
This space is reserved for the EPiC Series header, do not use it

Verifying Linear Systems with over 10000 Dimensions

(Benchmark Result)

Stanley Bak1 and Parasara Sridhar Duggirala2

1 Air Force Research Laboratory
2 University of Connecticut

Abstract

We evaluate a recent simulation-based reachability method on a set of high-dimensional linear

systems benchmarks taken from model order reduction. The method we used is simulation based, and

was previously shown to have promise in terms of scalability. The method can scale to systems with

over 10000 dimensions with several hours of computation time, which is an encouraging result.

1 Introduction

Reachability analysis attempts to compute, given a set of initial states, which states the system
can enter. Safety verification can then be done by performing intersections between the unsafe
states and reachable set. In this paper, we examine reachability for affine, time-invariant
systems, with the differential equations ẋ = Ax + b. We only consider the continuous post
operation, that is, we do not evaluate guards or other features of a hybrid automaton [?].
Nonetheless, note that continuous post is a core component of many hybrid systems reachability
tools.

Typically, the reachable set tools store states in data structures such as polyhedra [?],
zonotopes [?], support functions [?], or Taylor models [?]. Recently, a data structure and
associated reachability method was proposed which stores states in a data structure called a
generalized star set [?]. The reachability method we evaluate is based on this technique, which
essentially uses simulations and superposition to reason over which states are reachable.

The implementation we used only reasons about the states reachable at discrete time steps.
Unlike other reachability methods, it does not reason about states between time steps. How-
ever, it is capable of generating counter-example traces whenever the unsafe states are deemed
reachable. We call this the simulation-equivalent reachable set, since it consist of all the states
visited by every fixed-step simulation.

We perform an evaluation of a set of nine benchmarks which consist of large-scale linear
systems [?]. These benchmarks were taken from “diverse fields such as civil engineering and
robotics.” The difficulty of these benchmarks was rated as low to challenge, and they range from
tens to over ten thousand dimensions. Using these benchmarks, we evaluate two approaches
which can be used to compute a generalized star set’s basis matrix, which is a key component
when computing its reachability. This is discussed in the next section.

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

2 Computing a Star’s Basis Matrix

Here, we discuss the computation of the basis matrix of a generalized star set (or simply star).
We do not review the full reachability computation with this approach, which is available in
earlier work [?].

The generalized star set approach for reachability computation takes advantage of the su-
perposition principle of linear systems in order to compute the reachable set. Basically, at
each instance in time, if one knows how each orthonormal unit vector in the standard basis
has evolved since the initial time, one can reconstruct the current state reachable from an arbi-
trary point by taking linear combinations of the state’s reached by the unit vector points. For
example, say in a 2-d space the initial point (1

0) after some time t evolves under some linear
differential equations ẋ = Ax and reaches point (ab). The reachable state of (2

0) then could be
easily computed by taking twice the state that (1

0) reached, which is (2a
2b). Knowing how (1

0)
and (0

1) evolve is sufficient to be able to reconstruct how any initial point evolves at time t. If
the dynamics are affine, ẋ = Ax + c, then one more simulation is required from the origin. If
we are interested in how a set of states can evolve at time t, one can construct a linear program
(LP) which encodes the constraints on the initial conditions, how each unit vector has evolved
at time t. Linear conditions can also be added to encode unsafe state conditions, and the LP
will then be feasible if and only if an unsafe state is reachable from some initial state.

At each time step, the value of t changes, and so ‘how each unit vector has evolved at time
t’ will change. There are n initial unit vectors, and each one reaches an n-dimensional point, so
these can be combined to form what is called the star’s basis matrix. The computation of this
basis matrix at each time step dominates the runtime of the safety verification method. On
the proposed benchmarks, we will evaluate two methods to compute the basis matrix. First,
however, we present a more complete example of the star-based reachability approach.

