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Abstract. C2E2 is a bounded reachability analysis tool for nonlinear dynamical
systems and hybrid automaton models. Previously it required users to annotate
each system of differential equations of the hybrid automaton with discrepancy
functions, and since these annotations are difficult to get for general nonlinear
differential equations, the tool had limited usability. This version of C2E2 is
improved in several ways, the most prominent among which is the elimination
of the need for user-provided discrepancy functions. It automatically computes
piece-wise (or local) discrepancy functions around the reachable parts of the state
space using symbolically computed Jacobian matrix and eigenvalue perturbation
bounds. The special cases of linear and constant rate differential equations are
handled with more efficient algorithm. In this paper, we discuss these and other
new features that make the new C2E2 a usable tool for bounded reachability anal-
ysis of hybrid systems.

1 Introduction

C2E2 is a tool for checking bounded time invariant properties of nonlinear hybrid au-
tomaton models through reachability analysis. A hybrid automaton combines ordinary
differential equations (ODE) and with guarded-command program fragments, and is
seen as a convenient mathematical formalism for describing a variety of cyber-physical
systems. Since nonlinear differential equations often do not have analytical solutions,
C2E2 implements a simulation-based approach for over-approximating the reachable
states of a system of ODEs. This involves: (a) generating numerical simulations of the
ODE from a finite set of representative initial states that cover the whole (uncountably
many) initial set, say Θ, (b) bloating each of these simulations by some factor such that
the bloated tubes together over-approximate the reachable states fromΘ, and (c) check-
ing if this computed over-approximation is adequate for proving invariance; otherwise,
add more representative initial states to obtain a more precise over-approximation and
repeat from (a).

The previous version of C2E2 [10,11] relied on the user to provide the bloating
factor, formally called a discrepancy function, required in step (b). For linear ODEs, one
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could, in principle, find discrepancy functions automatically from the dynamics of the
system, but for general nonlinear systems this is not the case. The primary improvement
we present in this new version of C2E2 [1] relieves the user from this burden. We have
implemented the algorithm presented in [13] which computes a piece-wise (or local)
discrepancy function for the ODE. This algorithm is on-the-fly or lazy in that it only
computes the discrepancy function around parts of the state-space that are known to
be reachable (from step (a)). For linear models the new implementation automatically
computes a global discrepancy function. Automatic handling of systems with constant
dynamics, and a technique to carry-out coordinate transformation are also implemented
to improve the overall performance of C2E2. The new C2E2 can automatically verify
and find counter-examples in interesting nonlinear and linear hybrid systems created
using StateflowTM: for example, a 5-dimensional highly nonlinear benchmark model of
a powertrain control system [17], an auto-passing control system with 6 modes, and a
28-dimensional linear model of a helicopter [22].

2 Related tools

Several automatic verification tools for hybrid models have been developed over the
past two decades and they have been used in verifying numerous systems. Uppaal [20],
HyTech [15] and SpaceEx [14] target timed automata, rectangular hybrid automata,
and linear hybrid automata, respectively. Nonlinear dynamical and hybrid models are
handled by d/dt [4], Flow* [6], dReach [19], CORA [3], and Ariadne [5]. S-Taliro [21]
finds counter-examples in complex and realistic models using Monte-carlo techniques
and provides probabilistic guarantees. STRONG [7] is a MATLAB toolbox for analysis
of linear hybrid systems and it uses a Lyapunov function-based approach.

The simulation-based verification algorithm implemented in C2E2 is closest in
spirit to the Matlab-based Breach tool [8]. Breach uses sensitivity analysis of the ODEs
(related to our notion of discrepancy function) to verify signal temporal logic (STL)
properties. Sensitivity analysis is known to be sound for linear ODEs and for more com-
plex models Breach uses numerical procedures for estimating the Jacobian matrix of the
system. This enables it to handle complex models at the expense of rigorous guarantees.
The new version of C2E2 computes discrepancy functions from symbolically computed
Jacobian matrix of the ODEs. This gives soundness and relative completeness guaran-
tees, but restricts its application to ODEs with continuously differentiable right hand
sides.

3 New features in C2E2

The architecture of C2E2 is shown in Figure 1. The GUI-based front end parses the
input hybrid model which has to be given either as a Stateflow model (.mdl) or as an
XML file (.hyxml). The front end produces (i) an executable for producing validated
simulations for each system of ODEs for the hybrid automaton, (ii) a specification of
the candidate invariant properties to be checked, and (iii) a newly implemented function
for symbolically evaluating the Jacobian matrix for each system of ODEs in the hybrid
model. The front end provides a property editor which checks syntactic correctness of



properties as they are typed. After the back end produces verification results, which
includes the reach set and possibly counter-example, these objects can be plotted using
the front end as well (see Figure 2).

