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Abstract. We present a technique to verify safety properties of linear
systems (possibly time varying) using very few simulations. For a linear
system of dimension n, our technique needs n+ 1 simulation runs. This
is in contrast to current simulation based approaches, where the number
of simulations either depends upon the number of vertices in the convex
polyhedral initial set, or on the proximity of the unsafe set to the set
of reachable states. At its core, our algorithm exploits the superposition
principle of linear systems. Our algorithm computes both an over and
an under approximation of the set of reachable states.

1 Introduction

Cyberphysical systems, that involve the close interaction of a computing device
with a physical process, are most faithfully modeled as a hybrid system that
exhibits both discrete and continuous changes to system state. The mathematical
model of a hybrid system consists of a finite collection of control modes where
the system state evolves continuously with time. Transitions between control
modes are governed by constraints on the system state.

A commonly occurring special class of hybrid systems is one where the con-
tinuous dynamics in each control mode is mathematically described using a
time-varying linear differential equation of the form

ẋ = A(t)x+B(t), (1)

where A(t) and B(t) are matrices which may themselves be changing with time.
While verifying invariant properties for such systems is known to be undecidable
in general, the set of states reachable within bounded time (and bounded number
of discrete steps) can be approximated with arbitrary precision. One of the core
challenges in computing such bounded-time reachable sets is to compute the set
of all states reachable within a time bound for a single control mode with no
mode switches (often referred as continuous post).

There are two main approaches to computing the continuous post for a mode
within time bound T . The first approach [18,12,7] exploits the linearity of the
system dynamics. For continuous dynamics given by Equation (1), let us denote
by ξ(x, t) the state at time t starting from x. It is well known that the state
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reached at time t when starting from αx1 + (1 − α)x2 (0 ≤ α ≤ 1), a convex
combination of states x1 and x2, is given by αξ(x1, t) + (1−α)ξ(x2, t). Hence, if
the initial set of states is a convex, bounded polytope, then the set of states reached
at time t is the convex hull of the states reached from each vertex of the initial
polytope. Further, the set of states reached within time t is over-approximated
by bloating the convex hull of the vertices of the initial polytope and the vertices
of the polytope of states reached at time t. The bloating factor, determined by
a careful error analysis, depends on the length of time t. Thus to get a good
approximation of the reach set within a time bound T , the interval [0, T ] is
broken up into small steps adaptively [13,22]. The cost of computing the reach
set in this approach, therefore, depends on two things 1) the number of vertices
in the initial polytope (which is exponential in the dimension of the system),
and 2) the number of smaller intervals the time interval [0, T ] is divided into.
The efficiency of this approach also depends on the data structure used to store
the set of reachable states. Ellipsoids [17], convex polyhedra [12], zonotopes [14],
support functions [18], polynomial zonotopes [2], and Taylor models [5], are
some of the popular data structures used. Each of these data structures requires
developing new algorithms for computing the reachable set for a given class of
systems.

The second approach is a simulation-based approach [15,9,10]. Here, the ini-
tial set is partitioned into smaller neighborhoods, and the system is simulated
from the center of each neighborhood. Based on the norms of matrices A and B,
one can compute an envelope around each simulation trace that guarantees the
containment of the trajectory starting from any point in a given initial partition.
The reachable set is therefore over-approximated by a collection of simulation
tubes. The quality of this set can be improved by computing a finer partitioning
of the initial set. Thus, for a safe system, the number of simulations needed,
depends on how far the unsafe set is from the reachable set; if it is far, a coarse
initial partition suffices, and if it is close then we need a fine initial partition,
which means many simulations. Though this approach may require significantly
more simulations, it enjoys a couple of advantages over the previous approach.
First, since this approach does not rely on convexity properties of linear systems,
it can be used to analyze non-convex initial sets and time varying linear systems
(where A(t) and B(t) change with time). Second, not only can it be used to
prove safety, but also to find counterexamples.

Apart from these two approaches, a few theorem proving approaches have
also been proposed [23,20,21,24,26,16]. In these approaches one does not compute
the set of reachable states, but rather prove that a certain safety property is
satisfied. Therefore, this technique can be used for proving safety of non-convex
and unbounded initial sets, but also requires additional manual effort.

Inspired by the simulation-based approach, we present a new approach for
computing the reachable set for linear systems. Our approach combines the ad-
vantages of each of the above approaches. First, like the simulation-based ap-
proach, it can be used to analyze non-convex initial states, time-varying linear
systems, and it can prove unsafety of systems in addition to safety. Second,
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and more importantly, it uses significantly fewer simulations — to compute the
reachable set of an n-dimensional system, we need to simulate the system from
only n+1 initial states. This is in contrast to the potentially exponentially many
vertices to be propagated in the non-simulation approach, and potentially much
larger than exponentially-many simulations in the simulation-based approach.
Third, our approach does not require any additional computation if the initial
set changes, as long as the “center” of the set remains the same; what this means
precisely will be become clearer later in this introduction as we describe our ap-
proach. Fourth, the previous two approaches only work for bounded initial sets.
Our new approach, on the other hand, can handle unbounded initial sets. Fi-
nally, since our method only relies on simulations, it does not require a formal
model, and can be used to analyze black-box systems.