Harmonic Oscillator A 2-d harmonic oscillator has the dynamics ẋ = y, ẏ = −x. We use
initial states x = [−6,−5], y = [0, 1]. Simulations of this system rotate clockwise around the
origin. The simulation-equivalent reachable sets, and the associated LP formulation at time
step π

4 is shown in Figure ??. If there was a linear unsafe error condition, it could be added
to this LP. The LP would then be feasible if, and only if, unsafe states were reachable. The
basis matrix in this instance is the red encircled values in the LP formulation in the figure.
These get updated at each time step, and the rest of the constraints remain the same. The
initial conditions are encoded in rows 3-6. The basis matrix at time 0 is (1 0

0 1). After π
4 time,

the point which started at state (1
0) evolves to

(
0.707
−0.707

)
and the point which states at (0

1) goes

to (0.707
0.707) . The basis matrix at time π

4 is therefore
(

0.707 0.707
−0.707 0.707

)
, as shown in the Figure. At

the next time step, time π
2 , the basis matrix would be updated to

(
0 1
−1 0

)
. Error states could

be encoded by adding additional rows to the LP constraints imposing a linear condition on x1
and x2. If an error state is reachable, the LP would give a concrete assignment to x1, x2, α1,
and α2. One concrete error trace, then, would start at point (α1, α2), and evolve to the unsafe
point (x1, x2).

As mentioned before, the computation of this basis matrix at each time step dominates the
runtime of the safety verification method, and so it is important to optimize this computation.
In the original work [?], the computation of this basis matrix was done using simulations.
However, notice that, since the solution to a linear system ẋ = Ax is x(t) = eAtx(0), the basis
matrix can also be computed using the matrix exponential. In particular the basis matrix at
time t is equal to eAt. Further, rather than recomputing the basis matrix at each step, we notice
that eA2t = eAt × eAt. Thus, a single computation of the matrix exponential can be performed
at the desired time step, and then the resultant matrix can be multiplied using standard matrix

2

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

Init

π/4

π/2

Figure 1: Plot of states reached by any fixed-step simulation (simulation-equivalent reachable
set) in the harmonic oscillator system, using a step size of π4 (left), and the star’s LP formulation
at time π

4 (right). The values circled in red are the star’s basis matrix at time π
4 , which gets

updated at each step.

multiplication to get the basis matrix at the next time step. This can be repeated until the
time horizon is reached.

3 Benchmark Results

The simulation-equivalent reachability method has been shown to have promise in terms of
scalability [?, ?]. In this section, we check if it can handle a recently-proposed benchmark suite
for linear systems [?], which includes systems with over 10000 dimensions. For each benchmark,
we also considered a variant with a weakened or strengthened unsafe condition, so that each
system would have both a safe and an unsafe case. In order to evaluate the accuracy of the
method, when an unsafe state is reached, we output the initial state and final states which are
unsafe. Then, we perform a numerical simulation with higher accuracy parameters from the
initial state and check how close the final point is to the expected final point. We report the
relative error of these two points.

Both the speed and the accuracy of the verification result depends on how accurately the
basis matrix is computed. Therefore, it is inappropriate to consider one metric without consid-
ering the other. In order to compute the basis matrix, we consider four different approaches:
two based on numeric simulations, and two based on matrix exponential and matrix multipli-
cation. For matrix exponential, we consider using both single precision and double precision
numbers, which give different speed / accuracy values. For numeric simulation, we try to choose
absolute and relative tolerance in the simulation engine so that the method is close to the accu-
racy of the matrix exponential approaches. In our case, we found that a simulation tolerance of
10−6 produced errors similar to the single-precision matrix exponential method, and simulation
tolerance 10−12 yielded errors close to the double-precision matrix exponential approach.

For the benchmarks, we use the original time bound of 20. We consider different step sizes.
While simulation methods are expected to take slightly longer with more intermediate steps,
we expect more time steps to have more impact on the matrix exponential approaches, where
the number of matrix multiplications is exactly equal to the number of time steps.

3

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

Our evaluation uses the Hylaa tool, which is written mostly in Python. Matrix exponential
is computed using scipy and the expm function, which uses a Padé approximation. Numerical
simulations are done with scipy’s odeint function, which can simulate both stiff and non-stiff
systems with using lsoda from the Fortran library odepack. The implementation parallelizes
both the matrix multiplication (for matrices larger than 150 × 150, which was empirically
derived), as well as the simulations. For large matrices, the simulations are performed a few
steps at a time, rather than for the entire time bound, so as to reduce memory consumption (a
single basis matrix for a 10000 dimensional model takes about 800MB of RAM).

