This space is reserved for the EPiC Series header, do not use it

Verifying Linear Systems with over 10000 Dimensions (Benchmark Result)

Stanley Bak¹ and Parasara Sridhar Duggirala²

Air Force Research Laboratory ² University of Connecticut

Abstract

We evaluate a recent simulation-based reachability method on a set of high-dimensional linear systems benchmarks taken from model order reduction. The method we used is simulation based, and was previously shown to have promise in terms of scalability. The method can scale to systems with over 10000 dimensions with several hours of computation time, which is an encouraging result.

1 Introduction

Reachability analysis attempts to compute, given a set of initial states, which states the system can enter. Safety verification can then be done by performing intersections between the unsafe states and reachable set. In this paper, we examine reachability for affine, time-invariant systems, with the differential equations $\dot{x} = Ax + b$. We only consider the continuous post operation, that is, we do not evaluate guards or other features of a hybrid automaton [?]. Nonetheless, note that continuous post is a core component of many hybrid systems reachability tools.

Typically, the reachable set tools store states in data structures such as polyhedra [?], zonotopes [?], support functions [?], or Taylor models [?]. Recently, a data structure and associated reachability method was proposed which stores states in a data structure called a generalized star set [?]. The reachability method we evaluate is based on this technique, which essentially uses simulations and superposition to reason over which states are reachable.

The implementation we used only reasons about the states reachable at discrete time steps. Unlike other reachability methods, it does not reason about states between time steps. However, it is capable of generating counter-example traces whenever the unsafe states are deemed reachable. We call this the *simulation-equivalent reachable set*, since it consist of all the states visited by every fixed-step simulation.

We perform an evaluation of a set of nine benchmarks which consist of large-scale linear systems [?]. These benchmarks were taken from "diverse fields such as civil engineering and robotics." The difficulty of these benchmarks was rated as low to challenge, and they range from tens to over ten thousand dimensions. Using these benchmarks, we evaluate two approaches which can be used to compute a generalized star set's basis matrix, which is a key component when computing its reachability. This is discussed in the next section.

2 Computing a Star's Basis Matrix

Here, we discuss the computation of the basis matrix of a generalized star set (or simply star). We do not review the full reachability computation with this approach, which is available in earlier work [?].

The generalized star set approach for reachability computation takes advantage of the superposition principle of linear systems in order to compute the reachable set. Basically, at each instance in time, if one knows how each orthonormal unit vector in the standard basis has evolved since the initial time, one can reconstruct the current state reachable from an arbitrary point by taking linear combinations of the state's reached by the unit vector points. For example, say in a 2-d space the initial point $\begin{pmatrix} 1\\0 \end{pmatrix}$ after some time t evolves under some linear differential equations $\dot{x} = Ax$ and reaches point $\begin{pmatrix} a\\b \end{pmatrix}$. The reachable state of $\begin{pmatrix} 2\\0 \\ 2b \end{pmatrix}$ then could be easily computed by taking twice the state that $\begin{pmatrix} 1\\0 \end{pmatrix}$ reached, which is $\begin{pmatrix} 2a\\2b \end{pmatrix}$. Knowing how $\begin{pmatrix} 1\\0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0\\1 \end{pmatrix}$ evolve is sufficient to be able to reconstruct how any initial point evolves at time t. If the dynamics are affine, $\dot{x} = Ax + c$, then one more simulation is required from the origin. If we are interested in how a set of states can evolve at time t, one can construct a linear program (LP) which encodes the constraints on the initial conditions, how each unit vector has evolved at time t. Linear conditions can also be added to encode unsafe state conditions, and the LP will then be feasible if and only if an unsafe state is reachable from some initial state.

At each time step, the value of t changes, and so 'how each unit vector has evolved at time t' will change. There are n initial unit vectors, and each one reaches an n-dimensional point, so these can be combined to form what is called the star's *basis matrix*. The computation of this basis matrix at each time step dominates the runtime of the safety verification method. On the proposed benchmarks, we will evaluate two methods to compute the basis matrix. First, however, we present a more complete example of the star-based reachability approach.

Harmonic Oscillator A 2-d harmonic oscillator has the dynamics $\dot{x} = y$, $\dot{y} = -x$. We use initial states x = [-6, -5], y = [0, 1]. Simulations of this system rotate clockwise around the origin. The simulation-equivalent reachable sets, and the associated LP formulation at time step $\frac{\pi}{4}$ is shown in Figure ??. If there was a linear unsafe error condition, it could be added to this LP. The LP would then be feasible if, and only if, unsafe states were reachable. The basis matrix in this instance is the red encircled values in the LP formulation in the figure. These get updated at each time step, and the rest of the constraints remain the same. The initial conditions are encoded in rows 3-6. The basis matrix at time 0 is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. After $\frac{\pi}{4}$ time, the point which started at state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ evolves to $\begin{pmatrix} 0.707 \\ -0.707 \end{pmatrix}$ and the point which states at $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ goes to $\begin{pmatrix} 0.707 \\ 0.707 \end{pmatrix}$. The basis matrix at time $\frac{\pi}{4}$ is therefore $\begin{pmatrix} 0.707 \\ -0.707 \end{pmatrix}$, as shown in the Figure. At the next time step, time $\frac{\pi}{2}$, the basis matrix would be updated to $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Error states could be encoded by adding additional rows to the LP constraints imposing a linear condition on x_1 and x_2 . If an error state is reachable, the LP would give a concrete assignment to x_1, x_2, α_1 , and α_2 . One concrete error trace, then, would start at point (α_1, α_2) , and evolve to the unsafe point (x_1, x_2) .

