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Controller design
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Safety verification problem for linear systems ሶ𝒙 = 𝑨𝒙 + 𝑩
From initial set Θ (dis)prove that no trajectory enters the unsafe set U

represented as
ሶ𝑥 = 𝐴𝑥 + 𝐵(       )



Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥 + 𝐵, initial set Θ (polyhedra), unsafe set 𝑈.
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Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models

Drawbacks
1. Representation cost grows with n
2. Only overapproximation
3. Cannot be directly applied for 

time varying linear systems



This Paper: Contributions

New simulation based verification for linear systems.

1. For 𝒏-dimensional system, 𝒏 + 𝟏 simulations 
suffice.

2. Works for both time invariant and time variant systems.

3. Works for non-convex and unbounded initial set.

4. Can compute over- and under-approximation.
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The How: Superposition Principle
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Key Idea: Use a set representation 
that exploits this property
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(𝟐. 𝟕𝟏𝟎𝟓𝟐+ 𝟏. 𝟓 – 𝟎. 𝟓 * 𝒂𝒃𝒔(𝒙) – 𝟏. 𝟑𝟓𝟓𝟐𝟔 * 𝒔𝒒𝒓𝒕(𝟒 – (𝒂𝒃𝒔(𝒙) – 𝟏)^𝟐)) * 𝒔𝒒𝒓𝒕(𝒂𝒃𝒔(𝒂𝒃𝒔(𝒙) – 𝟏)/(𝒂𝒃𝒔(𝒙) – 𝟏))
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Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐
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𝑐 𝑣1

𝑣2

𝑐′
𝑣1
′

𝑣2
′

Problem: Exact simulations 
requires computing 𝒆𝑨𝒕 and 
is not necessarily finitely 
representable

𝛼1 ≤ 1 − 𝛼2
2

𝛼1 ≤ 1 − 𝛼2
2

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉



Validated Simulations
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𝜉 𝑥0, 𝑡

𝑥0

𝑣𝑎𝑙𝑆𝑖𝑚(𝑥0, 𝑡) returns sequence of regions such that 
𝜉 𝑥0, 𝑡 ∈ 𝑅𝑙 when 𝑡 ∈ [𝑡𝑙 , 𝑡𝑙+1]

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑅𝑙 → 0 as  |t𝑙+1 − 𝑡𝑙| → 0

.



Over- and Under-Approximations 
Using Validated Simulations

 Problem – exact value of  𝑐, 𝑣1
′ , and 𝑣2

′ is not known!
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𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝑅0

𝑅1

𝑅2
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𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝑐′
𝑣1
′

𝑣2
′
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𝑐 𝑣1
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𝑐 𝑣1

𝑣2
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𝑐 𝑣1
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𝑐 𝑣1

𝑣2
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𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
Over–approximation  is the 

union of all such stars

Under–approximation is the 
intersection of all such stars
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𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
Over–approximation  is the 

union of all such stars

Under–approximation is the 
intersection of all such stars

𝑂𝐴 = 𝑥 ∃𝑐, ∃𝑣1, ∃𝑣2 ∃ ത𝛼, 𝑥 = 𝑐 + 𝛼1𝑣1 + 𝛼2𝑣2}
𝑈𝐴 = 𝑥 ∀𝑐, ∀𝑣1, ∀𝑣2 ∃ ത𝛼, 𝑥 = 𝑐 + 𝛼1𝑣1 + 𝛼2𝑣2}



Over- and Under-Approximations 
Using Validated Simulations

 Problem – exact value of  𝑐, 𝑣1
′ , and 𝑣2

′ is not known!
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𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
Provided in paper:
1. Computing overapproximation
2. Checking safety violation 
without using QE for bounded initial sets



Experimental Results - I

Comparison with SpaceEx on Linear Systems
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Benchmark Vars. TH Sim.Time. Verif.Time. C2E2 SpaceEx Result

Insulin 8 10 0.157 s 0.049 s 0.20 s 8.07 s Safe

Inslin 8 10 0.166 s 0.034 s 0.2 s 7.89 s Unsafe

Platoon 10 25 0.337 s 0.019 s 0.356 s TO Safe

Platoon 10 25 0.323 s 0.019 s 0.342 s TO Unsafe

Tank–10 10 20 0.745 s 0.206 s 0.951 s 4.886 s Safe

Tank–10 10 20 0.721 s 0.19 s 0.911 s 4.992 s Unsafe

Tank–15 15 20 1.325 s 0.363 s 1.688 s 8.176 s Safe

Tank–18 18 20 1.705 s 0.569 s 2.274 s 10.466 s Safe

Helicopter 28 20 3.192 s 1.634 s 4.826 s 2m 1.66 s Safe



Experimental Results - II

Comparison with Flow* for Linear Time Varying Systems
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Benchmark Vars C2E2 Flow*

Tank–TV 2 0.132 s 1.56 s

Tank–TV 4 0.198 s 4.28 s

Tank–TV 6 0.287 s 9.41 s

Tank–TV 8 0.356 s 18.73 s

Tank–TV 10 0.484 s 33.67 s

LTV 5 0.24 s 7.51 s

LTV 7 0.31 s 12.09 s

LTV 9 0.4 s 18.18 s



Experimental Results - III

Verification of  Non-convex and Unbounded Initial Sets
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Benchmark Dim. TH. Init. Set. Res. Time

ACC 3 2 Non–Convex Safe 2.185

ACC 3 2 Unbounded Safe 1.774

ACC 3 2 Non–Convex Unsafe 1.11

ACC 3 2 Unbounded Unsafe 1.01

Tank 5 1 Non–Convex Safe 2.717

Tank 5 1 Unbounded Safe 2.145

Tank 5 1 Non–Convex Unsafe 1.722

Tank 5 1 Unbounded Unsafe 1.519



Conclusions

 New simulation based verification for linear systems

1. For 𝑛–dimensional system, 𝑛 + 1 simulations suffice.
2. Works for both time invariant and time variant systems.
3. Works for non-convex and unbounded systems
4. Can compute over- and under-approximation.
5. Reuse the simulations for different initial sets.
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Thank You


