
Progress on Powertrain Verification Challenge with C2E2?

Chuchu Fan, Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan

University of Illinois, Urbana-Champaign
{cfan10,duggira3,mitras,vmahesh}@illinois.edu

Abstract. In this paper, we present the progress we have made in ver-
ifying the benchmark powertrain control systems introduced in the last
ARCH workshop. We implemented the algorithm reported in [8] in the
hybrid system verification tool C2E2 for automatically computing local
discrepancy (rate of convergence or divergence of trajectories). We cre-
ated Stateflow translations of the original models to aid the processing
using C2E2 tool. We also had to encode the different driver behaviors in
the form of state machines. With these customizations, we have been suc-
cessful in verifying one of the easier (but still challenging) benchmarks
from the powertrain suite. In this paper, we present some of the engineer-
ing challenges and describe the artifacts we created in the process.

1 The Powertrain Benchmarks

The benchmark suite of powertrain control systems were published in [10,9]
as challenge problems for hybrid system verification. The suite has a set of
SimulinkTM models with increasing levels of sophistication and fidelity. At a
high-level, all the models take inputs from a driver (throttle angle) and the en-
vironment (sensor failures), and define the dynamics of the engine. The key
controlled quantity is the air to fuel ratio which in turn influences the emis-
sions, the fuel efficiency, and torque generated.

The first model (model 1) is the most complex. It has look-up tables, de-
layed differential equations, and switches. Models 2 and 3 are simpler but still
complicated enough for most hybrid verifcation tools. Model 3 is a hybrid au-
tomaton with polynomial differential equations and continuously computed
control inputs, and Model 2 is similar but with nonlinear differential equations
and both continuous and discretely sampled variables. The requirements for
the system are stated in signal temporal logic (STL). A typical property, for ex-
ample, 3t(x ∈ [xeq − ε, xeq + ε]), states that after t units of time, the continuous
variable x is within the range xeq ± ε.
? The results reported here have beed submitted for peer-review, however, this paper

presents several technical details and artifacts for the first time. We thank Jim Kapin-
ski, Jyotirmoy Deshmukh, and Xiaoqing Jin of Toyota for several useful discussions
on the powertrain models. This research is funded by research grants from the Na-
tional Science Foundation (grant: CAR 1054247 and NSF CSR 1016791) and the Air
Force Office of Scientific Research (AFOSR YIP FA9550-12-1-0336).



2

Breach [2] and STaliro [1] have been used for finding counterexamples (or
falsifying) models in [12,10,11,3]. In this paper we discuss of the progress we
have made in verifying models 2 and 3 using our verification tool C2E2 [5,4]
and present the artifacts we have created in the process.

2 Background on C2E2

C2E2 implements a generic, simulation-based, algorithm for bounded time ver-
ification of invariant and temporal precedence properties of nonlinear hybrid
models (see [4,5,6] for details). The algorithm iteratively computes more and
more precise over-approximations of the reachable states of the system until it
either proves the property (the requirement) or finds a counter-example.

Our current implementation does not use hybrid simulations, instead, it
generates over-approximations for each location, finds the intersection of the
reachtube with the out-going guards from that location, and continues with
these intersections as the initial sets in the next location. The key step in the al-
gorithm is to compute and refine reach set over-approximations for ODEs for a
given location. This step uses validated simulations and discrepancy functions
that give a bound on the convergence (divergence) of trajectories starting from
neighboring states [4].

Finding discrepancy functions for nonlinear models can be challenging. One
of the main developments that enabled this verification, is the implementation
of a new algorithm in C2E2 (presented in detail in [8]) for automatic computa-
tion of local discrepancy along trajectories of the system. Using this improved
C2E2, we were not only able to find counterexamples, but also verify the key
STL requirements of the powertrain benchmark in the order of minutes.