As mentioned before, the computation of this basis matrix at each time step dominates the runtime of the safety verification method, and so it is important to optimize this computation. In the original work [?], the computation of this basis matrix was done using simulations. However, notice that, since the solution to a linear system $\dot{x} = Ax$ is $x(t) = e^{At}x(0)$, the basis matrix can also be computed using the matrix exponential. In particular the basis matrix at time t is equal to e^{At} . Further, rather than recomputing the basis matrix at each step, we notice that $e^{A2t} = e^{At} \times e^{At}$. Thus, a single computation of the matrix exponential can be performed at the desired time step, and then the resultant matrix can be multiplied using standard matrix

Figure 1: Plot of states reached by any fixed-step simulation (simulation-equivalent reachable set) in the harmonic oscillator system, using a step size of $\frac{\pi}{4}$ (left), and the star's LP formulation at time $\frac{\pi}{4}$ (right). The values circled in red are the star's basis matrix at time $\frac{\pi}{4}$, which gets updated at each step.

multiplication to get the basis matrix at the next time step. This can be repeated until the time horizon is reached.

3 Benchmark Results

The simulation-equivalent reachability method has been shown to have promise in terms of scalability [?, ?]. In this section, we check if it can handle a recently-proposed benchmark suite for linear systems [?], which includes systems with over 10000 dimensions. For each benchmark, we also considered a variant with a weakened or strengthened unsafe condition, so that each system would have both a safe and an unsafe case. In order to evaluate the accuracy of the method, when an unsafe state is reached, we output the initial state and final states which are unsafe. Then, we perform a numerical simulation with higher accuracy parameters from the initial state and check how close the final point is to the expected final point. We report the relative error of these two points.

Both the speed and the accuracy of the verification result depends on how accurately the basis matrix is computed. Therefore, it is inappropriate to consider one metric without considering the other. In order to compute the basis matrix, we consider four different approaches: two based on numeric simulations, and two based on matrix exponential and matrix multiplication. For matrix exponential, we consider using both single precision and double precision numbers, which give different speed / accuracy values. For numeric simulation, we try to choose absolute and relative tolerance in the simulation engine so that the method is close to the accuracy of the matrix exponential approaches. In our case, we found that a simulation tolerance of 10^{-6} produced errors similar to the single-precision matrix exponential method, and simulation tolerance 10^{-12} yielded errors close to the double-precision matrix exponential approach.

For the benchmarks, we use the original time bound of 20. We consider different step sizes. While simulation methods are expected to take slightly longer with more intermediate steps, we expect more time steps to have more impact on the matrix exponential approaches, where the number of matrix multiplications is exactly equal to the number of time steps.

Our evaluation uses the Hylaa tool, which is written mostly in Python. Matrix exponential is computed using scipy and the expm function, which uses a Padé approximation. Numerical simulations are done with scipy's odeint function, which can simulate both stiff and non-stiff systems with using lsoda from the Fortran library odepack. The implementation parallelizes both the matrix multiplication (for matrices larger than 150×150 , which was empirically derived), as well as the simulations. For large matrices, the simulations are performed a few steps at a time, rather than for the entire time bound, so as to reduce memory consumption (a single basis matrix for a 10000 dimensional model takes about 800MB of RAM).

The results are shown in Table ??.

Table 1: Benchmark results. Stars (*) indicate original unsafe error conditions.