The results are shown in Table ??.

Table 1: Benchmark results. Stars (*) indicate original unsafe error conditions.

Model Dims Error Condition Method Step Time Safe? CE Error CE Time

Motor* 11
x1 ∈ [0.35, 0.4] ∧
x5 ∈ [0.45, 0.6]

Sim (1e-6) 0.1 0.6s X

0.05 0.6s X
0.01 0.7s X

0.005 0.9s X
0.001 2.3s X

ExpM (32-bit) 0.1 0.7s X
0.05 1.0s X
0.01 2.7s X

0.005 4.6s X
0.001 20.7s X

Sim (1e-12) 0.1 0.6s X
0.05 0.6s X
0.01 0.8s X

0.005 0.9s X
0.001 2.3s X

ExpM (64-bit) 0.1 0.8s X
0.05 1.0s X
0.01 2.6s X

0.005 4.7s X
0.001 20.1s X

Motor 11
x1 ∈ [0.3, 0.4] ∧
x5 ∈ [0.4, 0.6]

Sim (1e-6) 0.1 0.6s 1.6·10−6 0.1

0.05 0.5s 3.4·10−7 0.05

0.01 0.6s 1.7·10−6 0.04

0.005 0.7s 1.7·10−6 0.04

0.001 0.6s 9.7·10−7 0.037

ExpM (32-bit) 0.1 0.6s 1.9·10−5 0.1

0.05 0.5s 1.0·10−5 0.05

0.01 0.6s 1.1·10−5 0.04

0.005 0.5s 2.0·10−5 0.04

0.001 0.6s 7.4·10−6 0.037

Sim (1e-12) 0.1 0.5s 1.2·10−9 0.1

0.05 0.6s 7.3·10−11 0.05

0.01 0.6s 3.7·10−12 0.04

0.005 0.7s 4.0·10−12 0.04

0.001 0.8s 2.2·10−11 0.037

ExpM (64-bit) 0.1 0.6s 1.2·10−9 0.1

0.05 0.5s 7.2·10−11 0.05

0.01 0.6s 4.5·10−12 0.04

0.005 0.6s 4.5·10−12 0.04

0.001 0.5s 2.5·10−11 0.037

Building* 50 x25 ≥ 0.006 Sim (1e-6) 0.1 1.1s X
0.05 1.2s X
0.01 1.6s X

0.005 1.9s X
0.001 6.7s X

ExpM (32-bit) 0.1 0.9s X
0.05 1.1s X

4

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

0.01 3.3s X
0.005 5.7s X
0.001 26.8s X

Sim (1e-12) 0.1 2.1s X
0.05 2.1s X
0.01 2.7s X

0.005 3.3s X
0.001 7.6s X

ExpM (64-bit) 0.1 0.9s X
0.05 1.1s X
0.01 3.3s X

0.005 5.8s X
0.001 27.2s X

Building 50 x25 ≥ 0.004 Sim (1e-6) 0.1 1.0s X
0.05 1.1s X
0.01 0.9s 1.8·10−4 0.07

