Parsimonious, Simulation Based Verification Of Linear Systems

Mahesh Viswanathan

- Adaptive cruise control
- Program controller such that $v \rightarrow v_f$ while having s > limit.

- Adaptive cruise control
- Program controller such that $\mathbf{v} \to \mathbf{v}_{f}$ while having s > limit. ODE model. $\dot{\mathbf{s}} = \mathbf{v}_{f} - \mathbf{v};$ $\dot{\mathbf{v}} = -\mathbf{k}_{a}\mathbf{v} + \mathbf{u};$ On the limit of the limit.

Controller design $u = c_1v + c_2s + c_3$

- Adaptive cruise control
- Program controller such that $v \rightarrow v_f$ while having s > limit.

ODE model. $\dot{s} = v_f - v;$ $\dot{v} = -k_a v + u;$ Controller design $u = c_1 v + c_2 s + c_3$ Closed loop system $\begin{bmatrix} \dot{s} \\ v \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} s \\ v \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ (represented as $\dot{x} = Ax + B$)

- Adaptive cruise control
- Program controller such that $v \rightarrow v_f$ while having s > limit.

ODE model. $\dot{s} = v_f - v;$ $\dot{v} = -k_a v + u;$ Controller design $u = c_1 v + c_2 s + c_3$ Closed loop system $\begin{bmatrix} \dot{s} \\ v \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} s \\ v \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ (represented as $\dot{x} = Ax + B$)

Safety verification problem for linear systems $\dot{x} = Ax + B$ From initial set Θ (dis)prove that no trajectory enters the unsafe set U

System: $\dot{x} = Ax + B$, initial set Θ (polyhedra), unsafe set U.

$$\xi(x_0,t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bd\tau$$

System: $\dot{x} = Ax + B$, initial set Θ (polyhedra), unsafe set U.

 $\xi(x_0,t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bd\tau$

Procedure to compute reachable set1. Represent the set Θ using data structure

Data structure SpaceEx – Support Functions CORA – Zonotopes Flow* – Taylor Models

System: $\dot{x} = Ax + B$, initial set Θ (polyhedra), unsafe set U.

Data structure SpaceEx – Support Functions CORA – Zonotopes Flow* – Taylor Models

$$\xi(x_0, t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bd\tau$$

Procedure to compute reachable set

- 1. Represent the set Θ using data structure
- 2. Select a time interval *h*.
- 3. Compute $Post(\Theta, h)$ for [0, h]

System: $\dot{x} = Ax + B$, initial set Θ (polyhedra), unsafe set U.

$$\xi(x_0,t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bd\tau$$

Procedure to compute reachable set

- 1. Represent the set Θ using data structure
- 2. Select a time interval *h*.
- 3. Compute $Post(\Theta, h)$ for [0, h]
- 4. Iterate for future intervals.

Data structure SpaceEx – Support Functions CORA – Zonotopes Flow* – Taylor Models

System: $\dot{x} = Ax + B$, initial set Θ (polyhedra), unsafe set U.

Data structure SpaceEx – Support Functions CORA – Zonotopes Flow* – Taylor Models

$$\xi(x_0, t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bd\tau$$

Procedure to compute reachable set

- 1. Represent the set Θ using data structure
- 2. Select a time interval *h*.
- 3. Compute $Post(\Theta, h)$ for [0, h]
- 4. Iterate for future intervals.

Drawbacks

- 1. Representation cost grows with **n**
- 2. Only overapproximation
- 3. Cannot be directly applied for time varying linear systems

This Paper: Contributions

New simulation based verification for linear systems.

- 1. For *n*-dimensional system, n + 1 simulations suffice.
- 2. Works for both time invariant and time variant systems.
- 3. Works for non-convex and unbounded initial set.
- 4. Can compute over- and under-approximation.

The How: Superposition Principle

The How: Superposition Principle

The How: Superposition Principle

 x_2

 x_1

 v_1

 x_0

 $x_0 + \alpha_1 v_1 + \alpha_2 v_2$

 x_1

 v_1

 x_0

 v_2

- Generalized star is represented as $\langle c, V, P \rangle$
- c center, V set of vectors, P predicate.

- Generalized star is represented as $\langle c, V, P \rangle$
- c center, V set of vectors, P predicate.

- Generalized star is represented as $\langle c, V, P \rangle$
- c center, V set of vectors, P predicate.

- Generalized star is represented as $\langle c, V, P \rangle$
- c center, V set of vectors, P predicate.

$$\langle c, V, P \rangle = \{ x \mid \exists \bar{\alpha} = (\alpha_1, \dots, \alpha_n), c + \Sigma_i \alpha_i v_i = x, P(\bar{\alpha}) = \mathsf{T} \}$$

$$P(\langle \alpha_1, \alpha_2 \rangle) \triangleq$$

$$P(\langle \alpha_1, \alpha_2 \rangle) \triangleq$$

$$1.5^* sqrt \left((abs(abs(x)-1))^* \frac{abs(3-abs(x))}{(abs(x)-1)^*(3-abs(x))} \right)^* \left(1 + \frac{abs(abs(x)-3)}{abs(x)-3} \right)^* sqrt \left(1 - \frac{x}{2} \right)^2 +$$

$$(4.5 + 0.75^* (abs(x-0.5) + abs(x+0.5)) - 2.75^* (abs(x-0.75) + abs(x+0.75)) \right)^* \left(1 + \frac{abs(1-abs(x))}{1-abs(x)} \right),$$

$$(3)^* sqrt \left(1 - \frac{x}{7} \right)^2 sqrt \left(\frac{abs(abs(x)-1)}{abs(x)-4} \right) + abs(\frac{x}{2} - 0.0913722 + x^2 - 3 + sqrt(1 - (abs(abs(x)-1)))^2,$$

$$(2.71052 + 1.5 - 0.5^* abs(x) - 1.35526^* sqrt(4 - (abs(x) - 1)^2))^* sqrt(abs(abs(x) - 1))$$