Fig. 1: Architecture of C2E2: The colored blocks are newly implemented. Improve-
ments in existing blocks are discussed in Section 4.2.

The Jacobian function and the simulator are used by the new back end for com-
puting reachable states using the approach described in Section 1. If the system or a
discrete location of the hybrid system is linear (which is automatically checked by the
front end), then the Jacobian matrix is used to compute a global discrepancy function
once and for all. Otherwise, the back end iteratively calls the simulator as well as the
Jacobian function, to over-approximate the reachable states over small time intervals
(more details are given in Section 4).

The rest of the functions in the back end work with the computed reach set to check
for the guards of the hybrid automaton. It also checks if the candidate invariant prop-
erties are provably satisfied or violated. Based on these decisions the main verification
loop decides to (a) return results to the front end, or (b) start over the process by refining
the initial set of states, or (c) start simulations from a new set of initial states in a new
mode (that is, with a new system of ODEs).

4 Automatic discrepancy computation

4.1 Overview

The block labeled local discrepancy for nonlinear in Figure 1 implements the algo-
rithm for computing piece-wise discrepancy function for general nonlinear ODEs using



Fig. 2: Left to right: figures showing a snippet of partial auto-passing control model in
C2E2 front end and StateflowTM, property dialog, plots of reachable set for auto-passing
control model.

Jacobian matrix and Lipschitz constant. It takes one simulation trajectory and initial
partition size as input at one time, and produces a sequence of coefficients. These coef-
ficients define the piece-wise exponential discrepancy function. The algorithm consists
of the following steps:

a) First, using the Lipschitz constant a coarse over-approximation of the reachable set
up to a short time horizon Ts is constructed. Let this set be S.

b) The largest eigenvalue λmax

(
(J(s0) + JT (s0))/2

)
of the symmetric part of the

Jacobian matrix J(s0) at the center s0 of S is computed.
c) From λmax

(
(J(s0) + JT (s0))/2

)
an upper bound b of the eigenvalue of the sym-

metric part of all the Jacobian matrices J(s), s ∈ S is computed. This uses a theorem
from matrix perturbation theory and involves bounding the terms of the symbolic Ja-
cobian over S.

d) The upper bound b (possibly negative) defines the discrepancy function β(t) =
β′(t0)e

b(t−t0) over the simulation time interval [t0, t0 + Ts], where β′(·) is the pre-
vious piece of the discrepancy function. Using this piece-wise discrepancy function
an over-approximation of the reachable set is computed.

The soundness of the algorithm comes from the fact that the computed bound b over a
certain region S provides an exponential bound on the distance of any two trajectories
in that region.

4.2 Implementation and Enhancements

We discuss the design decisions made in implementing the above mentioned functions
and how they impact C2E2.

Symbolic Jacobian computation. From the parse tree generated by the front end, the
state variables and ODEs for each location of the hybrid automaton are extracted. For



an ODE dx
dt = f(x), where f is a vector valued function, the Jacobian matrix J(x)

is the matrix of partial derivatives Jij(x) = ∂fi
∂xj

. We use the Python Sympy3 library
for computing derivatives of f symbolically. This library handles a general class of
functions and as a result our implementation of symbolic Jacobian computation works
for all standard polynomial, trigonometric, exponential and logarithmic functions. Our
approach works for complicated models like the powertrain benchmark [18,17] which
has more than 30 nonlinear terms in f . C2E2 compiles the symbolic Jacobian matrices
into a Python module, which is then used to evaluate their numerical values.

Discrepancy function computation To compute local discrepancy functions on-the-fly,
the upper bound of the eigenvalues of (the symmetric part of) Jacobian matrices and the
upper bound of the matrix perturbations are obtained along the simulation traces using
Python linear algebra library4. The local discrepancy function module communicates
with the reach set function, takes simulation traces and initial set, and returns a local
discrepancy function designed specially for the given simulation trace. In C2E2, we
provide multiple simulator options: the validated simulator CAPD [2] as well as the
standard ODE solver in the Boost library5

Global discrepancy for linear ODEs For linear time invariant hybrid models, the entries
in the symbolic Jacobian matrix are constants. Thus, the local discrepancy function will
be the same as the global one. C2E2 takes advantage of this fact and evaluates the
Jacobian matrix just once and computes a global exponential discrepancy function to
be used throughout, instead of on-the-fly local discrepancy. For example, analysis of the
28-dimensional linear model of the helicopter with this approach completes in seconds.