The main idea behind our approach is to exploit what is sometimes called the
superposition principle. Let us consider an n-dimensional system (i.e., continu-
ous state is in Rn) described by Equation (1). For vectors v1, v2, . . . vn, initial
“center” x0, and constants α1, α2, . . . αn, the superposition principle says that

ξ(x0 +

n∑
i=1

αivi, t) = ξ(x0, t) +

n∑
i=1

αi(ξ(x0 + vi, t)− ξ(x0, t)) (2)

Thus, if the initial set is of the form x0 +
∑n
i=1 αivi where the coefficients ᾱ

belong to some set ∆, then the set of states reached at time t is given by ξ(x0, t)+∑n
i=1 αiv

′
i with ᾱ ∈ ∆, where v′i = ξ(x0 + vi, t)− ξ(x0, t).

Notice, that this representation of the states at time t, only requires us to
find ξ(x0, t), ξ(x0 + v1, t), . . . ξ(x0 + vn, t), which can be obtained by only n+ 1
simulations. We call this representation of sets of states as the linear span of a
center x0 and basis vectors {vi}ni=1 with coefficients ᾱ ∈ ∆ generalized star sets.
Such generalized star sets naturally generalize standard shapes like polytopes,
ellipsoids, and non-convex sets. Using generalized star sets makes reachable set
computation simple. Moreover, if the initial set changes because of a change in
∆, the superposition principle tells us that we don’t need to do any additional
simulations in order to represent the reachable set at time t. We show how this
basic idea can be adapted to account for simulation errors, to construct both
under and over approximations of the reachable set of states, efficiently.

Our experimental results substantiate our belief that this new approach can
serve as the founding principle that underlies the next advance in the scalable
analysis of time varying linear systems. Our method scales to high dimensional
systems and beats all current verification technologies by at least an order of
magnitude. This is not surprising given the obvious theoretical advantages it
enjoys over past methods due to the reduced number of simulations it needs.

2 Preliminaries

We refer to states and vectors as elements in Rn. We denote the `∞ norm of the
vectors and states by || · ||. To avoid confusion we denote states by xi and vectors
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by vi. Given two states x1 and x2, the difference vector is defined as v = x2−x1.

Given a set S ⊆ Rn, diameter(S)
∆
= sup{||x− y|| | x, y ∈ S}. For a set S ⊆ Rn, a

point x ∈ S is said to be a center if ∀y ∈ S. ||x − y|| ≤ diameter(S)/2. A set S
may or may not have a center; convex sets do have a center. When a set S has
a center there maybe many; we will abuse notation and use center(S) to denote
one picked by the axiom of choice. A predicate P : Rn → {>,⊥} denotes a set of
vectors denoted by [[P ]] = {v |P (v) = >}. We abuse notation and denote both the
predicate P and the set [[P ]] as P . The ball of radius δ around a state x is defined
as Bδ(x) = {y | ||x− y|| ≤ δ}; similarly, for a set S ⊆ Rn, Bδ(S) = ∪x∈SBδ(x).
Given two vectors p, q ∈ Rk where p = [p1, p2, . . . , pk]T and q = [q1, q2, . . . , qk]T ,
we say that p ≤ q if and only if ∀i. pi ≤ qi. Given x ∈ Rn and S ⊆ Rn, the set of

difference vectors from x to S, is defined as diff(S, x)
∆
= { v | ∃x′ ∈ S, v = x′−x}.

We will find it convenient to represent subsets of states using a representation
that we call generalized star sets, which we define next.

Definition 1. A generalized star set is a tuple Θ = 〈x0, V, P 〉 where x0 ∈ Rn
is called the center, V = {v1, v2, . . . vm} is a set of m (≤ n) vectors in Rn called
the basis, and P : Rn → {>,⊥} is a predicate.

A generalized star set Θ defines a subset of Rn as follows.

[[Θ]] = {x |∃ᾱ = [α1, . . . , αm]T such that x = x0 +Σn
i=1αiviand P (ᾱ) = >}

Sometimes we will refer to both Θ and [[Θ]] as Θ.

In the above definition of generalized star sets, the size of the vector set V
will often be determined by the dimension of the set [[Θ]] being defined, and the
vectors will be linearly independent. However, we do not require this. Generalized
star sets are a geenralization of many natural sets of states. Depending on the
predicate P , generalized star representation can define a variety of sets including
non-convex sets and convex sets like polyhedra and ellipsoids. We provide some
examples of such sets.

Example 1. Consider the 2-dimensional plane R2. Take V = {[1, 0]T , [0, 1]T } the
set of unit vectors along the two axes, and x0 = (3, 3).

Consider g = [1, 1, 1, 1]T , and P (ᾱ) = Cᾱ ≤ g where C =

1 −1 0 0

0 0 1 −1

T
The generalized star set Θ = 〈x0, V, P 〉 defines the rectangular set

[[Θ]] = B1(3, 3) = {(x, y) | 2 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 4}

On the other hand, defining P (ᾱ) = (α1 − 3)2 + (α2 − 3)2 ≤ 1 defines the
disc of radius 1 with center (3, 3).

Consider a system described by the linear ODE

ẋ = A(t)x+B(t). (3)
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The solution of the above ODE with initial state x0 is denoted as ξ(x0, t). For
this solution d

dt (ξ(x0, t)) = A(t)ξ(x0, t) + B(t) and ξ(x0, 0) = x0. For well de-
fined linear time varying systems, the state at time t is given using the state
transformation matrix Φ : R≥0 × R≥0 → Rn×n such that the trajectory at time
t is given as

ξ(x0, t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)B(s)ds. (4)

Notice that for linear time invariant systems, the expression for Φ(t2, t1) =
eA(t2−t1).