Given $\Theta \triangleq \langle c, V, P \rangle$ to compute reachable set

Given $\Theta \triangleq \langle c, V, P \rangle$ to compute reachable set

1. Simulate from *c*

2. Simulate from $c + v_i$ for each *i*

Given $\Theta \triangleq \langle c, V, P \rangle$ to compute reachable set

1. Simulate from *c*

2. Simulate from $c + v_i$ for each *i*

Reachable set at time t is given by $\langle c', V', P \rangle$ where

- 1. c' is the simulation corresponding to c
- 2. v_i' is the difference of simulations from $c + v_i$ and from c

Reachable Set Computation Using

Reachable set at time t is given by $\langle c', V', P \rangle$ where

- 1. c' is the simulation corresponding to c
- 2. v_i' is the difference of simulations from $c + v_i$ and from c

Reachable Set Computation Using

Reachable set at time t is given by $\langle c', V', P \rangle$ where

- 1. c' is the simulation corresponding to c
- 2. v_i' is the difference of simulations from $c + v_i$ and from c

Given $\Theta \triangleq \langle c, V, P \rangle$ to compute reachable set

1. Simulate from *c*

2. Simulate from $c + v_i$ for each *i*

 $valSim(x_0, t)$ returns sequence of regions such that $\xi(x_0, t) \in R_l$ when $t \in [t_l, t_{l+1}]$

 $diameter(R_l) \to 0 \text{ as } |t_{l+1} - t_l| \to 0$

Over- and Under-Approximations Using Validated Simulations

Over- and Under-Approximations Using Validated Simulations

Over- and Under-Approximations Using Validated Simulations

Under-approximation is the **intersection** of all such stars

Under-approximation is the **intersection** of all such stars

$$OA = \{ x \mid \exists c, \exists v_1, \exists v_2 \exists \overline{\alpha}, x = c + \alpha_1 v_1 + \alpha_2 v_2 \}$$
$$UA = \{ x \mid \forall c, \forall v_1, \forall v_2 \exists \overline{\alpha}, x = c + \alpha_1 v_1 + \alpha_2 v_2 \}$$

• Problem – exact value of c, v'_1 , and v'_2 is not known!

Computing overapproximation

2. Checking safety violation

without using QE for bounded initial sets

Experimental Results - I

Comparison with SpaceEx on Linear Systems

Benchmark	Vars.	TH	Sim.Time.	Verif.Time.	C2E2	SpaceEx	Result
Insulin	8	10	0.157 s	0.049 s	0.20 s	8.07 s	Safe
Inslin	8	10	0.166 s	0.034 s	0.2 s	7.89 s	Unsafe
Platoon	10	25	0.337 s	0.019 s	0.356 s	ТО	Safe
Platoon	10	25	0.323 s	0.019 s	0.342 s	ТО	Unsafe
Tank–10	10	20	0.745 s	0.206 s	0.951 s	4.886 s	Safe
Tank–10	10	20	0.721 s	0.19 s	0.911 s	4.992 s	Unsafe
Tank–15	15	20	1.325 s	0.363 s	1.688 s	8.176 s	Safe
Tank–18	18	20	1.705 s	0.569 s	2.274 s	10.466 s	Safe
Helicopter	28	20	3.192 s	1.634 s	4.826 s	2m 1.66 s	Safe

Experimental Results - II

Comparison with Flow* for Linear Time Varying Systems

Benchmark	Vars	C2E2	Flow*
Tank - TV	2	0.132 s	1.56 s
Tank - TV	4	0.198 s	4.28 s
Tank - TV	6	0.287 s	9.41 s
Tank - TV	8	0.356 s	18.73 s
Tank - TV	10	0.484 s	33.67 s
LTV	5	0.24 s	7.51 s
LTV	7	0.31 s	12.09 s
LTV	9	0.4 s	18.18 s

Experimental Results - III

Verification of Non-convex and Unbounded Initial Sets

Benchmark	Dim.	TH.	Init. Set.	Res.	Time
ACC	3	2	Non-Convex	Safe	2.185
ACC	3	2	Unbounded	Safe	1.774
ACC	3	2	Non-Convex	Unsafe	1.11
ACC	3	2	Unbounded	Unsafe	1.01
Tank	5	1	Non-Convex	Safe	2.717
Tank	5	1	Unbounded	Safe	2.145
Tank	5	1	Non-Convex	Unsafe	1.722
Tank	5	1	Unbounded	Unsafe	1.519

Conclusions

- New simulation based verification for linear systems
 - 1. For n-dimensional system, n + 1 simulations suffice.
 - 2. Works for both time invariant and time variant systems.
 - 3. Works for non-convex and unbounded systems
 - 4. Can compute over- and under-approximation.
 - 5. Reuse the simulations for different initial sets.

Thank You