Model	Dims	Error Condition	Method	Step	Time	Safe?	CE	Error	CE	Time
Motor*	11	$\begin{array}{c} x_1 \in [0.35, 0.4] \ \land \\ x_5 \in [0.45, 0.6] \end{array}$	Sim (1e-6)	0.1	0.6s	\checkmark				
				0.05	0.6s	\checkmark				
				0.01	0.7s	\checkmark				
			0.005	0.9s	√					
				0.001	2.3s	√				
			ExpM $(32-bit)$	0.1	0.7s	√				
				0.05	1.0s	v				
				0.01	2.7s	V				
				0.005	4.6s	~				
			Q. (1, 10)	0.001	20.78					
			Sim(1e-12)	0.1	0.68	~				
				0.05	0.08	v				
				0.01	0.08	•				
				0.003	0.98	~				
			FypM (64 bit)	0.001	2.55	· · •				
			Бхриг (04-610)	0.05	1.0s	•				
				0.00	2.65					
				0.005	4.7s	·				
				0.001	20.1s					
		[0.0.0.1]								
Motor	11	$x_1 \in [0.3, 0.4] \land x_5 \in [0.4, 0.6]$	Sim (1e-6)	0.1	0.6s		$1.6 \cdot$	10^{-6}		0.1
				0.05	0.5s		$3.4 \cdot$	10^{-7}	(0.05
				0.01	0.6s		$1.7 \cdot$	10^{-6}	(0.04
				0.005	0.7s		$1.7 \cdot$	10^{-6}	(0.04
				0.001	0.6s		9.7.	10^{-7}	0	.037
			ExpM (32-bit)	0.1	0.6s		1.9.	10^{-5}	· · ·	0.1
			Enpin (02 510)	0.05	0.58		1.0.	10^{-5}	(0.1
				0.00	0.65		1.0	10^{-5}	, c	0.00
				0.01	0.03		2.0.	10^{-5}	(0.04
				0.000	0.03		7.4.	10^{-6}	0	037
			(1, 10)		0.05		1.4.	10-9		.037
			SIIII (1e-12)	0.1	0.55		1.2.	10^{-11}		0.1
				0.05	0.65		1.3.	$10_{10} - 12_{10}$	(0.05
				0.01	0.65		3.7.	$10_{10} - 12_{10}$	(0.04
				0.005	0.78		4.0.	10	(0.04
				0.001	0.8s		2.2	10 11	0	.037
			ExpM $(64-bit)$	0.1	0.6s		$1.2 \cdot$	10^{-5}		0.1
				0.05	0.5s		7.2.1	10-11	(0.05
				0.01	0.6s		$4.5 \cdot 1$	10^{-12}	. (0.04
				0.005	5 0.6s		4.5	$\cdot 10^{-12}$		0.04
				0.00	1 0.5s		2.5	$\cdot 10^{-11}$		0.037
Building	* 50	$x_{25} > 0.006$	Sim (1e-6)	0.1	1.18	1				
	00	-23 - 0.000	(10 0)	0.0	5 1.2s					
				0.0	1.6s	√				
				0.005	5 1.9s	\checkmark				
				0.00	6.7s	\checkmark				
			ExpM (32-bit) 0.1	1 0.9s					
			• •	0.0	5 1.1s	\checkmark				

Bak, and Duggirala

				$\begin{array}{c} 0.01 \\ 0.005 \end{array}$	$\frac{3.3s}{5.7s}$	\checkmark		
			Sim (1e-12)	0.001	26.8s 2.1s			
				0.05	2.1s 2.7s	√ √		
				0.005	3.3s	✓		
			······································	0.001	7.6s			
			Explut (64-bit	0.05	1.1s	√ √		
				0.01	3.3s	\checkmark		
				$0.005 \\ 0.001$	5.8s 27.2s	\checkmark		
Building	50	$x_{25} > 0.004$	Sim (1e-6)	0.1	1.0s	~		
0		20 _		0.05	1.1s	\checkmark		
				0.01	0.9s		$1.8 \cdot 10^{-4}$	0.07
				0.005	1.0s 2.1c		$1.8 \cdot 10^{-4}$	0.07
			ExpM (32-bit	0.001	0.9s	•••	1.0 10	
				0.05	1.2s	\checkmark	c	
				0.01	0.6s		$9.8 \cdot 10^{-6}$	0.07
				0.003	0.3s 0.7s		$7.1 \cdot 10^{-5}$	0.07
			Sim (1e-12)	0.1	2.2s	· · · ·		
				0.05	2.1s	\checkmark	1 0 10-8	
				0.01	2.0s		$1.2 \cdot 10^{-8}$	0.07
				0.000	3.0s		$9.0 \cdot 10^{-9}$	0.07
			ExpM (64-bit) 0.1	0.8s	√		
				0.05	1.2s	\checkmark	1.0.10-8	0.07
				0.001	0.5s 0.6s		$1.2 \cdot 10^{-8}$	0.07
				0.001	0.7s		$8.5 \cdot 10^{-9}$	0.07
PDE*	86	$y_1 \ge 12$	Sim (1e-6)	0.1	0.7s	\checkmark		
				0.05	0.8s	~		
				0.001	3.1s	√ √		
				0.001	12.6s	\checkmark		
			ExpM $(32-bit)$) 0.1	0.8s	V		
				0.05	3.1s	✓ ✓		
				0.005	5.7s	√		
			Sim (1e-12)	0.001	25.1s			
			5111 (10 12)	0.05	0.9s	√		
				0.01	1.6s	V		
				0.005	3.2s 12.7s	√ √		
			ExpM (64-bit	0.1	0.9s	· · · ·		
				0.05	1.1s	\checkmark		
				0.001	5.28 5.8s	✓ ✓		
				0.001	26.3s	\checkmark		
PDE	86	$y_1 \ge 10.75$	Sim (1e-6)	0.1	0.7s		$5.8 \cdot 10^{-8}$	0.1
				0.05	0.6s		$2.8 \cdot 10^{-6}$	0.05
				0.01	1.0s		$1.9 \cdot 10^{-6}$	0.03 0.025
				0.001	4.2s		$1.3 \cdot 10^{-6}$	0.021
			ExpM (32-bit	0.1	0.6s		$4.1 \cdot 10^{-7}$	0.1
				0.05	0.7s		$4.1 \cdot 10^{-7}$	0.05
				0.01	0.6s		$5.2 \cdot 10^{-7}$	0.03
				0.005	0.0s 0.6s		$2.0 \cdot 10^{-7}$	0.023
			Sim (1e-12)	0.1	0.6s		$4.8 \cdot 10^{-12}$	0.1
				0.05	0.6s		$2.6 \cdot 10^{-11}$	0.05
				0.01	1.0s		$1.7 \cdot 10^{-10}$	0.03
				11110	1 / 6		1.9,101	11 11 25