For performing simulation based verification, instead of using a numerical
simulation which returns a sequence of states, we use validated simulations which
returns a sequence of sets of states with the following guarantees.

Definition 2. For a system described by Equation (3), with closed form ξ(x0, t)
given by Equation (4), an (x0, T, ε, h)-validated simulation of ξ(x0, t) is ψ =
(R1, [t0, t1]), (R2, [t1, t2]), . . . , (Rk, [tm−1, tm]) where Ri ⊆ Rn such that

1. ∀1 ≤ i ≤ m, ti − ti−1 ≤ h, t0 = 0, tm = T .
2. ∀1 ≤ i ≤ m,∀t ∈ [ti−1, ti], ξ(x0, t) ∈ Ri.
3. ∀1 ≤ i ≤ m, diameter(Ri) ≤ ε.

The first condition enforces that the time step for each of these regions is bounded
by h. The second condition enforces that for each interval [ti−1, ti] the trajectory
is contained within the region Ri. The third condition enforces that the diameter
of each region is bounded by ε. Existing numerical solvers such as CAPD, and
VNODE-LP can compute validated simulations which contain the trajectory.
For these tools, the sets Ri are convex, polyhedral sets. Therefore, we assume
that the subroutine valSim(x0, T, h) returns 〈ψ, ε〉 such that ψ is an (x0, T, ε, h)-
validated simulation (with Ri being convex). In addition, as h → 0, ε → 0.

Definition 3. For a system in Equation (3), and initial set Θ, the set of states
reachable within time bound T is ReachSet〈A,B〉(Θ, T ) = {ξ(x0, t) | x0 ∈ Θ, 0 ≤
t ≤ T}. We drop A and B from the ReachSet when it is clear from the context.

A set RO is said to be an over-approximation of the reachable states within
time T if ReachSet(Θ, T ) ⊆ RO. Analogously, RU is said to be an under-
approximation of the set of reachable states within time bound T , if RU ⊆
ReachSet(Θ, T ).

Definition 4. The system given in Equation (3) is said to be safe for for bounded
time T from the initial state Θ and unsafe set U if ReachSet(Θ, T ) ∩ U = ∅.

3 Computing Reachable Sets From Simulations

In this section we outline how to compute reachable sets of n-dimensional linear
systems, using at most n + 1 simulations. We begin (Section 3.1) by making
an observation that is often called the superposition principle. This principle
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enables us to express the set of states reached at time t as a generalized star set,
if the initial states is given as a generalized star set. In Section 3.2, we show how
the superposition principle can be used to compute the set of reachable states,
under the assumption that the exact trajectory from each initial state can be
computed. Finally, in Section 3.3, we show how all of these ideas can used when
we only have access to validated simulation engines.

3.1 Superposition Principle For Linear Systems

x0

x0 + u1

x0 + u2

x0 + u1 + u2

ξ(x0, t)

ξ(x0 + u1, t)

ξ(x0 + u2, t)

(ξ(x0 + u1)−
ξ(x0))

+(ξ(x0 + u2)−
ξ(x0))

Fig. 1: Observe that the state reached at time t from x0 + u1 + u2 is identical to
ξ(x0, t) + (ξ(x0 + u1, t)− ξ(x0, t)) +(ξ(x0 + u2, t)− ξ(x0, t)).

In order to explain the superposition principle, let us fix a system described
by Equation (3). Recall from Equation (4), the solution is for the system is given
as

ξ(x0, t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)B(s)ds.

Consider two initial states x0 and x0 + u1, for some vector u1. From the
solution given in Equation (4), we have

ξ(x0 + u1, t)− ξ(x0, t) = Φ(t, 0)u1 (5)
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For two vectors u1 and u2, and state x0, from Equation (4), we have

ξ(x0 + α1u1 + α2u2)

= Φ(t, 0)(x0 + α1u1 + α2u2) +

∫ t

0

Φ(t, s)B(s)ds

= [Φ(t, 0)x0 +

∫ t

0

Φ(t, s)B(s)ds] + α1Φ(t, 0)u1 + α2Φ(t, 0)u2

= ξ(x0, t) + α1Φ(t, 0)u1 + α2Φ(t, 0)u2

= ξ(x0, t) + α1[ξ(x0 + u1, t)− ξ(x0, t)] + α2[ξ(x0 + u2, t)− ξ(x0, t)]

The above equation suggests that linear combinations of ξ(x0 + u1, t)− ξ(x0, t)
and ξ(x0 + u2, t) − ξ(x0, t) gives us the difference between trajectories starting
from initial state x0 and x0 + α1u1 + α2u2. This is illustrated in Figure 1.
Extending this observation to n vectors we have

ξ(x0 +Σn
i=1αiui, t) = ξ(x0, t) +Σn

i=1αi(ξ(x0 + ui, t)− ξ(x0, t)). (6)

3.2 Reach Sets from Exact Trajectories

In this section, we will outline how the superposition principle can be used
construct the reachable states at a given time t. Let us fix an initial set given
as a generalized star set Θ = 〈x0, V, P 〉, where V = {v1, v2, . . . vm}. We begin
by showing how to compute Reacht(Θ), the set of states reached at time t;
Reacht(Θ) is defined precisely as follows.

