
ANALYZING REAL TIME LINEAR CONTROL 

SYSTEMS USING SOFTWARE VERIFICATION

Parasara Sridhar Duggirala – UConn
Mahesh Viswanathan – UIUC



Real-Time Systems 
+ 

Linear Control Systems 
+ 

Verification

RTSS 2015 [2]

Control systems

Linear systems

Real Time Systems

Verification

This paper.



Isn’t That Hybrid Systems 
Verification?

■ Yes and No.

RTSS 2015 [3]

Physical Plant

Continuous 
Controller

sensingactuation

Typical control system



Isn’t That Hybrid Systems 
Verification?

■ Yes and No.

RTSS 2015 [4]

Typical hybrid system

Physical Plant

𝐂𝟏

𝐂𝟐

𝐂𝐧

⋮
Logic



Isn’t That Hybrid Systems 
Verification?

■ Yes and No.

RTSS 2015 [5]

Typical hybrid system

Physical Plant

𝐂𝟏

𝐂𝟐

𝐂𝐧

⋮
Logic

ሶ𝐱 = 𝐟𝟏(𝐱)

ሶ𝐱 = 𝐟𝟐(𝐱)

ሶ𝐱 = 𝐟𝟑(𝐱)

Hybrid Automata

Assumptions:
1. Continuous feedback
2. Exact computations



Isn’t That Hybrid Systems 
Verification?

■ Technically Yes, practically No.

RTSS 2015 [6]

ሶ𝐱 = 𝐟𝟏(𝐱)

ሶ𝐱 = 𝐟𝟐(𝐱)

ሶ𝐱 = 𝐟𝟑(𝐱)

Hybrid Automata

VS

+

+

Plant
+

Noisy environment

Floating points,
Data structures, … 

Scheduling, … 

Hardware, … 

Approx. model, … 

+



Closely Related Works

RTSS 2015 [7]

1. Fluctuat, Martinez et.al. [Floating Points]
2. Sahvy, HybridFluctuat – periodic actuation.
3. Frehse et.al. [Scheduling]

+

+

Plant
+

Noisy environment

Floating points,
Data structures, … 

Scheduling, … 

Hardware, … 

Approx. model, … 

+



Closely Related Works

RTSS 2015 [8]

1. Fluctuat, Martinez et.al. [Floating Points]
2. Sahvy, HybridFluctuat – periodic actuation.
3. Frehse et.al. [Scheduling]

This paper:

Verification (at discrete instances) 
while taking into account the 
computation time of software 
and scheduling of RTOS.

Computation 
delay

Scheduling

+

Physical Plant

+

Linear System



This Paper; Briefly

RTSS 2015 [9]

Physical Plant

Real Time Operating System

Controller 
Software

sensingactuation

State of plant 𝑥 evolves as
ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

Code

𝑥(𝑡)

time

main(){

……… 

if (…) then 

…

else …

}

Scheduling
Verification that takes all the three

aspects into account



Outline

■ Introduction

■ Computational model 

■ Drawbacks of existing techniques (or advantages?)

■ Software verification inspired technique

– Analyzing linear control systems

– Accounting for timing analysis

■ Software verification techniques used

■ Results

■ Discussion and Future work

RTSS 2015 [10]



Computational Model

1. Control program is a task on RTOS (periodically scheduled).

2. Delay between sensing and actuation (computation time).

3. Control program may or may not make the deadline.

RTSS 2015 [11]



Computational Model

1. Control program is a task on RTOS (periodically scheduled).

2. Delay between sensing and actuation (computation time).

3. Control program may or may not make the deadline.

RTSS 2015 [12]

1. Control program is run every T time units.
2. It may/may not make the deadline (TWCRT).
3. If it makes the deadline, results of computation are given as actuation parameters.
4. If it does not make the deadline, computation results are thrown away.



Motivating Example
Leader-Follower System

RTSS 2015 [13]

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;

𝑘𝑎𝑒𝑟𝑜 is the air–drag
Control Law

𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓)



Motivating Example
Leader-Follower System

■ Controller operates at 100Hz frequency. 
(computation time = 0).