		ExpM (64-bit)	$\begin{array}{c} 0.001 \\ 0.1 \\ 0.05 \\ 0.01 \\ 0.005 \\ 0.001 \end{array}$	$\begin{array}{c} 4.1 {\rm s} \\ 0.6 {\rm s} \end{array}$		$\begin{array}{c} 2.2 \cdot 10^{-11} \\ 5.0 \cdot 10^{-12} \\ 3.4 \cdot 10^{-11} \\ 1.7 \cdot 10^{-10} \\ 1.7 \cdot 10^{-11} \\ 1.9 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 0.021 \\ 0.1 \\ 0.05 \\ 0.03 \\ 0.025 \\ 0.021 \end{array}$
Heat*	202 $x_{133} \ge 0.1$	Sim (1e-6)	$0.1 \\ 0.05 \\ 0.01$	1.6s 1.9s 5.9s	√ √ √		
			$0.005 \\ 0.001$	11.0s 54.0s	\checkmark		
		ExpM (32-bit)	0.1	2.2s			
			$0.05 \\ 0.01$	3.3s 11 7s	\checkmark		
			0.005	22.3s	√		
		Sim (1e-12)	0.001	1m58s 3.2s	·		
		5111 (10 12)	0.05	3.8s	✓		
			0.01	7.0s	√ .∕		
			0.000	54.1s	∨		
		ExpM (64-bit)	0.1	1.7s 2.7s	<i>\</i>		
			0.01	10.0s	√		
			0.005	19.0s	\checkmark		
	202 > 0.02		0.001	1 5	•	4.4.10=6	15 8
Heat	$202 x_{133} \ge 0.02$	Sim (1e-6)	$0.1 \\ 0.05$	1.7s 1.8s		$4.4 \cdot 10^{-6}$ $4.1 \cdot 10^{-6}$	15.7 15.7
			0.01	5.3s		$4.7 \cdot 10^{-6}$	15.67
			0.005	9.4s		$4.5 \cdot 10^{-6}$	15.67
		ExpM (32-bit)	0.001	40.4s 2.0s		$3.3 \cdot 10$ $2.5 \cdot 10^{-4}$	15.67
			0.05	2.8s		$2.5 \cdot 10^{-4}$	15.7
			0.01	9.2s		$7.4 \cdot 10^{-4}$	15.65
			0.005 0.001	17.5s 1m31s		$7.1 \cdot 10^{-4}$ 5.4 \cdot 10^{-4}	15.65 15.652
		Sim (1e-12)	0.1	3.1s		$9.5 \cdot 10^{-10}$	15.7
			0.05	3.5s		$9.6 \cdot 10^{-10}$	15.7
			0.01	6.4s 10.3s		$9.4 \cdot 10^{-10}$ $8.4 \cdot 10^{-10}$	15.67 15.67
			0.001	45.6s		$8.0 \cdot 10^{-10}$	15.67
		ExpM (64-bit)	0.1	1.6s		$9.8 \cdot 10^{-10}$	15.7
			$0.05 \\ 0.01$	2.3s 8.3s		$9.8 \cdot 10$ $9.7 \cdot 10^{-10}$	15.7 15.67
			0.00	$5 \ 16.1s$		$8.7 \cdot 10^{-10}$	15.6
			0.00	1 1m16s		$8.9 \cdot 10^{-10}$	15.6
ISS* :	274 $y_3 \notin [-0.0005, 0.0]$	(005] Sim (1e-6)	0.	1 46.5s	√ √		
			0.0	1 50.7s	~		
			0.00	5 54.3s	√		
		ÉxpM (32-bi	t) 0.	1 2.9s	•••		
			0.0	5 4.6s	~		
			0.00	5 20.4s	√		
		Sim (1-19)	0.00	1 1m36s			
		51m (1e-12)	0.0	5 5m58s	√ √		
			0.0	1 6m11s	V		
			0.00	5 6m14s 1 6m25s	√ √		
		ĖxpM (64-bi	t) 0.	1 2.7s	· ·/		
			0.0	5 4.3s	√ .∕		
			0.0	05 20.1s	`v	<i>i</i>	
			0.0	$01 \ 1m35\epsilon$	s √	<i>*</i>	