Reacht(Θ) = {ξ(x, t) | x ∈ [[Θ]]}.

The reachable states at time t is computed by Algorithm 1 as a generalized star
set.

input : Initial Set: Θ = 〈x0, V, P 〉, Time instance: t
output: Reacht(Θ)

1 x′0 ← ξ(x0, t);
2 for each vi ∈ V do
3 x′i ← ξ(x0 + vi, t);
4 v′i ← x′i − x′0;

5 end
6 V ′ ← {v′1, . . . , v′m};
7 Reacht(Θ)← 〈x′0, V ′, P 〉;
8 return Reacht(Θ);

Algorithm 1: Algorithm that computes the reachable set at time t from n+1
simulations.

The algorithm in line 1 computes the state of trajectory starting from the
initial state x0 at time t as x′0. The loop in lines 2 to 4 computes x′i, the state of
the trajectory starting from x0+vi at time t. The reachable set at time t is given
as as generalized star set 〈x′0, V ′, P 〉, where V ′ = {v′1, . . . , v′n} with v′i = x′i− x′0.
Theorem 1 proves that the set returned is indeed the reachable set.
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Theorem 1. The set Reacht(Θ) is the reachable set for Θ at time t.

Proof. Let us consider the set of vectors V ′ = {v′1, . . . , v′m}. Observe from Equa-
tion (5) that v′i = Φ(t, 0)vi.

A state y is reachable at time t, if y is the state reached at time t when
starting from some initial state x′ ∈ [[Θ]]. More formally, a state y ∈ Reacht(Θ)
if and only if ∃ᾱ = [α1, . . . , αm]T such that P (ᾱ) = > and y = ξ(x′, t) where
x′ = x0 +Σn

i=1αivi. From lines 1, 3, and 4, we have that

y = ξ(x0, t) +Σn
i=1αi(ξ(x0 + vi, t)− ξ(x0, t)).

Thus, y ∈ 〈x′0, V ′, P 〉 establishing the correctness of the algorithm.
We conclude this proof by observing that since Φ(t, 0) is an invertible matrix,

V ′ is linearly independent set of vectors, if V is linearly independent.

p

v

v1

v2

p

v

v1

v2

Fig. 2: Reachable set of car moving in 1-dimension with constant acceleration.
In both graphs, car velocity v is plotted on the x-axis and position p is on the
y-axis. The set of initial states and the set of reachable states at time 2 are shown
in yellow. The vectors defining the sets is shown in red at time 0, 1, and 2. On
the left, the initial set is the ball of radius 1 with center (3, 3) with respect to
`∞-norm. On the right the initial set is the same except that the ball is defined
with respect to the `2-norm. Notice that the evolution of the vectors that define
the geenralized star set is the same in both the left and the right.
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Example 2. Consider the simple example of a car moving in 1-dimension with
constant acceleration of 2 units. Taking the state of the system to be the car
position (p) and velocity (v), the dynamics can be described as

ṗ = v v̇ = 2

Consider the polyhedral initial set given as a generalized star set. In other
words, Θ = 〈x0, V, P 〉, where x0 = (3, 3), V = {[1, 0]T , [0, 1]T }, g = [1, 1, 1, 1]T

and P (ᾱ) = Cᾱ ≤ g where C =

1 −1 0 0

0 0 1 −1

T The evolution of the reach-

able set is shown in the left graph in Figure 2. The reachable set at time 2
is given by the generalized star set ∆ = 〈x′0, V ′, P 〉, where x0 = (7, 13), and
V ′ = {[0, 1]T , [1, 2]T }. The only part that changes in the generalized star repre-
sentation of the reachable set at time 2 is the center and the set of vectors.

Suppose we consider the initial set to be the disc of radius 1 with center (3, 3)
as in Example 1. That is the initial set if given as 〈(3, 3), {[1, 0]T , [0, 1]T }, P 〉
where P (ᾱ) = (α1 − 3)2 + (α2 − 3)2 ≤ 1. The evolution of the reachable set
over time is shown on the right graph in Figure 2. The reachable set at time
2 is described as 〈(7, 13), {[0, 1]T , [1, 2]T }, P 〉. Thus the way the center and the
set of vectors change is the same for both the box and the disc initial sets. The
evolution of the center and vectors is independent of the “shape” of the initial
set. The difference in the reachable sets only arises because of the difference in
the predicate used to describe the initial sets.

3.3 Computing Reachable Set From Validated Simulations

Algorithm 1 computes the reachable set at time t when the exact state of the n+1
trajectories starting from x0, x0 + v1, . . ., x0 + vn at time t is known. However,
computing the exact state requires computing the closed form expression for Φ.
This expression Φ in the simplest case where A(t) and B(t) are time invariant
matrices requires computing matrix exponentials and so the exact expression can
only be computed for very special matrices. We now present a new technique in
Algorithm 2 (based on Algorithm 1) for computing a formula with existential
quantifiers that represents the overapproximation and the underapproximation
of the reachable set of states.

