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Satety Verification: Motivation @

Y4 Vr

o —— @D

" Adaptive cruise control

" Program controller such that v — v¢ while having s > limit.

ODE model.
S=vi—V;

. _ Closed loop system
v =—-k,v+u; : 1 1 b represented as
> N S [N R
Controller design \ a1 axy|lv b, X = AXx
U= CV+CyS+C3

Safety verification problem for linear systems x = Ax + B

From initial set ® (dis)prove that no trajectory enters the unsafe set U
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Solution: Reachable Set @

System: X = Ax + B, initial set ® (polyhedra), unsafe set U.

t
E(xq,t) = eftx, +f e4t=DBdr
0
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Solution: Reachable Set @

System: X = Ax + B, initial set ® (polyhedra), unsafe set U.

t
E(x,t) = eftx, +j e4t=DBdr
0

l ‘ Procedure to compute reachable set
1. Represent the set © using data structure
2. Select a time interval h.
3. Compute Post(0, h) for [0, h]

4. Tterate for future intervals.

Drawbacks

1. Representation cost grows with n

2. Only overapproximation

3. Cannot be directly applied for
time varying linear systems

Data structure

SpaceEx - Support Functions

CORA - Zonotopes
Flow* - Taylor Models
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This Paper: Contributions @

New simulation based verification for linear systems.

. For n-dimensional system, 1 + 1 simulations
suffice.

2. Works for both time invariant and time variant systems.

. Works for non-convex and unbounded initial set.

4. Can compute over- and under-approximation.
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The How: Superposition Principle @
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§(x2,t)
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Implications Ot Superposition @
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1 ll \ f(xl, t)
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Implications Ot Superposition @

2
1 ll \ €(x1’ t)
«
n
V, “\\\ / !
\
2 \\\\alvl + a2V2 f(x(), t)
b SN

ER §(x2,1)

$(xg + ayvg + ayv,, t)

Why is this important?
Given &y, &1, and &,, one can

Xo compute any simulation starting
Y from linear span of xy, V1, and v,.
2\
¥
% X0 + a1Vq + a,v,
2
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Implications Ot Superposition @

-~ — f(xOI t)
§(xo + ayv1 + ayvy,t)

§(x2,1)

T

$(xg + ayvg + ayv,, t)

Why is this important?
Given &y, &1, and &,, one can

Xo compute any simulation starting
Y from linear span of xy, V1, and v,.
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\$
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Implications Ot Superposition @

T~ — f(XOI t)
§(xo + ayv1 + ayvy,t)

§(x2,1)

T

$(xg + ayvg + ayv,, t)

Why is this important?
Given &y, &1, and &,, one can

Xo compute any simulation starting
v from linear span of Xy, V1, and v,.
N\, .
X, Key Idea: Use a set representation

that exploits this property
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Representation: Generalized Stars @

" Generalized star is represented as (¢, V, P)

" ¢ — center, I/ — set of vectors, P — predicate.

(c, V,P)={x|3a = (aq,...,ay),c+ Z;a;v; = x,P(a) = T}

Uy ‘ G|+ a1V, + azv; P((“l: %) ))
! A

€1 U1 |a1|S1/\|a2|S1
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" Generalized star is represented as (¢, V, P)

" ¢ — center, I/ — set of vectors, P — predicate.

(c, V,P)={x|3a = (aq,...,ay),c+ Z;a;v; = x,P(a) = T}

/;X P({ay, az))

!y la | < 1A |ay| < 1A |a; +a,| < 1.5
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Representation: Generalized Stars @

" Generalized star is represented as (¢, V, P)

" ¢ — center, I/ — set of vectors, P — predicate.

(c, V,P)={x|3a = (aq,...,ay),c+ Z;a;v; = x,P(a) = T}

a

5 P({aq, a3))

C1 v . . abs(3 - abs(x)) . abs(abs(x)- 3)\ , x\2
1 1.5 sq”<('“”‘(“”s(")‘ D) absto- D3 abs<x>)> (1 +W> sq”<1 -(3) >+
abs(1- abs(x)))

1- abs(x)
2 -
(3)*sqrt (1 ] (’_7‘) )*sqrt <“bs(“bs(x) 4)),abs (;) - 0.0913722 * x2-3 + sqrt(1 - (abs(abs(x)- 2)- 1)2),

abs(x)-4
(2.71052+ 1.5 - 0.5 *abs(x) - 1.35526 * sqrt(4 - (abs(x) - 1)"2)) * sqrt(abs(abs(x) - 1)/(abs(x) - 1))

(4. 5+0.75* (abs(x - 0.5) + abs(x + 0.5))- 2.75 * (abs(x-0.75) + abs(x + 0. 75))) * (1 +
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Reachable Set Computation Using
Simulations For Generalized Stars

Given © £ (c,V, P) to compute reachable set

L
® £ (V,P)

la | < 1A |ay| <1
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Simulations For Generalized Stars
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Reachable Set Computation Using
Simulations For Generalized Stars

