differential equation ẋ = f(x) is a sequence set of continuous states ρ =
R0, R1, . . . , Rk such that (a) for any i in the sequence dia(Ri) ≤ ε , and (b) for
any time t in the interval [ih, (i + 1)h], the solution from x0 at time t is in Ri, i.e.,
τ(t) ∈ Ri.

The subroutine valSim(x0, h, T, f) returns a tuple 〈ρ, ε〉 such that ρ is an (x0, ε, h, T)-
simulation. In C2E2, validated simulation engines such as VNODE-LP [17] and
CAPD [1] are used for implementing valSim . For the completeness of our algo-
rithm, we require that the error ε can be made arbitrarily small by decreasing
h. In systems with finite precision arithmetic, simulation engines produce accu-
rate simulations up to the order of 10−7, and also there are libraries supporting
arbitrary precision integration for some differential equations.

Next, the computeReachTube subroutine: it uses simulations to compute over-
approximations of a set of trajectories from a set of initial states.

Definition 7 (Overapproximate Reach Tube). For a set of initial states S, error
bound ε > 0, time step h > 0, and T = (k + 1)h, an (S, ε, h, T)-reachtube of the
differential equation ẋ = f(x) is a sequence ψ = R0, R1, . . . , Rk such that (a) for any
i in the sequence dia(Ri) ≤ ε, (b) for any trajectory starting τ from S and for each
time t ∈ [ih, (i+ 1)h], τ(t) ∈ Ri.

If S is large and ε is small then the strict inclusion may preclude a (S, ε, h, T)-
reachtube from existing. To compute reachtubes from a compact set S centered
at x0, computeReachTube performs the following three steps:

1. 〈ρ, ε1〉 ← valSim(x0, h, T, f), let ρ = R0, . . . , Rk.
2. ε2 = sup{K||x1 − x2||eγt | x1, x2 ∈ S, t ∈ [0, T]}, where 〈K, γ〉 is the annota-

tion for the dynamics given by f .
3. ψ = Bε2(R1), . . . , Bε2(Rk).

From Definition 5 it follows that ψ is a (S, ε1 + ε2, h, T)-reachtube. It can be
shown [8] that ε → 0 as δ → 0 and h → 0. In summary, the subroutine call
computeReachTube(S, h, T, f) returns 〈ψ, ε〉 using the above steps. To provide
formal guarantees from reachtube over-approximations, we need to distinguish
when a given reachtube must satisfy a predicate P from when it may satisfy it.
The next subroutine tagRegion marks or tags each region in a reachtube with
respect to a given predicate.

Definition 8 (Tagging). Given two setsR,P ⊆ Rn the subroutine tagRegion(R,P)
returns must , may or ⊥ such that, (a) if R ⊆ P , then return must , (b) if R ∩ P 6= ∅
and R * P then return may , and (c) otherwise (R ∩ P = ∅), return tag = ⊥.

8

The above subroutines are used for over-approximating reach sets and de-
ciding safety for individual differential equations of individual locations of
a hybrid automaton. In order to reason about, invariants, guards and resets
which are essential for capturing the hybrid behavior of mode switches, we
have to (a) detect the reachable states that satisfy the respective location invari-
ants and (b) identify the states from which location switches or transitions can
occur. The next subroutine invariantPrefix (ψ, S) takes a reachtube and a set S
and returns the longest contiguous prefix of ψ that intersects with S. This is
later used in solving problem (a).

Definition 9 (Invariant Prefix). Given a reachtube ψ = R0, . . . , Rk and a set S,
invariantPrefix (ψ, S) returns the longest sequence φ = 〈R0, tag0〉 . . . 〈Rm, tagm〉,
such that ∀0 ≤ i ≤ m, tagi = must when ∀j ≤ i, tagRegion(Rj , S) = must and
tagi = may when ∀j ≤ i, tagRegion(Rj , S) 6= ⊥ and ∃k ≤ i, tagRegion(Rk, S) =
may . That is, if m < k, then tagRegion(Rm+1, S) = ⊥.