Automatic handling of constant dynamics Often hybrid models have timers and other
variables that evolve at a constant rate with time. The ODEs for such systems have the
form: {

dx
dt = f(x)
dy
dt = k

where k is a constant and y changes at that constant rate with time. Although the simple
dynamics of y should make it easier to compute its reach set—at any time t, y(t) =
y(0) + kt—our discrepancy-based algorithm has problems dealing with such systems.
These constant-rate variables introduce all 0 rows and all 0 columns in the Jacobian
matrix. This not only increases the dimension of the system, but also introduces extra
conservatism in the estimation of the eigenvalues. For example, the Jacobian matrix
of such systems has 0 eigenvalue even when the rest of the system is stable. The new
C2E2 mitigates this problem by automatically decomposing the system by handling the
constant-rate part independently.

For example, the Cardiac cell model in [11] uses a timer d(timer)
dt = 1 to transit

between the location where stimulate is on and the location where it is off. Systems with
such constant dynamics are detected and decomposed automatically. That is, C2E2 will

3 http://www.sympy.org/en/index.html
4 http://docs.scipy.org/doc/numpy/reference/routines.linalg.html
5 https://headmyshoulder.github.io/odeint-v2/



first compute the reach set of dx
dt = f(x) using our standard technique, then bloat y(t)

by δy for dy
dt = k, where δy is the size of initial set for variable y.

Coordinate transformation Coordinate transformation can help produce less conserva-
tive over-approximations of the reach set. Coordinate transformations are done automat-
ically in the new C2E2 in the following manner: first, Jacobian matrix is transformed to
the real Jordan form by a similarity transformation, and then the similarity transforma-
tion matrix is used to perform the linear coordinate transformation. Such transformation
decreases the conservatism of exponential bound (the factor b mentioned in 4.1), but
comes at the price of a constant multiplicative factor in β(t). C2E2 allows the users to
set a parameter in the GUI that helps explore this trade off.

Other enhancements We re-implemented the reach set plotter for C2E2 which now
uses gnuplot and is much faster. It also shows unsafe regions and counter-example seg-
ments. C2E2 now comes with testing scripts and a command line interface. The tests
check the reach sets computed on a new installation against the corresponding reference
versions computed in our lab machine. Examples inputs and outputs are documented in
the website6.

Detailed comparison of the performance of the new C2E2 with other verification
tools will be presented in a future paper and in the tool’s website. In several examples,
it performs favorably in comparison with Flow*[6]. For example, it verifies a 10 dimen-
sional nonlinear cardiac cell model from [16] (Figure 1) in less than 10 seconds where
Flow* took 500 seconds. The dynamics is given by, for example, f1(x1, x2, u1, u2, stim) =
−0.9x21 − x31 − 0.9x1 − x2 + 10(u1 + u2 − 2x1) + stim and f2(x1, x2) = x1 − 2x2,
with Son = 5 and Soff = 20.

5 Discussion of performance and Conclusions

The new version of C2E2 comes with a growing set of interesting example models
such as a powertrain control system with highly nonlinear dynamics, a 28-dimensional
linear helicopter, a hybrid auto-passing control model with 6 locations, a cardiac cell
model and others. Although some of these (for example, the powertrain control system
model [12,9]) had been verified earlier, those analyses involved hand-crafting special
functions inside C2E2 for computing Jacobian matrices, handling constant dynamics,
etc. The new C2E2 checks the examples automatically, without the need for annotations,
typically in minutes.

A single reach set computation by bloating a single simulation trace using discrep-
ancy computation usually takes less than one second for nonlinear systems with 5 - 6
dimensions or linear systems, up to a time horizon of 10 seconds. The verification time
of each example, of course, depends on the complexity of the system, the distance of the
unsafe set from the reachable set, the stability of the dynamics, and the time horizon.

In summary, this paper presents several new features implemented in C2E2, the
most prominent one being an algorithm for computing discrepancy functions for lin-
ear, nonlinear, and constant ODEs. These features make the new C2E2 a more usable

6 http://publish.illinois.edu/c2e2-tool/example/



tool for verifying nonlinear hybrid models while preserving the original soundness and
relative completeness guarantees.
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