Informally, instead of computing the exact trajectories starting from x0,
x0 + v1, . . ., x0 + vn, we compute their validated simulations. We assume that
all these validated simulations are synchronized, i.e., the number of intervals in
all the validated simulations are the same. Although according to Definition 2,
each of these validated simulations can have different time intervals and regions,
we can split the required intervals further and generate new validated simula-
tions such that all the n + 1 validated simulations have the same number of
regions. We assume that there are m such regions in each validated simulation,
i.e., the simulation from x0, denoted as 〈ψ0, ε〉 ← valSim(x0, h, T ) is such that
ψ0 = (R0

1, [t0, t1]), (R0
2, [t1, t2]), . . ., (R0

m, [tm−1, tm]). The validated simulation
〈ψi, ε〉 ← valSim(x0+vi, h, T ) is such that ψi = (Ri1, [t0, t1]), . . . , (Rim, [tm−1, tm]).
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input : Initial Set: Θ = 〈x0, V, P 〉, Time bound: T
output: Overapproximation and underapproximation of the reachable set of

states.
1 〈ψ0, ε0〉 ← valSim(x0, h, T );
2 for each vi ∈ V do
3 〈ψi, εi〉 ← valSim(x0 + vi, h, T );

4 end
5 for j = 1 . . .m do
6 OverReach[j]← OA(R0

j , R
1
j , . . . , R

n
j , P );

7 UnderReach[j]← UA(R0
j , R

1
j , . . . , R

n
j , P );

8 end
9 return (OverReach, UnderReach);

Algorithm 2: Algorithm that computes the overapproximation and underap-
proximation of reachable set for each time interval.

Given R0, R1, . . . , Rn ⊆ Rn, OA(R0, R1, . . . , Rn, P ) is a formula with quan-
tifiers that represents an overapproximation of the reachable set is defined as:

OA
∆
= { x | ∃x0 ∈ R0,∃vi ∈ diff(Ri, x0),∃ᾱ,

x = x0 +Σn
i=1αivi ∧ P (ᾱ) = > } (7)

Similarly UA(R0, R1, . . . , Rn, P ) is a formula with quantifiers that represents
an underapproximation of the reachable set is defined as:

UA
∆
= { x | ∀x0 ∈ R0,∀vi ∈ diff(Ri, x0),∃ᾱ,

x = x0 +Σn
i=1αivi, P (ᾱ) = > } (8)

Theorem 2. OverReach[j] and UnderReach[j] computed in line 6 and 7 give
an overapproximation and underapproximation of the reachable set of states for
the time interval [tj−1, tj ] respectively.

Proof. The proof follows from the proof of Theorem 1.
Overapproximation: Consider the Reacht(Θ) for some t ∈ [tj−1, tj ]. A state

x ∈ Reacht(Θ) if and only if ∃ᾱ such that x = x′0 + Σn
i=1αiv

′
i, P (ᾱ) = >.

From Definition 2, it follows that x′0 ∈ R0
j and v′i ∈ diff(Rij , x

′
0). As the for-

mula is existentially quantified, if follows that x ∈ OverReach[j]. Therefore,
∪t∈[tj−1,tj ]Reacht(Θ) ⊆ OverReach[j].

Underapproximation: Consider a state x ∈ UnderReach[j]. Therefore, ∀x′0 ∈
R0
j ,∀v′i ∈ diff(Rij , x

′
0),∃ᾱ, such that x = x′0 + Σn

i=1αiv
′
i, P (ᾱ) = >. Now con-

sider Reacht(Θ) for some time instance t ∈ [tj−1, tj ]. As x′0 and v′i is univer-
sally quantified, it follows that x ∈ Reacht(Θ). Therefore UnderReach[j] ⊆
∩t∈[tj−1,tj ]Reacht(Θ).

Remark 1. Algorithm 2 can be used for safety verification. Given an unsafe set
of states U , one can check whether the overapproximation (OverReach[i]) and
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underapproximation (UnderReach[i]) computed in lines 6 and 7 has any state in
unsafe set using SMT solvers like Z3. Moreover, this technique can prove that the
system is unsafe and provide counterexamples from the model for SMT formula
if satisfied.

Algorithm 2 has several advantages compared to the existing techniques for
reachable set computation. First, the algorithm uses only m+ 1 numerical sim-
ulations, where m is the number of vectors in the set V . Second, it can compute
reachable set not just for convex sets, but also for non-convex sets. Third, the
initial set can be unbounded. Finally, the algorithm can compute underapproxi-
mation of the reachable set as well. Typical reachable set computation techniques
require that the initial set is bounded and convex and specified in a special form
like convex polyhedra, zonotopes, or ellipsoids. Moreover, techniques for comput-
ing underapproximation require special computation techniques and bounding
the error for underapproximation is a challenging problem.

Notice that the formulas for computing overapproximation OA in line 6 and
underapproximation UA in line 7 contain product terms of αi and vi. Hence, even
for special initial sets like convex polyhedra, checking system safety using OA or
UA involves reasoning about bilinear constraints, which is NP-hard. Moreover,
our representation of UA has alternating quantifiers which adds to the challenges.
To overcome these issues, we present a new overapproximation of the reachable
set with a quantifiable bounded error, for initial sets that have special geometric
properties like bounded convex polyhedra or ellipsoids. While we will not present
a new underapproximation that avoids quantifier alternation, we will present a
technique that can efficiently detect unsafety.