Intuitively, a regionRi is tagged must in an invariant prefix, if all the regions
before Ri (including itself) are contained within the set S. It is tagged may if all
the regions before it have nonempty intersection with S, and at least one of
them (including itself) is not contained within the set S. Given a reachtube ψ
from a set Q, ψ = invariantPrefix (ψ, Invloc) returns the over-approximation of
the valid set of trajectories fromQ that respect the invariant of the location loc of
the hybrid automata. If a region Ri in φ is tagged must , then there exists at least
one trajectory fromQ that can reachRi. Also, the set of all reachable states from
Q that satisfy the invariant are contained in φ. Subroutine checkSafety checks
whether such an invariant prefix φ is safe with respect to an unsafe set U . It
defined as:

checkSafety(φ,U) =

safe, if ∀〈R, ·〉 ∈ φ,⊥ = tagRegion(R,U)

unsafe, if ∃〈R,must〉 ∈ φ,must = tagRegion(R,U)

unknown, otherwise

Notice that φ is inferred to be safe only when all the regions in the invari-
ant prefix are tagged ⊥ with respect to U (i.e. empty intersection). It is unsafe
only when there is a must region in the invariant prefix is contained within U .
This is the core of the soundness argument for the verification algorithm, i.e., if
checkSafety(φ,U) returns safe or unsafe , then indeed that is the correct answer
for the set of initial states covered by φ.

The final subroutine nextRegions computes over-approximation of the reach-
able states that serve as the initial states in a new location after a transition to
it. A discrete transition a is enabled at the instance trajectory τ satisfies the
guard condition Guarda and the state after the discrete transition is obtained
by applying the reset map Reseta. Given a sequence of tagged regions, the sub-
routine nextRegions returns the tagged set of reachable regions after a discrete
transition.

Definition 10 (Next Regions). Given φ = 〈R0, tag0〉, . . . , 〈Rm, tagm〉, a sequence
of tagged regions, the subroutine nextRegions(φ) returns a set of tagged regions R.

9

〈R′, tag ′〉 ∈ R if and only if there exists an action a of the automaton and a region Ri
in φ such that R′ = Reseta(Ri) and one of the following conditions hold:

(a) Ri ⊆ Guarda, tag i = must , tag ′ = must .
(b) Ri ∩Guarda 6= ∅, Ri * Guarda, tag i = must , tag ′ = may .
(c) Ri ∩Guarda 6= ∅, tag i = may , tag ′ = may.

A tagged region 〈R′, tag ′〉 ∈ R is labeled must only when the region Ri is a
must region and is contained within the Guarda. In all other cases, the region is
tagged may when Ri∩Guarda 6= ∅. This ensures that a regions tagged must are
indeed reachable after the discrete transition, and all the regions tagged may
contain the reachable states after the discrete transition.

3.2 Verification Algorithm

The C2E2 algorithm for verification is given in Algorithm 1. Lines 4 - 19 imple-
ment the main loop that computes a cover the initial set, computes the over-
approximation of reachtube, checks safety, and refines the cover if needed. The
subroutine taggedCover (line 3), first computes a cover of Θ with sets of δ diam-
eter and tags them (with tagRegion) with respect toΘ. The resulting tagged sets
are collected in X . We add additional attributes to each tagged region: Time
tracks the time of the trajectory leading to a region, Loc tracks its current lo-
cation, and Switches tracks the number of discrete transitions taken. Although
not explicitly mentioned in the algorithm, we update the tags for regions in the
reachtube based on the time taken by trajectories and the discrete transitions
encountered during verification. The algorithm checks whether all the execu-
tions of hybrid automata from the regions in the cover of the initial set are safe
or unsafe. If it is safe, then the region is removed from the initial set Θ (line 15);
if it is unsafe, then the algorithm returns unsafe (line 11); and if it is neither then
the initial cover is refined (line 17).

For each of the regions in the tagged δ-cover of the initial set, the inner loop
(lines 6 - 13) computes over-approximations of the reachable states. The sub-
routine computeReachTube (line 7) computes an overapproximation of all the
trajectories starting from the tagged region in the initial set cover. Subroutine
invariantPrefix (line 8) computes φ, an overapproximation of the valid set of
trajectories which respect the invariant of the current location. Safety of φ is
checked using the subroutine checkSafety (line 9). The regions in φ where dis-
crete transitions are enabled and the initial states for the trajectories in the next
location are computed in subroutine computeNext (line 10). This loop continues
until either the time bound for verification or the bound for number of discrete
transitions is satisfied.