		0.05	47.5s		$2.6 \cdot 10^{-4}$	0.5
		0.01	47.4s		$3.0 \cdot 10^{-4}$	0.5
		0.005	47.7s		$1.7 \cdot 10^{-4}$	0.5
		0.001	22.9s		$4.9 \cdot 10^{-4}$	0.498
	ExpM (32-bit)	0.1	0.9s		$1.3 \cdot 10^{-6}$	0.5
		0.05	1.1s		$1.2 \cdot 10^{-6}$	0.5
		0.01	1.3s		$4.1 \cdot 10^{-6}$	0.5
		0.005	1.6s		$8.3 \cdot 10^{-6}$	0.5
		0.001	3.4s		$4.8 \cdot 10^{-5}$	0.498
	Sim (1e-12)	0.1	5m58s		$1.1 \cdot 10^{-6}$	0.5
	· · · ·	0.05	6m1s		$9.7 \cdot 10^{-7}$	0.5
		0.01	6m18s		$7.9 \cdot 10^{-7}$	0.5
		0.005	6 m 4 s		$7.9 \cdot 10^{-7}$	0.5
		0.001	2m28s		$6.3 \cdot 10^{-7}$	0.498
	ExpM (64-bit)	0.1	0.8s	• • •	$1.1 \cdot 10^{-6}$	0.5
	(* = *)	0.05	0.9s		$9.7 \cdot 10^{-7}$	0.5
		0.01	1.1s		$7.9 \cdot 10^{-7}$	0.5
		0.005	1.3s		$7.9 \cdot 10^{-7}$	0.5
		0.001	3.2s		$6.3 \cdot 10^{-7}$	0.498
Beam $350 \ x_{89} \ge 2100$	Sim (1e-6)	0.1	37.5s	~		
		0.05	39.4s	~		
		0.01	49.08	~		
		0.003	2m56c	*		
	EvnM (32-bit)	0.001	4 69	· ·		
	Бхри (02-610)	0.05	7.0s	• ✓		
		0.01	26.3s			
		0.005	49.5s	\checkmark		
		0.001	3m57s	\checkmark		
	Sim (1e-12)		4m5s	·		
		0.05	4m16s	\checkmark		
		0.01	4m36s	\checkmark		
		0.005	4			
		0.000	411528	v		
		0.001	6m33s			
	· ExpM (64-bit)	0.001	4m32s 6m33s 4.2s	· √ .		
	ExpM (64-bit)	0.003	4m32s 6m33s 4.2s 6.7s 25 1c	· • · · · · · · · · · · · · · · · · · ·		
	ExpM (64-bit)	0.003 0.001 0.05 0.01 0.05	41132s 6m33s 4.2s 6.7s 25.1s 47.4s			
	ExpM (64-bit)	0.003 0.001 0.1 0.05 0.01 0.005 0.001	41132s 6m33s 4.2s 6.7s 25.1s 47.4s 3m45s			
	ÈxpM (64-bit)	0.003 0.001 0.1 0.05 0.01 0.005 0.001	41132s 6m33s 4.2s 6.7s 25.1s 47.4s 3m45s			
Beam [*] 350 $x_{89} ≥ 1000$	· ExpM (64-bit) Sim (1e-6)	0.003 0.001 0.1 0.05 0.01 0.005 0.001 0.1	4m32s 6m33s 4.2s 6.7s 25.1s 47.4s 3m45s 37.5s		5.2.10 ⁻⁸	16.1
Beam [*] 350 $x_{89} ≥ 1000$	· ExpM (64-bit) Sim (1e-6)	0.003 0.001 0.1 0.05 0.01 0.005 0.001 0.1 0.05	4m32s 6m33s 4.2s 6.7s 25.1s 47.4s 3m45s 37.5s 38.1s		$5.2 \cdot 10^{-8}$ $5.0 \cdot 10^{-8}$	16.1 16.05
Beam* 350 $x_{89} \ge 1000$	ExpM (64-bit) Sim (1e-6)	0.003 0.001 0.05 0.01 0.005 0.001 0.1 0.05 0.01	$\begin{array}{r} 41132s\\ 6m33s\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 37.5s\\ 38.1s\\ 47.6s\\ \end{array}$		$\frac{5.2 \cdot 10^{-8}}{5.0 \cdot 10^{-8}}$ 6.1 \cdot 10^{-8}	16.1 16.05 16.05
Beam [*] 350 $x_{89} ≥ 1000$	· ExpM (64-bit) Sim (1e-6)	$\begin{array}{c} 0.003\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ \end{array}$	4m32s 6m33s 4.2s 6.7s 25.1s 47.4s 3m45s 37.5s 38.1s 47.6s 1m0s		$5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8}$	$ 16.1 \\ 16.05 \\ 16.05 \\ 16.045 $
Beam* 350 $x_{89} \ge 1000$	· ExpM (64-bit) Sim (1e-6)	0.005 0.001 0.1 0.05 0.01 0.005 0.001 0.1 0.05 0.01 0.005 0.001	4m32s 6m33s 4.2s 6.7s 25.1s 47.4s 3m45s 37.5s 38.1s 47.6s 1m0s 2m25s		$5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8}$	$ \begin{array}{c} 16.1 \\ 16.05 \\ 16.05 \\ 16.045 \\ 16.041 \end{array} $
$rac{1}{1000}$ Beam* 350 $x_{89} \ge 1000$	· ExpM (64-bit) Sim (1e-6)	0.001 0.01 0.05 0.01 0.05 0.001 0.05 0.001 0.05 0.01 0.005 0.001 0.005 0.001	$\begin{array}{r} 41132s\\ 61133s\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3r.5s\\ 38.1s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \end{array}$	$ \begin{array}{r} 16.1 \\ 16.05 \\ 16.05 \\ 16.045 \\ 16.041 \\ 16.1 \\ \end{array} $
$rac{1}{1000}$ Beam* 350 $x_{89} \ge 1000$	· ExpM (64-bit) Sim (1e-6) ·	0.001 0.01 0.05 0.01 0.05 0.001 0.05 0.01 0.05 0.001 0.05 0.001 0.05 0.001	$\begin{array}{c} 40328\\ 6m338\\ 4.28\\ 6.78\\ 25.18\\ 47.48\\ 3m458\\ \hline 37.58\\ 38.18\\ 47.68\\ 1m08\\ 2m258\\ 4.48\\ 6.28\\ \end{array}$	• • • • • • •	$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \end{array}$	$ \begin{array}{r} 16.1 \\ 16.05 \\ 16.05 \\ 16.045 \\ 16.041 \\ 16.1 \\ 16.1 \\ \end{array} $