■ Hybrid systems model: 

1. Add continuous variables 𝑢, 𝑡

2. Update 𝑢 every 0.01 sec.

3. Reset 𝑡 every 0.01 sec.

RTSS 2015 [14]

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;

𝑘𝑎𝑒𝑟𝑜 is the air–drag
Control Law

𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓)



Motivating Example
Leader-Follower System

■ Controller operates at 100Hz frequency. 
(computation time = 0).

■ Hybrid systems model: 

1. Add continuous variables 𝑢, 𝑡

2. Update 𝑢 every 0.01 sec.

3. Reset 𝑡 every 0.01 sec.

RTSS 2015 [15]

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;

𝑘𝑎𝑒𝑟𝑜 is the air–drag
Control Law

𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓)



Naïve Hybrid Systems Verification
With SpaceEx

RTSS 2015 [16]

Property: If 𝑣𝑓 = 60, 𝑣0 ∈ [59,61], 𝑠0 = 100

then always 𝑣 ≤ 62 ∧ 𝑠 ≥ 50



Naïve Hybrid Systems Verification
With SpaceEx

RTSS 2015 [17]

Property cannot be inferred!
Overapproximation is too high

Property: If 𝑣𝑓 = 60, 𝑣0 ∈ [59,61], 𝑠0 = 100

then always 𝑣 ≤ 62 ∧ 𝑠 ≥ 50



Why It Does Not Work
(And Why It Should Not)

■ Two source of overapproximation

1. Discrete transitions.

2. Mismatch between the actuated values and sensed values.
If 𝑣 ∈ 59,61 , 𝑢 ∈ [−2,2] but 𝑢 > 0 if and only if 𝑣 < 60.
SpaceEx algorithm does conservative estimate.

RTSS 2015 [18]



Why It Does Not Work
(And Why It Should Not)

■ Two source of overapproximation

1. Discrete transitions.

2. Mismatch between the actuated values and sensed values.
If 𝑣 ∈ 59,61 , 𝑢 ∈ [−2,2] but 𝑢 > 0 if and only if 𝑣 < 60.
SpaceEx algorithm does conservative estimate.

■ Why it should not? (#myPerspective)

– Hybrid Systems verification tools are supposed to find the flaws 
at the design level.

– Ensuring lower level details are “coherent” with higher level design 
should be the job of system developer (or a different verification tool?).

– Problem: But many bugs happen during the implementation!

RTSS 2015 [19]



Outline

■ Motivation

■ Computational model 

■ Drawbacks of existing techniques (or advantages?)

■ Software verification inspired technique

– Analyzing linear control systems

– Accounting for timing analysis

■ Software verification techniques used

■ Results

■ Discussion and Future work

RTSS 2015 [20]



Software Verification Inspired 
Technique: Outline

RTSS 2015 [21]

Generated code simulates the 
closed loop system by tracking 
the software state and physical 
state of the plant.

+

Physical Plant

+



Software Verification Inspired 
Technique: Outline

RTSS 2015 [22]

Code
Piece

1

Code
Piece

2

+

Software Verification Tools

+

Physical Plant

+



Part 1 – Analyzing Linear Control 
System

■ Linear ODE for plant ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢.

■ Closed form expression for the behavior

𝑒𝐴𝑡𝑥 0 + න

0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏 .

RTSS 2015 [23]

𝑢(𝑡)

time

𝑥(𝑡)

time



Part 1 – Analyzing Linear Control 
System

■ Linear ODE for plant ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢.

■ Closed form expression for the behavior

𝑒𝐴𝑡𝑥 0 + න

0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏 .

■ Observation: 𝑢(𝑡) is constant for a given time period (T).
𝑥 𝑇 = 𝑒𝐴𝑇𝑥 0 + 𝐺 𝐴, 𝑇 𝐵𝑢

■ Since 𝑇, 𝐴 are known, 𝑥 𝑇 can be computed as a func. of 𝑥(0).

RTSS 2015 [24]

𝑢(𝑡)

time

𝑥(𝑡)

time



Part 1 – Analyzing Linear Control 
System

■ Linear ODE for plant ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢.

■ Closed form expression for the behavior

𝑒𝐴𝑡𝑥 0 + න

0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏 .

■ Observation: 𝑢(𝑡) is constant for a given time period (T).
𝑥 𝑇 = 𝑒𝐴𝑇𝑥 0 + 𝐺 𝐴, 𝑇 𝐵𝑢

■ Since 𝑇, 𝐴 are known, 𝑥 𝑇 can be computed as a func. of 𝑥(0).

■ For leader trailer system – at discrete time units.

RTSS 2015 [25]

𝑠𝑛 = 𝑠 − 0.0995 ∗ 𝑣 − 𝑣𝑓 − 0.005 ∗ 𝑎 − 0.002 ∗ 𝑢;
𝑣𝑛 = 𝑣𝑓 + 0.99 ∗ 𝑣 − 𝑣𝑓 + 0.0995 ∗ 𝑎 + 0.005 ∗ 𝑢;
𝑎𝑛 = 𝑎 + 0.1 ∗ 𝑢;

Note: Relation between 
𝑢 and 𝑠𝑛, 𝑣𝑛, 𝑎𝑛 is symbolic.

𝑢(𝑡)

time

𝑥(𝑡)

time



Part 1 – Analyzing Linear Control 
System

■ What about with the control law?

RTSS 2015 [26]

𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

𝑠𝑛 = 𝑠 − 0.0995 ∗ 𝑣 − 𝑣𝑓 − 0.005 ∗ 𝑎 − 0.002 ∗ 𝑢;
𝑣𝑛 = 𝑣𝑓 + 0.99 ∗ 𝑣 − 𝑣𝑓 + 0.0995 ∗ 𝑎 + 0.005 ∗ 𝑢;
𝑎𝑛 = 𝑎 + 0.1 ∗ 𝑢;

Note: 𝑢 > 0 initially 
if and only if 𝑣 < 𝑣𝑓.



Part 1 – Analyzing Linear Control 
System

■ What about with the control law?

RTSS 2015 [27]

𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

𝑠𝑛 = 𝑠 − 0.0995 ∗ 𝑣 − 𝑣𝑓 − 0.005 ∗ 𝑎 − 0.002 ∗ 𝑢;
𝑣𝑛 = 𝑣𝑓 + 0.99 ∗ 𝑣 − 𝑣𝑓 + 0.0995 ∗ 𝑎 + 0.005 ∗ 𝑢;
𝑎𝑛 = 𝑎 + 0.1 ∗ 𝑢;

Note: 𝑢 > 0 initially 
if and only if 𝑣 < 𝑣𝑓.

Code
Piece

1 =

Skipping details: Error analysis and soudness proof.



Part 2 – Handling the Timing 
Analysis and Scheduling

■ Scheduling: fixed time period for control task.

■ Timing behavior: Typical Worst Case Analysis. 

1. WCET might be too conservative.

2. TWCA generalizes WCET.

■ What is Typical Worst Case Analysis?
Deadline is Typical Worst Case Response Time (TWCRT) – W.

1. Task can miss a deadline “sometimes”.

2. Number of deadline misses in the past “n” schedules is bounded.

RTSS 2015 [28]



Part 2 – Handling the Timing 
Analysis and Scheduling

■ Example:

RTSS 2015 [29]



Part 2 – Handling the Timing 
Analysis and Scheduling

■ Example:

RTSS 2015 [30]

𝑑𝑖 tracks whether the deadline is missed or met in the 𝑖𝑡ℎ last scheduling.
Nondeterministic choice of deadline miss by 𝐴𝑠𝑠𝑢𝑚𝑒 statement.



Part 2 – Handling the Timing 
Analysis and Scheduling

■ Example:

RTSS 2015 [31]

𝑑𝑖 tracks whether the deadline is missed or met in the 𝑖𝑡ℎ last scheduling.
Nondeterministic choice of deadline miss by 𝐴𝑠𝑠𝑢𝑚𝑒 statement.

Code
Piece

2 =



Bringing These Two Together

RTSS 2015 [32]

Code
Piece

1

Code
Piece

2

+ =



Bringing These Two Together

RTSS 2015 [33]

Code
Piece

1

Code
Piece

2

+ =



Bringing These Two Together

RTSS 2015 [34]

Code
Piece

1

Code
Piece

2

+ =



Bringing These Two Together

RTSS 2015 [35]

Code
Piece

1

Code
Piece

2

+ =

Controller code

Timing Behavior

Updating actuation only when 
deadline is met

Plant behavior



Verifying Safety Of Software For 
Bounded/Unbounded Time

1. Abstract Interpretation

– Widely used in checking properties of embedded software.