0.005 1.0s 1.8·10−4 0.07

0.001 2.1s 1.8·10−4 0.07
ExpM (32-bit) 0.1 0.9s X

0.05 1.2s X
0.01 0.6s 9.8·10−6 0.07

0.005 0.5s 2.8·10−5 0.07

0.001 0.7s 7.1·10−5 0.07
Sim (1e-12) 0.1 2.2s X

0.05 2.1s X
0.01 2.0s 1.2·10−8 0.07

0.005 2.2s 1.1·10−8 0.07

0.001 3.0s 9.0·10−9 0.07
ExpM (64-bit) 0.1 0.8s X

0.05 1.2s X
0.01 0.5s 1.2·10−8 0.07

0.005 0.6s 1.0·10−8 0.07

0.001 0.7s 8.5·10−9 0.07

PDE* 86 y1 ≥ 12 Sim (1e-6) 0.1 0.7s X
0.05 0.8s X
0.01 2.0s X

0.005 3.1s X
0.001 12.6s X

ExpM (32-bit) 0.1 0.8s X
0.05 1.1s X
0.01 3.1s X

0.005 5.7s X
0.001 25.1s X

Sim (1e-12) 0.1 0.7s X
0.05 0.9s X
0.01 1.6s X

0.005 3.2s X
0.001 12.7s X

ExpM (64-bit) 0.1 0.9s X
0.05 1.1s X
0.01 3.2s X

0.005 5.8s X
0.001 26.3s X

PDE 86 y1 ≥ 10.75 Sim (1e-6) 0.1 0.7s 5.8·10−8 0.1

0.05 0.6s 2.8·10−6 0.05

0.01 1.0s 1.9·10−6 0.03

0.005 1.4s 3.9·10−6 0.025

0.001 4.2s 1.3·10−6 0.021

ExpM (32-bit) 0.1 0.6s 4.1·10−7 0.1

0.05 0.7s 4.1·10−7 0.05

0.01 0.6s 5.2·10−7 0.03

0.005 0.6s 5.3·10−7 0.025

0.001 0.6s 2.0·10−7 0.021

Sim (1e-12) 0.1 0.6s 4.8·10−12 0.1

0.05 0.6s 2.6·10−11 0.05

0.01 1.0s 1.7·10−10 0.03

0.005 1.4s 1.2·10−11 0.025

5

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

0.001 4.1s 2.2·10−11 0.021

ExpM (64-bit) 0.1 0.6s 5.0·10−12 0.1

0.05 0.6s 3.4·10−11 0.05

0.01 0.6s 1.7·10−10 0.03

0.005 0.6s 1.7·10−11 0.025

0.001 0.6s 1.9·10−11 0.021

Heat* 202 x133 ≥ 0.1 Sim (1e-6) 0.1 1.6s X
0.05 1.9s X
0.01 5.9s X

0.005 11.0s X
0.001 54.0s X

ExpM (32-bit) 0.1 2.2s X
0.05 3.3s X
0.01 11.7s X

0.005 22.3s X
0.001 1m58s X

Sim (1e-12) 0.1 3.2s X
0.05 3.8s X
0.01 7.0s X

0.005 11.2s X
0.001 54.1s X

ExpM (64-bit) 0.1 1.7s X
0.05 2.7s X
0.01 10.0s X

0.005 19.0s X
0.001 1m34s X

Heat 202 x133 ≥ 0.02 Sim (1e-6) 0.1 1.7s 4.4·10−6 15.7

0.05 1.8s 4.1·10−6 15.7

0.01 5.3s 4.7·10−6 15.67

0.005 9.4s 4.5·10−6 15.67

0.001 46.4s 3.3·10−6 15.67

ExpM (32-bit) 0.1 2.0s 2.5·10−4 15.7

0.05 2.8s 2.5·10−4 15.7

0.01 9.2s 7.4·10−4 15.65

0.005 17.5s 7.1·10−4 15.65

0.001 1m31s 5.4·10−4 15.652

Sim (1e-12) 0.1 3.1s 9.5·10−10 15.7

0.05 3.5s 9.6·10−10 15.7

0.01 6.4s 9.4·10−10 15.67

0.005 10.3s 8.4·10−10 15.67

0.001 45.6s 8.0·10−10 15.67

ExpM (64-bit) 0.1 1.6s 9.8·10−10 15.7

0.05 2.3s 9.8·10−10 15.7

0.01 8.3s 9.7·10−10 15.67

0.005 16.1s 8.7·10−10 15.67

0.001 1m16s 8.9·10−10 15.67

ISS* 274 y3 /∈ [−0.0005, 0.0005] Sim (1e-6) 0.1 46.5s X
0.05 46.6s X
0.01 50.7s X