Beam* 350 $x_{89} \ge 1000$	· ExpM (64-bit) Sim (1e-6) ·	0.001 0.01 0.01 0.05 0.05	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 37.5s\\ 38.1s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ \end{array}$		$5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} $	$ \begin{array}{r} 16.1 \\ 16.05 \\ 16.05 \\ 16.041 \\ 16.1 \\ 16.1 \\ 16.05 \\ \end{array} $
Beam* 350 $x_{89} \ge 1000$	· ExpM (64-bit) Sim (1e-6) ·ExpM (32-bit)	0.001 0.001 0.01 0.005 0.01 0.005 0.001 0.05 0.001 0.005 0.05 0.005	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 37.5s\\ 38.1s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 16.1 \\ 16.05 \\ 16.05 \\ 16.045 \\ 16.041 \\ 16.1 \\ 16.1 \\ 16.05 \\ 16.035 \end{array}$
Beam* 350 $x_{89} \ge 1000$	· ExpM (64-bit) Sim (1e-6) · ExpM (32-bit)	$\begin{array}{c} 0.001\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ \end{array}$	$\begin{array}{c} 411528\\ 611328\\ 4128\\ 6.78\\ 25.18\\ 47.48\\ 37.58\\ 38.18\\ 47.68\\ 11008\\ 21125\\ 4.48\\ 6.28\\ 21.48\\ 40.18\\ 31078\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.099\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) 	0.001 0.001 0.01 0.005 0.005 0.005 0	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3m45s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m8s\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.039\\ 16.099\\ 16.1\\ \end{array}$
Beam [*] 350 $x_{89} ≥ 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) 	0.001 0.001 0.005 0.005 0.	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3r.1s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 3m7s\\ 4m8s\\ 4m14s\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) 	0.001 0.001 0.01 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3m45s\\ 3m45s\\ 3m45s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m8s\\ 3m7s\\ 4m14s\\ 4m30s\\ \end{array}$	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 5.2\cdot 10^{-8}\\ 5.0\cdot 10^{-8}\\ 6.1\cdot 10^{-8}\\ 9.3\cdot 10^{-8}\\ 4.0\cdot 10^{-8}\\ 9.8\cdot 10^{-3}\\ 9.8\cdot 10^{-3}\\ 9.4\cdot 10^{-4}\\ 1.4\cdot 10^{-3}\\ 1.0\cdot 10^{-2}\\ 8.0\cdot 10^{-12}\\ 8.5\cdot 10^{-12}\\ 8.4\cdot 10^{-12}\\ \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.035\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.05\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12)	0.001 0.001 0.01 0.005 0.005 0.05	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 37.5s\\ 38.1s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m8s\\ 4m14s\\ 4m14s\\ 4m30s\\ 4m45s\\ \end{array}$		$\begin{array}{c} 5.2\cdot10^{-8}\\ 5.0\cdot10^{-8}\\ 6.1\cdot10^{-8}\\ 9.3\cdot10^{-8}\\ 4.0\cdot10^{-8}\\ 9.8\cdot10^{-3}\\ 9.8\cdot10^{-3}\\ 9.4\cdot10^{-4}\\ 1.4\cdot10^{-3}\\ 1.0\cdot10^{-2}\\ 8.0\cdot10^{-12}\\ 8.5\cdot10^{-12}\\ 8.5\cdot10^{-12}\\ 8.5\cdot10^{-12}\\ \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.05\\ 16.05\\ 16.05\\ 16.045\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) 	$\begin{array}{c} 0.001\\ 0.001\\ 0.01\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.000\\ 0.0$	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3r.5s\\ 38.1s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m8s\\ 4m14s\\ 4m30s\\ 5m44s\\ 5m44s\\ \end{array}$		$\begin{array}{r} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.041\\ 16.1\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.05\\ 16.041\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) ExpM (64-bit) 	$\begin{array}{c} 0.001\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.005\\ 0.000\\ 0.00$	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3r5s\\ 38.1s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m4s\\ 4m14s\\ 4m30s\\ 4m45s\\ 4m44s\\ 5m44s\\ 4.2s\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.4 \cdot 10^{-3} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 4.8 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.041\\ 16.041\\ 16.1\\ \end{array}$