4 Faster Reachable Set Computation For Special Initial
Sets

In this section, we present an algorithm for computing the reachable set when
the initial set is given as a bounded convex polyhedron or an ellipsoid. For
the presentation used in this paper, the set considered will be a polyhedra if the
predicate P is given by linear inequalities Cx ≤ d. Consider a bounded polyhedral

initial set represented as Θ
∆
= 〈x0, V, C, d〉 where C ∈ Rk×n is a k × n matrix,

d ∈ Rk. Recall that the set it represents is [[Θ]] = {x|x = x0+Σn
i=1αivi, Cᾱ ≤ d}.

For a bounded polyhedral set [[Θ]], one can pick a state x0 in the set Θ and
an orthonormal basis V such that max{||αi||} ≤ 1

n . We assume that such a
representation of the initial set Θ is provided. We now present a technique to
compute a polyhedral representation of the oveapproximation of the reachable
set represented by the formula OA with quantifiers.

For a given time interval, assume that R0, R1, . . . , Rn are the regions returned
by the n + 1 validated simulations (dia(Ri) ≤ ε) and OA(R0, R1, . . . , Rn, C, d)
gives the overapproximation predicate, defined in Equation (7). For polyhedral
initial set, the only nonlinear term in Equation (7) for OA is the product term
αivi. To eliminate this product term, we pick a fixed vi (defined below), estimate
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the error in the resulting set given this fixed basis, and bloat the polyhedron
based on this error analysis.

Theorem 3. Given regions R0, R1, . . . , Rn, and the set OA(R0, R1, . . . , Rn, C, d)

defined according to Equation (7), we have OA ⊆ Bδ(R) where R
∆
= 〈x0, V, C, d〉

where x0 = center(R0), V = {v1, . . ., vn} where vi = center(Ri) − center(R0)
and δ = 3ε and ε = maxni=0{dia(Ri)}

Proof. Consider a state x′ ∈ OA(R0, R1, . . . , Rn, C, d), then there exists x′0 ∈ R0,

x1 ∈ R1, . . ., xn ∈ Rn where v′i = x′i − x′0 such that x′ ∈ R′ ∆= 〈x′0,U2, C, d〉,
U2 = {v′1, . . . , v′n}.

Since x′ ∈ R′, ∃α1, . . . , αn such that x′ = x′0 + α1v
′
1 + . . . + αnv

′
n. Consider

the corresponding state x ∈ R such that x = x0+α1v1+. . .+αnvn. The distance
between x and x′ is given as:

||x− x′|| = ||x0 + α1v1 + . . .+ αnvn − (x′0 + α1v
′
1 + . . .+ αnv

′
n)||

= ||(x0 − x′0) + α1(v1 − v′1) + . . .+ αn(vn − v′n)||
≤ ||x0 − x′0||+Σn

i=1||αi|| · ||vi − v′i||
≤ dia(R0) +Σn

i=1||αi|| · ||xi − x′i + (x′0 − x0)||
≤ dia(R0) +Σn

i=1||αi|| · (dia(Ri) + dia(R0))

≤ dia(R0) +Σn
i=1||αi|| · 2ε

≤ dia(R0) +Σn
i=1max{ ||αi|| } · 2ε

≤ ε+ n · 1

n
· 2ε

≤ 3ε

Hence, the maximum distance between any two states x and x′ is bounded
by δ where δ = 3ε and x ∈ R. Therefore x′ ∈ Bδ(R).

Therefore for checking safety, instead of performing quantifier elimination,
one can perform the following computations: 1) Compute the polyhedron R
with center(R0) as the center, center(Ri) − center(R0) as the basis vectors,
and predicate given as linear inequalities Cᾱ ≤ d. Bloat the polyhedron R by
the amount δ. Check for common states between unsafe region U and Bδ(R).
Theorem 3 proves that if Bδ(R) ∩ U = ∅ then the reachable set does not have
any unsafe state and hence the result is guarateed to be sound.

Notice that the proof also gives a technique for checking when the system
is unsafe. If ∃x ∈ R such that Bδ(x) ⊆ U , then it follows that for any choice
of x′0 and the basis vectors U2, the corresponding state x′ is in the unsafe set.
Therefore, the system is unsafe.

The proof for Theorem 3 can be extended to any general bounded sets and not
necessarily for polyhedra. However, checking the safety with respect to general
sets is computationally harder than checking for polyhedra. We consider one
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special case where the initial set is an ellipsoid. An ellipsoid can be defined as

E
∆
= 〈x0, V, C, 1〉 where [[E]] = {x|x = x0 + α1v1 + . . .+ αnvn, ᾱ

TCᾱ ≤ 1}.

Corollary 1. For initial set defined as Θ = 〈x0, V, C, 1〉 and given regions
R0, R1, . . . , Rn for computing OA(R0, R1, . . . , Rn, C, 1) in Equation (7), OA ⊆
Bδ(R) where R

∆
= 〈x′0, V ′, C, 1〉 where x′0 = center(R0), V ′ = {v′1, . . ., v′n} where

v′i = center(Ri)− center(R0) and δ = 3ε and ε = maxni=0{dia(Ri)}

5 Extension To Hybrid Systems

In this section, we outline the extension of the algorithm to hybrid systems.
In principle, the Algorithm 2 computes the set of reachable states for a given
continuous linear system for a given time interval. Therefore, one can essentially
apply the algorithm used in tools like Phaver and SpaceEx for computing the
reachable set of states for a hybrid system. For simplicity, we assume that all the
invariants for the modes and guards for discrete transitions to be convex poly-
hedra and all the reset mappings to be linear functions. Under this assumptions,
we present the algorithm for reachable set computation for hybrid system.