0.005 54.3s X
0.001 1m17s X

ExpM (32-bit) 0.1 2.9s X
0.05 4.6s X
0.01 10.6s X

0.005 20.4s X
0.001 1m36s X

Sim (1e-12) 0.1 6m1s X
0.05 5m58s X
0.01 6m11s X

0.005 6m14s X
0.001 6m25s X

ExpM (64-bit) 0.1 2.7s X
0.05 4.3s X
0.01 10.7s X
0.005 20.1s X
0.001 1m35s X

ISS 274 y3 /∈ [−0.00017, 0.00017] Sim (1e-6) 0.1 45.6s 2.7·10−4 0.5

6

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

0.05 47.5s 2.6·10−4 0.5

0.01 47.4s 3.0·10−4 0.5

0.005 47.7s 1.7·10−4 0.5

0.001 22.9s 4.9·10−4 0.498

ExpM (32-bit) 0.1 0.9s 1.3·10−6 0.5

0.05 1.1s 1.2·10−6 0.5

0.01 1.3s 4.1·10−6 0.5

0.005 1.6s 8.3·10−6 0.5

0.001 3.4s 4.8·10−5 0.498

Sim (1e-12) 0.1 5m58s 1.1·10−6 0.5

0.05 6m1s 9.7·10−7 0.5

0.01 6m18s 7.9·10−7 0.5

0.005 6m4s 7.9·10−7 0.5

0.001 2m28s 6.3·10−7 0.498

ExpM (64-bit) 0.1 0.8s 1.1·10−6 0.5

0.05 0.9s 9.7·10−7 0.5

0.01 1.1s 7.9·10−7 0.5

0.005 1.3s 7.9·10−7 0.5

0.001 3.2s 6.3·10−7 0.498

Beam 350 x89 ≥ 2100 Sim (1e-6) 0.1 37.5s X
0.05 39.4s X
0.01 49.6s X

0.005 1m4s X
0.001 2m56s X

ExpM (32-bit) 0.1 4.6s X
0.05 7.0s X
0.01 26.3s X

0.005 49.5s X
0.001 3m57s X

Sim (1e-12) 0.1 4m5s X
0.05 4m16s X
0.01 4m36s X

0.005 4m32s X
0.001 6m33s X

ExpM (64-bit) 0.1 4.2s X
0.05 6.7s X
0.01 25.1s X

0.005 47.4s X
0.001 3m45s X

Beam* 350 x89 ≥ 1000 Sim (1e-6) 0.1 37.5s 5.2·10−8 16.1

0.05 38.1s 5.0·10−8 16.05

0.01 47.6s 6.1·10−8 16.05

0.005 1m0s 9.3·10−8 16.045

0.001 2m25s 4.0·10−8 16.041

ExpM (32-bit) 0.1 4.4s 9.8·10−3 16.1

0.05 6.2s 9.7·10−3 16.1

0.01 21.4s 9.4·10−4 16.05

0.005 40.1s 1.4·10−3 16.035

0.001 3m7s 1.0·10−2 16.099

Sim (1e-12) 0.1 4m8s 8.0·10−12 16.1

0.05 4m14s 8.5·10−12 16.05

0.01 4m30s 8.4·10−12 16.05

0.005 4m45s 8.5·10−12 16.045

0.001 5m44s 8.2·10−12 16.041

ExpM (64-bit) 0.1 4.2s 4.8·10−11 16.1

0.05 6.0s 4.7·10−11 16.05

0.01 20.7s 1.0·10−11 16.05

0.005 39.0s 9.9·10−12 16.045

0.001 3m8s 1.7·10−11 16.041

MNA1* 588 x1 ≥ 0.5 Sim (1e-6) 0.1 1m17s X
0.05 1m21s X
0.01 2m10s X

0.005 3m7s X
0.001 11m21s X

ExpM (32-bit) 0.1 49.6s X
0.05 1m30s X

7

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

0.01 7m18s X
0.005 14m47s X
0.001 1h14m X

Sim (1e-12) 0.1 8m34s X
0.05 8m41s X
0.01 9m37s X

0.005 10m43s X
0.001 20m14s X

ExpM (64-bit) 0.1 19.6s X
0.05 36.0s X
0.01 2m46s X

0.005 5m32s X
0.001 27m17s X

MNA1 588 x1 ≥ 0.2 Sim (1e-6) 0.1 1m17s 1.9·10−5 16.6

0.05 1m19s 1.9·10−5 16.6

0.01 2m3s 1.7·10−5 16.56

0.005 2m54s 2.0·10−5 16.555

0.001 9m26s 8.9·10−6 16.554

ExpM (32-bit) 0.1 42.3s 1.3·10−3 16.6

0.05 1m15s 1.3·10−3 16.55

0.01 6m3s 1.1·10−3 16.56