Beam* 350 $x_{89} ≥ 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) Sim (1e-12) ExpM (64-bit) 	0.001 0.01 0.05 0.001 0.05 0.05 0.05 0.05 0.	$\begin{array}{c} 411328\\ 611328\\ 611328\\ 4128\\ 6.78\\ 25.18\\ 47.48\\ 3m458\\ 3m458\\ 3m458\\ 47.68\\ 1m08\\ 2m258\\ 4.48\\ 6.28\\ 21.48\\ 40.18\\ 3m78\\ 4m48\\ 4m308\\ 4m148\\ 4m308\\ 4m148\\ 4m308\\ 4m458\\ 55m448\\ 4.28\\ 6.08\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 4.8 \cdot 10^{-11} \\ 4.7 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.035\\ 16.05\\ 16.041\\ 16.05\\ 16.041\\ 16.1\\ 16.05\\ \end{array}$
Beam* 350 $x_{89} ≥ 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) Sim (1e-12) ExpM (64-bit) 	0.001 0.001 0.005 0.001 0.001 0.005 0.001 0.001 0.005 0.001 0.001 0.005 0.001 0.001 0.005 0.001 0	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3m45s\\ 3m45s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m4s\\ 4m30s\\ 4m4s\\ 4m30s\\ 4m45s\\ 5m44s\\ 4.2s\\ 6.0s\\ 20.7s\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 4.8 \cdot 10^{-11} \\ 4.7 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.041\\ 16.1\\ 16.05\\ 16.05\\ 16.05\\ 16.05\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) Sim (1e-12) ExpM (64-bit) 	$\begin{array}{c} 0.001\\ 0.001\\ 0.01\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001$	$\begin{array}{c} 411328\\ 611328\\ 62132\\ 62122\\ $		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 4.8 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \\ 9.9 \cdot 10^{-12} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.05\\ 16.05\\ 16.05\\ 16.05\\ 16.045\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) Sim (1e-12) ExpM (64-bit) 	$\begin{array}{c} 0.001\\ 0.001\\ 0.01\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001$	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3m45s\\ 3m45s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m45s\\ 5m44s\\ 4m30s\\ 4m14s\\ 4m30s\\ 4m45s\\ 5m44s\\ 4.2s\\ 6.0s\\ 20.7s\\ 39.0s\\ 3m8s\\ \end{array}$		$\begin{array}{c} 5.2\cdot10^{-8}\\ 5.0\cdot10^{-8}\\ 6.1\cdot10^{-8}\\ 9.3\cdot10^{-8}\\ 4.0\cdot10^{-8}\\ 9.8\cdot10^{-3}\\ 9.8\cdot10^{-3}\\ 9.7\cdot10^{-3}\\ 9.4\cdot10^{-4}\\ 1.4\cdot10^{-3}\\ 1.0\cdot10^{-2}\\ 8.0\cdot10^{-12}\\ 8.5\cdot10^{-12}\\ 8.5\cdot10^{-12}\\ 8.5\cdot10^{-12}\\ 8.2\cdot10^{-12}\\ 8.2\cdot10^{-12}\\ 4.8\cdot10^{-11}\\ 4.7\cdot10^{-11}\\ 1.0\cdot10^{-11}\\ 9.9\cdot10^{-12}\\ 1.7\cdot10^{-11}\\ \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.041\\ 16.1\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.041\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) ExpM (64-bit) 	0.001 0.001 0.01 0.005 0.005 0.0	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3r.5s\\ 38.1s\\ 47.6s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m84s\\ 4m14s\\ 4m14s\\ 4m30s\\ 4m45s\\ 5m44s\\ 4.2s\\ 6.0s\\ 20.7s\\ 39.0s\\ 3m8s\\ \end{array}$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-11} \\ 4.7 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \\ 9.9 \cdot 10^{-12} \\ 1.7 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.041\\ 16.1\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.05\\ 16.045\\ 16.045\\ 16.045\\ 16.045\\ 16.045\\ 16.045\\ 16.045\\ 16.041\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) ExpM (64-bit) Sim (1e-6) 	0.001 0.001 0.005 0.005	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3m45s\\ 3m45s\\ 3m45s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 4.4s\\ 6.2s\\ 21.4s\\ 4m14s\\ 4m30s\\ 4m14s\\ 4m30s\\ 4m45s\\ 5m44s\\ 4.2s\\ 6.0s\\ 20.7s\\ 39.0s\\ 3m8s\\ 1m17s\\ 1m21c\\ 1m2$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \\ 9.9 \cdot 10^{-12} \\ 1.7 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.05\\ 16.045\\ 16.045\\ 16.041\\ 16.041\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) ExpM (64-bit) Sim (1e-6) 	0.001 0.001 0.005 0.005 0.0	$\begin{array}{c} 411328\\ 611328\\ 611328\\ 