The reachtubes computed in lines 7, 8 are an overapproximation of all the
reachable states of hybrid automata A, given in Lemma 1. The regions in the
reachtubes are must only when they satisfy the invariant of each location and
completely contained within the guard set it follows that these regions are
reachable by at least one execution of A, given as Lemma 2. For the set of re-
gions R tagged may , it follows that ε = max{dia(R)|R ∈ R} bloating of the

10

invariants and guard sets would ensure that these regions are also reachable,
given in Lemma 3. As the reachtubes can be made arbitrarily precise by de-
creasing the time step and the initial partitioning, it follows that given any ε,
the precision of reachtubes can be bounded by ε by using small vales for θ and
h. Lemma 1 helps in proving soundness and Lemmas 2 and 3 help in proving
relative completeness. This guarantees that if the system is robustly safe, then
the algorithm terminates and returns safe, and if the system is robustly unsafe,
then the algorithm terminates and returns unsafe, given in Theorem 1.

input : A, Θ, U , T , N
output: System is safe or unsafe

1 S ← Θ;h← h0; δ ← δ0;
2 while S 6= ∅ do
3 X ← taggedCover(Θ, δ) ;
4 for elem ∈ X do
5 QC ← {elem};
6 for e ∈ QC ∧ e.T ime < T ∧ e.Switches < N do
7 〈ψ, ε〉 ← computeReachTube(e.R, e.Loc, h, T − e.T ime) ;
8 φ← invariantPrefix (ψ, Inve.Loc) ;
9 result← checkSafety(φ,U) ;

10 if result == safe then QC ← QC ∪ nextRegions(φ);
11 else if result == unsafe ∧ elem.tag == must then return unsafe;
12 else break;
13 end
14 if result == safe then
15 S ← S \ elem.R ;
16 else
17 δ ← δ/2;h← h/2; ;
18 end
19 end
20 end
21 return safe;

Algorithm 1: Algorithm for safety verification of hybrid automata using
simulations and annotations.

Lemma 1. All the regionsR tagged may or must in φ (line 7 of algorithm 1) contains
the reachable set of states of hybrid automata A starting from Θ within T time and N
discrete transitions.

Lemma 2. If a region R is tagged must in φ (line 7 of algorithm 1), then there exists
at least one execution of A from the initial set Θ that reaches R within T time and N
discrete transitions.

Lemma 3. LetR, be the set of all regions tagged may in φ (line 7 of algorithm 1) and
ε = max{dia(R)|R ∈ R}. Given any regionR ∈ R, there exists at least one execution
of Aε from the initial set Θε that reaches R within T time and N discrete transitions.

11

Theorem 1 (Soundness and Relative Completeness). Given initial set Θ, unsafe
set U , time bound T , bound on discrete transitions N , and hybrid automata A, if the
algorithm 1 returns safe or unsafe, then the system A is safe or unsafe. The algorithm
will always terminate whenever the system is either robustly safe or robustly unsafe.

4 C2E2: Internals and User Experience

4.1 Architecture of C2E2

The architecture for C2E2 is shown in Figure 2. The front end parses the input
models, connects to the verification engine, provides a property editor and a
plotter. It is developed in Python and vastly extends the Hylink parser [16] for
Stateflow models. The verification algorithm (Algorithm 1) is implemented in
C++. The frontend parses the input model file (.mdl or .hyxml) into an inter-
mediate format and generates the simulation code. The properties are obtained
from the input file or from the user through the front end’s GUI. The simulation
code is compiled using a validated simulation engine provided by Computer
Assisted Proofs in Dynamic Groups (CAPD) library [1]. This compiled code
and the property are read by the C2E2 verification algorithm which also uses
the GLPK libraries. The verification result and the computed reachable set are
read by the frontend for display and visualization. This modular architecture
allows us to extend the functionality of the tool to new types of models (such
as Simulink, DAEs), different simulation engines (for example, Boost, VNODE-
LP), and alternative checkers (such as Z3).

Fig. 2: Architecture of C2E2

4.2 Models, Properties, and Annotations

C2E25 takes as input annotated Stateflow models (such as in Figure 1(a)) with
ODEs (possibly nonlinear) and discrete transitions defined by guards and re-
sets. The guards have to be conjunctions of polynomial predicates over the state

5 https://publish.illinois.edu/c2e2-tool/

https://publish.illinois.edu/c2e2-tool/

12

variables and the reset maps have to be polynomial real-valued functions. The
properties can be specified in the .hyxml model files or using the GUI. C2E2 can
verify bounded time safety properties specified by a time bound, a polyhedral
set of initial states and another set of unsafe states.

Annotations The user has to write annotations for each ODE in the model. This
is done by specifying the multiplicity factor K and the exponential factor γ
as comments in the Stateflow model, shown in Figure 1(a). For a broad range
of nonlinear systems such annotations can be found. We illustrate with some
examples.

Example 1. Consider a linear system ẋ = Ax, where all the eigenvalues of ma-
trix A is nonzero. Let λm be the maximum among the real parts of all the
eigenvalues of A. Then, for any two trajectories τ1 and τ2 of the linear system
||τ1(t) − τ2(t)|| ≤ ||A||eλmt||τ1(0) − τ2(0)|| is an annotation. Here the matrix
norm ||A|| is defined as sup{xTAx | ||x|| = 1} and it can be computed using
semidefinite programming. The input format would be K = ||A|| and γ = λm.