In this paper, we use the algorithm presented in [8] for computing local dis-
crepancy functions on-the-fly along validated simulations. This algorithm uses
the Jacobian Jf and a Lipschitz constant Lf of the ODE. First it computes a
coarse over-approximation S(xi) of the reach set from a simulation point for a
short duration. Then it computes an exponential (possibly negative) bound on
the divergence rate of trajectories over S(x0) by finding a bound on the maxi-
mum eigenvalue of the symmetric part of the Jacobian Jf over the region S(x0).
We refer the reader to the technical report [8] for the details of this algorithm.

For verifying the powertrain system, we implemented the local discrepancy
algorithm in C2E21. This modified implementation only requires the user to
supply the Jacobian matrix of the system. The eigenvalues of the symmetric
parts of the Jacobian are computed using Eigen library [7]. For maximizing the
norm of error matrices our implementation uses interval arithmetic.

1 The modified tool and related files are available from http://publish.
illinois.edu/c2e2-tool/powertrain-challenge/

http://publish.illinois.edu/c2e2-tool/powertrain-challenge/
http://publish.illinois.edu/c2e2-tool/powertrain-challenge/


3

3 Model Transformation

We transform the SimulinkTM diagram of the benchmarks with switching blocks,
to Stateflow models which essentially capture hybrid automata. Models 2 and 3
of [10] translate to hybrid automata with 4 locations and 5 continuous variables.
The locations are startup, normal, power, and sensor fail. The continuous variables
are: (a) intake manifold pressure (p), (b) intake manifold pressure estimate (pe),
(c) air-fuel ratio (λ), (d) integrator state (i), (e) throttle angle (thetain). These
translated Stateflow models are made available as part of this paper.

This transformation is relatively straightforward and has been described
in [13]. The Simulink model uses several function blocks connected by feed-
back lines. While the Stateflow model uses differential equations and transi-
tions. The transitions are decided by the boolean operation of several user in-
puts like throttle angle and sensor failure. Keeping these input signals constant,
we rewrite the differential equations of the four discrete modes in Stateflow
blocks, and then replace the function block Switch in Simulink with Transitions.

Model 2 (the second model in [10]) differs in two aspects: (1) the right-hand
side of the system equations are general nonlinear functions instead of polyno-
mial functions; (2) only two of the four variables are continuous, other two are
discrete variables updated periodically. Only the differential equations of the
two continuous variables would appear in the Stateflow modes. We introduce
the third variable t with the dynamic ṫ = 1. Initially t = 0, whenever t = dis-
crete sample time, there will be a transition to the mode itself with transition
action t = 0 and the update of the two discrete variables.

C2E2 currently handles only closed automaton models. Therefore, for every
driver behavior of interest, we explicitly construct a family of switching signals
that determine the timing of the mode switches. The initial set of the automaton
is a ball in the state space which corresponds to the measurement uncertainty
in state components.

The goal of the powertrain control system is to maintain the air-fuel ratio
at a desired value for optimal functioning of internal combustion engine under
different driving behaviors and conditions. These control objectives or require-
ments are stated in [10] using STL formulas. An example requirement for the
normal mode of operation is the following:

rise ⇒ �(η,ζ)(0.98λref ≤ λ ≤ 1.02λref ), (1)

which can be read as “If the throttle angle θin changes from 0 to 60, denoted by
the event rise , then the air-fuel ratio λ should be in the range [0.98λref , 1.02λref ]
after η time units and stay in that region until ζ time units. Here λref is the de-
sired value of air-fuel ratio and η and ζ are parameters of the property. We
note that this type of requirements can also be expressed as bounded time
invariants— the class of properties currently handled by C2E2. We simply need
to introduce a timer variable that keeps track of time elapsed since the last oc-
currence of the relevant events like rise in the above example.



4

Fig. 1: Transformed stateflow model of powertrain control system.

4 Using C2E2 on the Powertrain Models

In this section, we discuss the experiments we performed with the transformed
benchmark models using C2E2 verification tool.