The algorithm performs the following three steps iteratively until the time
horizon for verification. First, for the given mode and a given initial set, the
algorithm computes the reachable set for that mode from that initial set for the
bounded time specified using Algorithm 2. Second, the reachable set is pruned by
removing all the states that violate the invariant. Third and lastly, the reachable
set is checked to satisfy any guards for discrete transitions, and if so, the initial
states for the next mode are computed by applying the reset map of the states
that satisfy the guard predicate. As the reachable set of states for a hybrid
system at a given time might belong to two different modes, we track the discrete
transitions using a queue of set and location pairs.

input : Hybrid System: A, Initial Set: Θ, Initial mode: m0, Time bound: T
output: Bounded time reachable set: ReachSetA(Θ, T )

1 regionQueue← 〈Θ,m0〉;
2 for each 〈Θ,m〉 in regionQueue do
3 reachMode← Alg2(Θ,m);
4 reachMode← reachMode ∩ Invariantm;
5 nextRegions← discreteTransitions(reachMode);
6 ReachSetA(Θ, T )← reachMode ∪ReachSetA(Θ, T );
7 regionQueue.append(nextRegions);

8 end
9 return ReachSetA(Θ, T );

Algorithm 3: Algorithm that computes the reachable set for hybrid systems.

Algorithm 3 computes the reachable set for a hybrid system. As the problem
in general is undecidable, the loop need not terminate. The main loop that
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performs the three key steps iteratively happens from line 2 to line 8. Line 3
computes the reachable set of states from Θ for the corresponding mode using
Algorithm 2. Line 4 checks the invariant for the reachable set and line 5 computes
the states reached after discrete transitions. Although we present the algorithm
here, in this paper, we perform experiments on purely continuous system to
demonstrate the efficiency of Algorithm 2.

6 Experiments

To demonstrate the applicability of the proposed approach, we have implemented
this algorithm as an extension of the tool C2E2 [11]. C2E2 is a dynamic analysis
tool that implements a simulation based verification algorithm for nonlinear hy-
brid systems where the model is annotated with discrepancy functions. Unlike
C2E2, this approach would not require the linear systems model to be provided
with a discrepancy function. For generating the validated simulations, C2E2 uses
a validated numerical integration engine called CAPD [1]. As the systems con-
sidered in this paper are restricted to linear systems, instead of using CAPD,
we use the numerical integration engine ODEINT 3, which is a part of BOOST
libraries. Unlike CAPD, ODEINT does not provide validated simulations, there-
fore, for computing rigorous bounds on the numerical simulation, we use error
analysis provided in [4] for the 4th order Runge-Kutta method that is used in
our experiments.

The experimental section is divided into 3 parts. First, we verify the safety
property of several high dimensional linear time invariant systems with polyhe-
dral initial sets and polyhedral unsafe sets. For checking the intersection of the
reachable set computed with the unsafe states, we use GLPK library 4. Second,
we consider several linear time varying systems. Finally, we verify safety prop-
erty of linear time invariant systems with non-convex initial and unsafe sets and
also for unbounded initial and unsafe sets. All experiments were performed on a
system with i7 Quad-core processor with 8GB memory running Ubuntu 11.10.

6.1 High Dimensional Linear Time Invariant Systems

We compare the performance of our approach with the state-of-the-art tool for
linear systems verification SpaceEx on several high dimensional linear systems.
Though the reachability computation can be extended to hybrid systems (Sec-
tion 5 in Appendix), our experiments here are restricted to continuous systems;
we believe our main contribution is the algorithm for reachability for continuous
systems with the extension to hybrid systems being standard. The experimental
results are provided in Table 1. The tank system considered in Table 1 is one of
the examples provided with SpaceEx. In this example, the water level in tank i
is model as a continuous variable xi. The tank i leaks into tank i+1 and the rate

3 http://headmyshoulder.github.io/odeint-v2/
4 https://www.gnu.org/software/glpk/

http://headmyshoulder.github.io/odeint-v2/
https://www.gnu.org/software/glpk/
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of leakage is proportional to the water level in tank i, making the system a lin-
ear system. The 28 dimensional helicopter system and the 9 dimensional insulin
system are also part of the examples provided by SpaceEx. The platoon system
is a controller for stabilizing a platoon of vehicles and is obtained from [19].

The experiments show that our approach outperforms SpaceEx by at least
an order of magnitude. This is mainly because as the number of dimensions
increases, the complexity of representing the reachable set of states as a sup-
port function increases exponentially. Whereas in our approach, the number of
simulations performed only increases linearly with the number of dimensions
and the representation of the reachable set is just a basis transformation of the
representation of the initial set of states considered. Also, notice that the time
taken for computing the validated simulations using the approach in [4] takes the
majority of the verification time as opposed to checking the safety of reachable
set. An advantage our approach enjoys over SpaceEx is that we can compute
underapproximations and hence conclude that the system is unsafe and provide
counterexamples. We however note that for the experiments in Table 1, the re-
sults reported by SpaceEx were indeed consistent with the results reported by
our approach.

Benchmark Vars. TH Sims. Simu.Time. Verif. Time C2E2 SpaceEx Verif. Result.