Example 2. Consider the differential equation in stimOn mode of the cardiac
cell example: u̇ = (0.1 − u)(u − 1)u − v and v̇ = u − 2v. By computing the
maximum eigenvalues of the Jacobian matrix of the differential equation and
the maximum norm of the contraction metric [15], we get that ||τ1(t)− τ2(t)|| ≤
3.8e−0.2t||τ1.(0) − τ2.(0)|| as an annotation. The input is specified as K = 3.8
and γ = −0.2.

Example 3. Consider the differential equation ẋ = 1+x2y−2.5x; ẏ = 1.5x−x2y−
y. By analyzing the auxiliary system (x1, y1) and (x2, y2), using the incremental
stability, we have that

d

dt
[(x1 − x2)2 + 2(x1 − x2)(y1 − y2) + (y1 − y2)2] = −2(x1 − x2 + y1 − y2)2 < 0.

Therefore, for trajectories τ1 and τ2 of the differential equations it hence fol-
lows that (τ1(t).x− τ2(t).x)2 +2(τ1(t).x− τ2(t).x)(τ1(t).y− τ2(t).y) + (τ1(t).y−
τ2(t).y)

2 ≤ (x1 − x2)2 + 2(x1 − x2)(y1 − y2) + (y1 − y2)2 where i = 1, 2, xi =
τi.fstate.x, yi = τi.fstate.y. The function ||τ1(t) − τ2(t)|| ≤ 2||τ1(0) − τ2(0)||e0×t
is an annotation and is specified as K = 2, γ = 0.

4.3 User Experience

In this section, we discuss the C2E2 interface for handling verification, prop-
erties and visualization. The users can add, edit, copy, delete or verify several
properties. As each property is edited, the smart parser provides real-time feed-
back about syntax errors and unbounded initial sets (Figure 3(b)). Once prop-
erties are edited the verifier can be launched. Visual representation of reachable
states and locations can aid debugging process. To this end, we have integrated
a visualizer into C2E2 for plotting the projections of the reachable states. Once a

13

property has been verified, the user can plot the valuations of variables against
time or valuations of pairs of variables (phase plots). The unsafe set is projected
on the set of plotting variables. The property parser and visualizer uses the
Parma Polyhedra Library6 and matplotlib7. Example plot for the cardiac cell is
shown in Figure 3(c).

(a) Model. (b) Property. (c) Reachable Set.

Fig. 3: Figure showing a snippet of cardiac cell model in (a), property dialog for
specifying properties in (b), plot of reachable set for cardiac cell model in (c).

4.4 Stateflow Model Semantics

The annotated Stateflow models when given as input are interpreted as hybrid
automaton as C2E2. Nondeterminism, which is allowed in hybrid automata
framework is prohibited in Stateflow models. All the discrete transitions in
Stateflow models are deterministic and are interpreted as “urgent” i.e. a transi-
tion is taken by the system as soon as it is enabled. In our fronted, we construct
hybrid automaton for Stateflow models respecting the “urgent” semantics. Un-
der such interpretation, the guard sets are only allowed to be hyperplanes.
In general, the verification algorithm in Section 3 may not terminate for such
guard conditions. We therefore use a heuristic and verify an ε perturbed model
of the Stateflow model to ensure termination of verification algorithm.

4.5 Experiments

Simulation based verification approach for annotated models has been demon-
strated to outperform other verification tool such as Flow* and Ariadne in [8].
In this paper, we present the verification results for some of the nonlinear and
linear hybrid automata benchmarks in Table 1. The annotations for each of these
benchmarks have been obtained by procedures given in Section 4.2. All the ex-
periments have been performed on Intel i-7 Quad core processor with 8GB ram
running Ubuntu 11.10.

6 http://bugseng.com/products/ppl/
7 http://matplotlib.org/

http://bugseng.com/products/ppl/
http://matplotlib.org/

14

Benchmark Vars. Num. Loc. TH VT (sec) Result

Cardiac Cell 3 2 15 17.74 safe

Cardiac Cell 3 2 15 1.91 unsafe

Nonlinear Navigation 4 4 2.0 124.10 safe

Nonlinear Navigation 4 4 2.0 4.94 unsafe

Inverted Pendulum 2 1 10 1.27 safe

Inverted Pendulum 2 1 10 1.32 unsafe

Navigation Benchmark 4 4 2.0 94.35 safe

Navigation Benchmark 4 4 2.0 4.74 unsafe
Table 1: Experimental Results for benchmark examples. Vars: Number of Vari-
ables, Num. Loc. : Number of discrete locations in hybrid automata, TH: Time
Horizon for Verification, VT (sec) : Verification time for C2E2 in seconds, Result:
Verification result of C2E2.