\

Given © £ (c,V, P) to compute reachable set
1. Simulate from c
2. Simulate from ¢ 4+ v; for each i

la | < 1A |ay| <1 A|ag+ay| <15

Reach(0,t) 2 (¢/,V', P)
Observation: Reach preserves
the “shape” of the initial set.

| < 1A |ay| <1A|lay +ay| <15
Reachable set at time t is given by {(c’, V', P) where
1. ¢’ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢
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Reachable Set Computation Using
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Given © £ (c,V, P) to compute reachable set

1. Simulate from ¢
L

2. Simulate from ¢ + v; for each
y alsl—(X%
o

R

Reach(0,t) 2 (¢/,V', P)
® 2 (c,V,P) Observation: Reach preserves
the “shape” of the initial set.
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1. ¢’ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢

CAV 2016

\

\J

33



Reachable Set Computation Using

N Y

Simulations For Generalized Stars

Given © £ (c,V, P) to compute reachable set

1. Simulate from c
2. Simulate from ¢ + v; for each

l
-
Y / /

R

a, <1 —a3

Problem: Exact simulations

At and

is not necessarily finitely
representable

requires computing e

a, <1 —a3s

Reach(0,t) 2 (¢/,V', P)
/ © 2 (c,V,P) Observation: Reach preserves
the “shape” of the initial set.

Reachable set at time ¢t is given by (c’, V', P) where

1. ¢ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢
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Validated Simulations @

/

At

xo"* ——

valSim(xg, t) returns sequence of regions such that
E(xg,t) €E Ry whent € [t;, t;41]

diameter(R;) - 0 as |tj4; — ¢ = 0
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Over- and Under-Approximations
Using Validated Simulations

* Problem — exact value of ¢, vy, and v is not known!

® £ (V,P)

la | < 1A |ay| <1
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Over- and Under-Approximations
Using Validated Simulations

* Problem — exact value of ¢, vy, and v, js not known!

® £ (V,P)
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Over- and Under-Approximations
Using Validated Simulations

] -

* Problem — exact value of ¢, vy, and v, js not known!

T

Over-approximation is the

O 2 {cV,P) union of all such stars

la | < 1A |ay| <1

Under-approximation is the
intersection of all such stars
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Over- and Under-Approximations
Using Validated Simulations

] -

* Problem — exact value of ¢, vy, and v, js not known!

T

Over-approximation is the

O 2 {cV,P) union of all such stars

la | < 1A |ay| <1

Under-approximation is the
intersection of all such stars

OA ={x|3c,3v,, v, T, x = c + a1v; + A,V }
UA = {x|Vc, Vv, Vv, A&, x = c + a,v; + a,1,}
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Over- and Under-Approximations
Using Validated Simulations

/] -

s not known!

* Problem — exact value of ¢, v{,and v

® £ {(V,P , ,
( ) Provided in paper:

ol = 1Afazl <1 1, Computing overapproximation
2. Checking safety violation
without using QE for bounded initial sets

CAV 2016
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Insulin
Inslin
Platoon
Platoon
Tank-10
Tank-10
Tank-15
Tank-18

Helicopter

Experimental Results - I

Comparison with SpaceEx on Linear Systems

10
10
10
10
15
18
28

10
25
25
20
20
20
20
20

0.157 s
0.166 s
0.337 s
0.323 s
0.745 s
0.721 s
1.325 s
1.705 s
3.192 s

0.049 s
0.034 s
0.019 s
0.019 s
0.206 s
0.19 s
0.363 s
0.569 s
1.634 s
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0.20 s
0.2s
0.356 s
0.342 s
0.951 s
0.911 s
1.688 s
2.274 s
4.826 s

8.07 s
7.89 s
TO
TO
4.886 s
4.992 s
8.176 s
10.466 s

2m 1.66 s

17

Safe
Unsafe
Safe
Unsafe
Safe
Unsafe
Safe
Safe
Safe
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Experimental Results - 11

Comparison with Flow* for Linear Time Varying Systems

Tank-TV 0.132 s 1.56 s
Tank-TV 4 0.198 s 4.28 s
Tank-TV 6 0.287 s 941 s
Tank-TV 8 0.356 s 18.73 s
Tank-TV 10 0.484 s 33.67s
LTV 5 0.24 s 7.51 s
LTV 7 0.31s 12.09 s
LTV 9 0.4s 18.18 s
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Experimental Results - 111

Verification of Non-convex and Unbounded Initial Sets

I T T T

ACC
ACC
ACC
Tank
Tank
Tank
Tank

U U U Ut W LW W

Non-Convex
Unbounded
Non-Convex
Unbounded
Non-Convex
Unbounded

Non-Convex

Unbounded
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Safe
Safe
Unsafe
Unsafe
Safe
Safe
Unsafe
Unsafe

2.185
1.774
1.11
1.01
2.717
2.145
1.722
1.519

17
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Conclusions

" New simulation based verification for linear systems

L.

A

For n-dimensional system, n 4+ 1 simulations suffice.

Works for both time invariant and time variant systems.

Works for non-convex and unbounded systems
Can compute over- and under-approximation.

Reuse the simulations for different initial sets.

Thank You

CAV 2016
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