Encoding Drivers and Properties. The C2E2 parser currently does not support pa-
rameters that are specified in a table (for example, the various coefficients in the
polynomial differential equations). For this reason, we had to partially hand-
code the C++ simulation files2 for these models that are otherwise generated
automatically. Modifying these C++ files, one can also verify different driver
behaviors. The file simulator.cpp models the ODEs of different modes in
the model, the file guard.cpp models the guard conditions for enabling the
transitions between the modes, and invariant.cpp models the invariants
for each mode. We have considered two sets of driver behaviors in this paper.
In the first set, the system starts in the startup’ mode, and after [9.00,9.01] time
units, it switches to normal mode. In the second set, the system starts in the
startup mode, switches to normal mode, then switches to power mode, and fi-
nally returns again to the normal mode. The property that can be verified in the
given version of C2E2 are invariants such as the air-fuel ratio always being in a
given range. The initial set for the behaviors and the unsafe set are specified as
polytope in Configuration file given as input to C2E2.

2 These files are also made available as part of this submission.



5

Coordinate Transformation. An important technical detail that makes the imple-
mentation scale is the coordinate transformation proposed in [8]. For Jacobian
matrices with complex eigenvalues the local discrepancy computed directly us-
ing the above algorithm can be a positive exponential even though the actual
trajectories are not diverging. This problem can be avoided by first computing
a local coordinate transformation and then applying the algorithm. Coordinate
transformation provides better convergence, but comes with a multiplicative
cost in given by the condition number of the matrix. This trade-off between the
exponential divergence rate and the multiplicative error has be tuned by choos-
ing the time horizon over which the coordinate transformation is computed.

In our experiments, we have observed that the condition number for startup
mode is 20 and for all other modes are of the order of 200. Thus, one cannot
perform this coordinate transformation over small periods as this would lead
to large errors in the overapproximations. Thus, the number of steps for which
coordinate transformation should be applied is an engineering decision based
on the condition number and the exponential rate of convergence. For verifying
the powertrain control system, we have analyzed different possibilities and ob-
served that coordinate transformation after every 3000 steps (i.e. 3 time units)
provides overapproximation that is adequate for verification.

Results. Table 1 provides the results of verifying different STL properties. The
first six properties provided in Table 1 are invariant properties. These invariant
properties can be global (i.e. correspond to all modes) or could be restricted to a
certain mode of operation provided in the Mode column. The invariants assert
that the air-fuel ratio should not go out of the specified bounds. Observe that
C2E2 could not only prove that the given specification is satisfied, but also that
a stricter version of invariants for startup and power modes is violated. The next
four properties are about the settling time requirements. These requirements
enforce that in a given mode, whenever an action is triggered, the fuel air ratio
should be in the given range provided after η (or ηpwr for power mode) time
units. Similar to the invariant properties, C2E2 could also find counterexample
for a stricter version of the settling time requirement (ηs settling time instead of
η) in power mode. When C2E2 finds an overapproximation that violates a given
property, it immediately terminates and hence C2E2 takes less time when it
finds counterexamples. The parameters used for verification are η = ηpwr = 1,
ηs = 0.5, Ts = 9, T = 20, λref = 14.7, λpwrref = 12.5, and ζ = 4.

5 Conclusion

In this paper, we have successfully applied the simulation based verification
technique with local discrepancy functions to find counterexamples and verify
the polynomial hybrid automata model of powertrain benchmark challenge.

The simulation based verification approach with on-the-fly discrepancy func-
tion shows a promising approach for verifying the polynomial hybrid model of
the powertrain control system provided in model 3. One of the main challenges