This early termination strategy for unsafe behavior of the system (Algo-
rithm 1, line 11) when the system is unsafe is reflected in Table 1. On stan-
dard examples C2E2 can successfully verify these systems within the order of
minutes and also handle nonlinear differential equations with trigonometric
functions of inverted pendulum.

5 Conclusions and Future Work

C2E2 presented in this paper is a tool for verifying a broad class of hybrid
and dynamical systems models. It uses validated simulations and model an-
notations to prove the most commonly encountered type of properties, namely
bounded-time invariants. It can handle models created using the Stateflow en-
vironment that is the de facto standard in embedded control design and imple-
mentation. The improvements presented in this paper beyond the version of [8],
include the complete support for hybrid models implemented in a new algo-
rithm and the supporting theory, the new user interface for editing properties,
and the reachtube plotting function. The tool is freely available for academic
and research use from https://publish.illinois.edu/c2e2-tool/.

Our future plans include implementation of features to support temporal
precedence properties [9] and compositional reasoning [10,4]. Another avenue
of work leverages the “embarrassing parallelism” in the simulation-based ap-
proach. We anticipate that the C2E2’s architecture and its open interfaces, for
example, the .hyxml input format, text-based representation of reachtubes, will
support research and eduction in embedded and hybrid systems community by
helping explore new ideas in modeling, verification, synthesis, and and testing.

Acknowledgements: The authors were supported by the National Science
Foundation research grant CSR 1016791.

https://publish.illinois.edu/c2e2-tool/

15

References

1. Computer assisted proofs in dynamic groups (capd).
http://capd.ii.uj.edu.pl/index.php.

2. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems.
In Computer Aided Verification, pages 365–370. Springer, 2002.

3. A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and A. Sangiovanni-
Vincentelli. Ariadne: a framework for reachability analysis of hybrid automata. In
M.T.N.S., 2006.

4. A. Biere and R. Bloem, editors. Computer Aided Verification - 26th International Con-
ference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science.
Springer, 2014.

5. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Computer Aided Verification, pages 258–263. Springer, 2013.

6. Y. Deng, A. Rajhans, and A. A. Julius. Strong: A trajectory-based verification toolbox
for hybrid systems. In QEST, pages 165–168, 2013.

7. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid sys-
tems. In C.A.V. 2010.

8. P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of annotated models
from executions. In EMSOFT, 2013.

9. P. S. Duggirala, L. Wang, S. Mitra, M. Viswanathan, and C. Muñoz. Temporal prece-
dence checking for switched models and its application to a parallel landing proto-
col. In FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16,
2014. Proceedings, pages 215–229, 2014.

10. M. Fränzle and J. Lygeros, editors. 17th International Conference on Hybrid Systems:
Computation and Control (part of CPS Week), HSCC’14, Berlin, Germany, April 15-17,
2014. ACM, 2014.

11. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In
Computer Aided Verification, pages 379–395. Springer, 2011.

12. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. In Computer aided verification, pages 460–463. Springer, 1997.

13. D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O Au-
tomata. Synthesis Lectures on Computer Science. Morgan Claypool, November 2005.
Also available as Technical Report MIT-LCS-TR-917.

14. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal on
Software Tools for Technology Transfer (STTT), 1(1):134–152, 1997.

15. W. Lohmiller and J. J. E. Slotine. On contraction analysis for non-linear systems.
Automatica, 1998.

16. K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo. A step towards verification and
synthesis from simulink/stateflow models. In H.S.C.C, 2011.

17. N. Nedialkov. Vnode-lp: Validated solutions for initial value problem for odes. Tech-
nical report, 2006.

18. T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancic, A. Gupta, and G. Pappas.
Monte-carlo techniques for falsification of temporal properties of non-linear hybrid
systems. In H.S.C.C, 2010.

19. L. Zou, N. Zhan, S. Wang, M. Franzle, and S. Qin. Verifying simulink diagrams via
a hybrid hoare logic prover. In EMSOFT, 2013.

	C2E2: A Verification Tool For Stateflow Models
	Introduction
	Related Work

	Hybrid Models and Safety Verification
	Verifying Hybrid Systems From Simulations
	Building Blocks
	Verification Algorithm

	C2E2: Internals and User Experience
	Architecture of C2E2
	Models, Properties, and Annotations
	User Experience
	Stateflow Model Semantics
	Experiments

	Conclusions and Future Work