0.005 12m18s 1.1·10−3 16.555

0.001 1h1m 1.5·10−3 16.544

Sim (1e-12) 0.1 8m38s 3.3·10−9 16.6

0.05 8m35s 3.3·10−9 16.6

0.01 9m31s 3.3·10−9 16.56

0.005 10m30s 3.3·10−9 16.555

0.001 16m57s 3.3·10−9 16.554

ExpM (64-bit) 0.1 15.8s 3.5·10−9 16.6

0.05 30.1s 3.5·10−9 16.6

0.01 2m16s 3.5·10−9 16.56

0.005 4m30s 3.5·10−9 16.555

0.001 22m5s 3.5·10−9 16.554

FOM* 1008 y1 ≥ 45 Sim (1e-6) 0.1 3m6s X
0.05 3m17s X
0.01 8m41s X

0.005 15m1s X
0.001 53m24s X

ExpM (32-bit) 0.1 35.2s X
0.05 1m6s X
0.01 4m52s X

0.005 9m26s X
0.001 47m29s X

Sim (1e-12) 0.1 6m43s X
0.05 6m31s X
0.01 12m44s X

0.005 18m29s X
0.001 1h0m X

ExpM (64-bit) 0.1 35.6s X
0.05 53.9s X
0.01 4m6s X

0.005 8m15s X
0.001 39m18s X

FOM 1008 y1 ≥ 7 Sim (1e-6) 0.1 3m13s 2.5·10−4 0.2

0.05 3m8s 2.6·10−4 0.2

0.01 2m23s 1.3·10−4 0.07

0.005 2m9s 1.3·10−4 0.07

0.001 1m35s 1.3·10−4 0.069

ExpM (32-bit) 0.1 8.4s 1.1·10−6 0.2

0.05 8.4s 1.1·10−6 0.2

0.01 8.2s 1.1·10−6 0.07

0.005 8.6s 1.1·10−6 0.07

0.001 15.1s 1.9·10−6 0.069

Sim (1e-12) 0.1 6m43s 1.9·10−9 0.2

0.05 6m34s 1.9·10−9 0.2

0.01 3m36s 1.3·10−9 0.07

0.005 3m10s 1.3·10−9 0.07

8

Verifying Linear Systems with over 10000 Dimensions Bak, and Duggirala

Figure 2: Plot of the first 0.25 seconds of the reachable states for the Building (50 dimensions)
model produced in SpaceEx [?]. Notice that fixed-time simulations with a time step of 0.1 or
0.05 do not enter the unsafe states (x25 > 0.004).

0.001 2m20s 1.3·10−9 0.069

ExpM (64-bit) 0.1 7.6s 2.2·10−9 0.2

0.05 7.6s 2.2·10−9 0.2

0.01 7.2s 1.4·10−9 0.07

0.005 7.6s 1.4·10−9 0.07

0.001 12.4s 1.5·10−9 0.069

The star-based reachability method is confirmed as scalable, and finishes on all of the bench-
marks, often taking only minutes for systems with hundreds of dimensions.

All four approaches, as well as all values of the time step are able to correctly verify or find
counter-examples traces to the unsafe error states for all the models, with the exception of the
Building (50 dimensions) model when using a time step of 0.1 or 0.05. Examining the plot of
the reachable states of this system (Figure ??), the reason becomes apparent.

4 Conclusion

We analyzed nine benchmark systems using reachability analysis. Our main result is that the
recently proposed technique for linear systems is capable of scaling to large systems, and can
detect errors in models with high-dimensional initial sets of states. In the future, we plan to
look into hybrid systems verification using the simulation-based continuous post approach.

9