– Various abstract domains/analysis techniques.

– Interproc abstract interpretation tool.

2. Bounded Model Checking using SMT solvers

– Popular approach because of recent advancements.

– Very efficient solvers for linear arithmetic (Simplex + SAT).

– Z3 SMT solver.

RTSS 2015 [36]



Results – Part 1
Z3 VS AI VS SpaceEx

Problem Steps Z3 Interproc SpaceEx

Box Oct Poly Box Oct Poly

ACC1 25 P, 25.8 s F, 0.2 s F, 12.2 s P, 18m 50 s F, 0.3 s F, 10.3 s F, 32.8 s

ACC2 25 P, 25.9 s P, 0.2 s F, 12.1 s P, 18m 22 s F, 0.3 s F, 10.3 s F, 32.6 s

Kin1 25 P, 5.8 s F, 0.05 s F, 1.8 s P, 4m 18 s F, 0.2 s F, 2.5 s F, 25.9 s

Kin2 25 P, 5.8 s P, 0.05 s F, 1.8 s P, 4m 20 s F, 0.2 s P, 2.4 s F, 25.8 s

RTSS 2015 [37]



Results – Part 1
Z3 VS AI VS SpaceEx

Problem Steps Z3 Interproc SpaceEx

Box Oct Poly Box Oct Poly

ACC1 25 P, 25.8 s F, 0.2 s F, 12.2 s P, 18m 50 s F, 0.3 s F, 10.3 s F, 32.8 s

ACC2 25 P, 25.9 s P, 0.2 s F, 12.1 s P, 18m 22 s F, 0.3 s F, 10.3 s F, 32.6 s

Kin1 25 P, 5.8 s F, 0.05 s F, 1.8 s P, 4m 18 s F, 0.2 s F, 2.5 s F, 25.9 s

Kin2 25 P, 5.8 s P, 0.05 s F, 1.8 s P, 4m 20 s F, 0.2 s P, 2.4 s F, 25.8 s

RTSS 2015 [38]

Inferences:
1. Proving a property using Interproc and SpaceEx requires choosing appropriate domain.
2. Trivial – verification time depends on the domain chosen.
3. Bounded model checking seems to be fast and give precise verification results.



Results – Part 2
Evaluation with Z3
Benchmark Dimn. Steps Time

MTSC 4 15 12.6 s

MTSC 4 20 1m 14 s

MTSC 4 25 5m 55 s

Locomotive 3 30 42.4 s

Thermostat 5 35 6.9 s

Thermostat 5 40 15.1 s

Thermostat 5 45 33.4 s

Non.Lin.Kin. 3 20 2m 25 s

RTSS 2015 [39]

Inferences:
1. Verification time grows nonlinearly with time.
2. Nonlinear constraint solving takes much more time than linear.



Discussion And Future Work

■ Contributions of this work:

1. Demonstrates that Off-the-shelf tools do not work when real time 
scheduling is taken into account.

2. Conceptually simple solution for verification.

3. Solution performs better than existing approaches.

RTSS 2015 [40]



Discussion And Future Work

■ Contributions of this work:

1. Demonstrates that Off-the-shelf tools do not work when real time 
scheduling is taken into account.

2. Conceptually simple solution for verification.

3. Solution performs better than existing approaches.

■ Eventual goal of the work: 
End–to–end verification of real time CPS.

■ Is this one of the final solutions? – No.

■ Key new idea: Expose lower level implementation details to higher 
level for better verification. 

RTSS 2015 [41]



Future Work
Exposing Proof Certificates At Each Layer

RTSS 2015 [42]

+

+

Plant
+

Noisy environment

Software verification of 
embedded code

Scheduling analysis 

Hardware correctness proofs

Sound approx. model

+

Model checking
hybrid systems

+



Future Work
Exposing Proof Certificates At Each Layer

RTSS 2015 [43]

+

+

Plant
+

Noisy environment

Software verification of 
embedded code

Scheduling analysis 

Hardware correctness proofs

Sound approx. model

+

Model checking
hybrid systems

+