Insulin 8 10 9 0.157 s 0.049 s 0.206 s 8.07 s Safe

Insulin 8 10 9 0.166 s 0.034 s 0.2 s 7.89 s Unsafe

Platoon 10 25 11 0.337 s 0.019 s 0.356 s TO Safe

Platoon 10 25 11 0.323 s 0.019 s 0.342 s TO Unsafe

Tank-10 10 20 11 0.745 s 0.206 s 0.951 s 4.886 s Safe

Tank-10 10 20 11 0.721 s 0.19 s 0.911 s 4.992 s Unsafe

Tank-15 15 20 16 1.325 s 0.363 s 1.688 s 8.176 s Safe

Tank-18 18 20 19 1.705 s 0.569 s 2.274 s 10.466 s Safe

Helicopter 28 20 29 3.192 s 1.634 s 4.826 s 2m1.66s Safe

Table 1: Experimental results for verification of high dimensional linear time
invariant systems. Vars: Number of variables, TH: Time Horizon for verification,
Sims: Total number of simulations, Simu. Time: Time taken for simulations,
Verif. Result: Result of verification. TO: Time out for 5 minutes.

6.2 Verifying Linear Time Varying Systems

Typical approaches for computing reachable set for linear time varying systems
differ considerably from that of linear time invariant systems. Therefore, there is
a lack of tools that are geared towards verifying linear time varying systems. For
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Benchmark. Vars. Flow*. C2E2

Tank 2 1.56 s 0.132 s

Tank 4 4.28 s 0.198 s

Tank 6 9.41 s 0.287 s

Tank 8 18.73 s 0.356 s

Tank 10 33.67 s 0.484 s

LTV [3] 5 7.51 s 0.24 s

LTV 7 12.09 s 0.31 s

LTV 9 18.18 s 0.4 s

(a) Verifying linear time varying
systems

Benchmark. Dim. TH. Init. Set. Res. Time

ACC [25] 3 2 NC Safe 2.185

ACC 3 2 UB Safe 1.774

ACC 3 2 NC Unsafe 1.11

ACC 3 2 UB Unsafe 1.01

Tank 5 1 NC Safe 2.717

Tank 5 1 UB Safe 2.145

Tank 5 1 NC Unsafe 1.722

Tank 5 1 UB Unsafe 1.519

(b) Verifying nonconvex and unbounded initial
sets.

Fig. 3: Verification of linear time varying systems and non-convex and un-
bounded initial sets. Res.: Verification Result. NC: Nonconvex initial set, UB:
Unbounded initial set

the experimental evaluation, we model the linear time varying system as a non-
linear system with time as a variable t and compare the results of our approach
with the tool Flow* [6] that can verify nonlinear systems. The experimental re-
sults are provided in Table 3(a). The tank system in Table 3(a) is similar to the
linear time invariant system, except that water is being pumped into Tank 1 at
a rate that decreasing with time. Therefore, the differential equation governing
the dynamics contains t−1 term which makes it non polynomial. The second
example is a modified version of the uncertain linear system from [3].

The experiments show that our approach outperforms Flow* by at least an
order of magnitude. Also, similar to SpaceEx, the time taken by Flow* increases
exponentially as the number of dimensions in the system increases, whereas in
our approach, the number of simulations required increases only linearly with
the number of dimensions.

6.3 Non-convex And Unbounded Initial Sets

An advantage of our approach is that we can compute the reachable set when
the initial set of states is non-convex and also when the initial set is unbounded.
To demonstrate this, we compute reachable set of states for several benchmark
examples given in Table 3(b). In these experiments, we consider non-convex and
unbounded initial sets symbolically represented as conjunctions of polynomial
inequalities. We use Z3 [8] SMT solver for performing quantifier elimination and
inferring whether the system is safe or unsafe. As the complexity of quantifier
elimination over reals is exponentially more than linear real arithmetic, the time
taken for verification is more than for polyhedral initial sets even for low dimen-
sional systems. Unlike the existing theorem proving based approaches which can
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verify non-convex or unbounded initial set that requires some manual effort, our
approach is completely automatic.

6.4 Discussion

It is evident from Tables 1, 3(a), and 3(b) that our approach outperforms the
existing approaches. Furthermore, our technique works for computing both over-
approximation and underapproximation for linear time invariant and linear time
varying systems. In case of polyhedral initial and unsafe sets, notice from Ta-
ble 1 that the time taken for verification is only a fraction of the time taken from

simulations. Given two bounded polyhedral initial sets Θ1
∆
= 〈x0, V, C1, d1〉 and

Θ2
∆
= 〈x0, V, C2, d2〉, with the same center x0 and the same set of basis vectors

V , the reachable set computation technique need not generate n+ 1 simulations
Θ1 and n + 1 simulations for Θ2. Instead, it can reuse the same set of simu-
lations runs used for Θ1 and compute the reachable set for Θ2 thus reducing
the number of simulations per verification. This would also bring down the total
time for verification as computing simulations is computationally more expen-
sive than verifying safety. Furthermore, given k bounded polyhedral initial sets,
Θ1, . . . , Θk, by performing k coordinate transformations one can represent these
sets with a common center and basis vectors and the amortized number of sim-
ulations for verification would be n+1

k where n is the number of dimensions of
the system. This is a significant advantage of our approach as opposed to the
reachable set computation performed by SpaceEx, where, a change in the initial
set would require discarding the reachable set computed and recomputing the
new reachable set from scratch.
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