6

Property Mode Sat. Sim. Time

�Ts,Tλ ∈ [0.8λref , 1.2λref ] all modes yes 53 11m58s

�[0,Ts]λ ∈ [0.8λref , 1.2λref ] startup yes 50 10m21s

�[Ts,T ]λ ∈ [0.95λref , 1.05λref ] normal yes 50 10m28s

�[Ts,T ]λ ∈ [0.8λpwrref , 1.2λ
pwr
ref ] power yes 53 11m12s

�[0,Ts]λ ∈ [0.98λref , 1.02λref ] startup no 2 0m24s

�[Ts,T ]λ ∈ [0.9λpwrref , 1.1λ
pwr
ref ] power no 4 0m43s

rise ⇒ �(η,ζ)λ ∈ [0.9λref , 1.1λref ] startup yes 50 10m40s

rise ⇒ �(η,ζ)λ ∈ [0.98λref , 1.02λref ] normal yes 50 10m15s

(` = power) ⇒ �(ηpwr,ζ)λ ∈ [0.95λpwrref , 1.05λ
pwr
ref ] power yes 53 11m35s

(` = power) ⇒ �(ηs,ζ)λ ∈ [0.95λpwrref , 1.05λ
pwr
ref ] power no 4 0m45s

Table 1: Table showing the result and the time taken for verifying STL speci-
fication of the powertrain control system. Sat: Satisfied, Sim: Number of sim-
ulations performed. All the experiments are performed on Intel Quad-Core i7
processor, with 8 GB ram, on Ubuntu 11.10.

in extending this approach to Model 2 is the periodic inputs provided by the
controller. In Model 2, the discretely updated controller updates the values of
variable pe and i at discrete time intervals using a control law that stabilizes
the Fuel/Air to the required value. As the values of pe and i are updated dis-
cretely, the discrepancy function using the technique provided in this paper
would provide a coarse overapproximation. The nonlinearities in the control
law make this task even more challenging. Hence new developments in com-
puting the input-to-state discrepancy functions are required to extend the anal-
ysis to Model 2. In future, we wish to extend these techniques to handle higher
fidelity models in the powertrain verification challenge.

References

1. Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. S-taliro: A tool for temporal logic falsification for hybrid systems. Springer,
2011.

2. Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In Computer Aided Verification, pages 167–170. Springer, 2010.

3. Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Jyotirmoy V
Deshmukh, and Xiaoqing Jin. Efficient guiding strategies for testing of temporal
properties of hybrid systems. In Proceedings of NASA Formal Methods Conference (to
appear)., 2015.

4. Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. Verification of
annotated models from executions. In Proceedings of the International Conference on



7

Embedded Software, EMSOFT 2013, Montreal, QC, Canada, September 29 - Oct. 4, 2013,
pages 1–10. IEEE, 2013.

5. Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew Po-
tok. C2e2: A verification tool for stateflow models. In 21st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2015), 2015.

6. Parasara Sridhar Duggirala, Le Wang, Sayan Mitra, Mahesh Viswanathan, and César
Muñoz. Temporal precedence checking for switched models and its application to a
parallel landing protocol. In FM 2014: Formal Methods - 19th International Symposium,
Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer
Science, pages 215–229. Springer, 2014.

7. Eigen. a C++ template library for linear algebra, (accessed February, 2015). http:
//eigen.tuxfamily.org.

8. Chuchu Fan and Sayan Mitra. Bounded verification using on-the-fly discrepancy
computation. Technical Report UILU-ENG-15-2201, Coordinated Science Labora-
tory, University of Illinois at Urbana-Champaign, February 2015.

9. Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts.
Benchmarks for model transformations and conformance checking. In 1st Inter-
national Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH),
2014.

10. Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts.
Powertrain control verification benchmark. In Proceedings of the 17th international
conference on Hybrid systems: computation and control, pages 253–262. ACM, 2014.

11. Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Min-
ing requirements from closed-loop control models. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (to appear). IEEE.

12. Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Min-
ing requirements from closed-loop control models. In Proceedings of the 16th interna-
tional conference on Hybrid systems: computation and control, pages 43–52. ACM, 2013.

13. Karthik Manamcheri Sukumar and Sayan Mitra. A step towards verification and
synthesis from simulink/stateflow models. In Tools paper in Hybrid Systems: Compu-
tation and Control (HSCC 2011), 2011.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

	Progress on Powertrain Verification Challenge with C2E2
	The Powertrain Benchmarks
	Background on C2E2
	Model Transformation
	Using C2E2 on the Powertrain Models
	Conclusion