4128\\ 6.78\\ 25.18\\ 47.48\\ 3m458\\ 3m458\\ 3m458\\ 47.68\\ 1m08\\ 2m258\\ 4.48\\ 6.28\\ 21.48\\ 40.18\\ 3m78\\ 4m148\\ 4m308\\ 4m148\\ 4m208\\ 3m88\\ 4m218\\ 2m108\\ 2m118\\ 2m118\\$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 4.8 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \\ 9.9 \cdot 10^{-12} \\ 1.7 \cdot 10^{-11} \\ \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.045\\ 16.045\\ 16.041\\ 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.045\\ 16.041\\ 16.05\\ 16.041\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) Sim (1e-12) ExpM (64-bit) Sim (1e-6) 	0.001 0.001 0.005 0.005 0.	$\begin{array}{c} 410328\\ 610328\\ 610328\\ 4.28\\ 6.78\\ 25.18\\ 47.48\\ 3m458\\ 3m458\\ 47.68\\ 1m08\\ 2m258\\ 4.48\\ 6.28\\ 21.48\\ 40.18\\ 3m78\\ 4.48\\ 6.08\\ 4m148\\ 4m308\\ 4m28\\ 3m78\\ 3m7$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.8 \cdot 10^{-3} \\ 9.4 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 4.8 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \\ 9.9 \cdot 10^{-12} \\ 1.7 \cdot 10^{-11} \\ \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.035\\ 16.05\\ 16.041\\ 16.05\\ 16.041\\ 16.05\\ 16.05\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.05\\ 16.041\\ 16.05\\ 16.041\\ 16.05\\ 16.041\\ 16.041\\ 16.05\\ 16.041\\ 16.041\\ 16.05\\ 16.041\\ 16.041\\ 16.05\\ 16.041\\ 10.041\\ 10.0$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) ExpM (64-bit) Sim (1e-6) 	0.001 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3m45s\\ 3m45s\\ 47.6s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m45s\\ 5m44s\\ 4m30s\\ 4m45s\\ 5m44s\\ 4.2s\\ 6.0s\\ 20.7s\\ 39.0s\\ 3m8s\\ 1m17s\\ 1m21s\\ 2m10s\\ 3m7s\\ 3$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 8.2 \cdot 10^{-12} \\ 1.0 \cdot 10^{-11} \\ 9.9 \cdot 10^{-12} \\ 1.7 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.045\\ 16.041\\ 16.05\\ 16.05\\ 16.041\\ 16.05\\ 16.045\\ 16.041\\ 16.05\\ 16.041\\ \end{array}$
Beam* 350 $x_{89} \ge 1000$	 ExpM (64-bit) Sim (1e-6) ExpM (32-bit) Sim (1e-12) ExpM (64-bit) Sim (1e-6) ExpM (32-bit) 	0.001 0.001 0.01 0.005 0.005 0.0	$\begin{array}{c} 400328\\ 600338\\ 4.2s\\ 6.7s\\ 25.1s\\ 47.4s\\ 3m45s\\ 3m45s\\ 3m45s\\ 47.6s\\ 1m0s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 2m25s\\ 4.4s\\ 6.2s\\ 21.4s\\ 40.1s\\ 3m7s\\ 4m45s\\ 5m44s\\ 4m30s\\ 4m45s\\ 5m44s\\ 4.2s\\ 6.0s\\ 20.7s\\ 39.0s\\ 3m8s\\ 1m17s\\ 1m21s\\ 2m10s\\ 3m7s\\ 1m21s\\ 2m10s\\ 3m7s\\ 1m21s\\ 2m10s\\ 3m7s\\ 1m21s\\ 2m6s\\ 3m7s\\ 1m21s\\ 2m6s\\ 3m7s\\ 1m21s\\ 2m6s\\ 3m7s\\ 1m21s\\ 2m6s\\ 3m7s\\ 3m7s\\ 1m21s\\ 2m6s\\ 3m7s\\ 3m7s\\ 1m21s\\ 2m6s\\ 3m7s\\ 3m7s\\ 3m7s\\ 1m21s\\ 2m6s\\ 3m7s\\ 3m7s$		$\begin{array}{c} 5.2 \cdot 10^{-8} \\ 5.0 \cdot 10^{-8} \\ 6.1 \cdot 10^{-8} \\ 9.3 \cdot 10^{-8} \\ 4.0 \cdot 10^{-8} \\ 9.8 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 9.7 \cdot 10^{-3} \\ 1.0 \cdot 10^{-2} \\ 8.0 \cdot 10^{-12} \\ 8.5 \cdot 10^{-12} \\ 1.7 \cdot 10^{-11} \\ 1.0 \cdot 10^{-11} \\ 9.9 \cdot 10^{-12} \\ 1.7 \cdot 10^{-11} \\ \end{array}$	$\begin{array}{c} 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.1\\ 16.05\\ 16.035\\ 16.099\\ 16.1\\ 16.05\\ 16.045\\ 16.041\\ 16.1\\ 16.05\\ 16.05\\ 16.045\\ 16.045\\ 16.041\\ \end{array}$

Bak, and Duggirala

	· Šim (1e-12) · · · · ĖxpM (64-bit)	$\begin{array}{c} 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ \end{array}$	$\begin{array}{c} 7m18s\\ 14m47s\\ 1h14m\\ 8m34s\\ 8m41s\\ 9m37s\\ 10m43s\\ 20m14s\\ 19.6s\\ 36.0s\\ 2m46s\\ 5m32s\\ 27m17s\\ \end{array}$	$\begin{array}{c} \checkmark \checkmark$		
$\frac{1}{1}$	Sim(10.6)	0.1	1m17e		$1.0.10^{-5}$	16.6
MINAL 500 $x_1 \ge 0.2$	5111 (12-0)	0.05	1m17s 1m19s		$1.9 \cdot 10^{-5}$	16.6
		0.01	2m3s		$1.7 \cdot 10^{-5}$	16.56
		0.005	2m54s		$2.0 \cdot 10^{-5}$	16.555
		0.001	9m26s		$8.9 \cdot 10^{-6}$	16.554
	ExpM (32-bit)	0.1	42.3s	• • •	$1.3 \cdot 10^{-3}$	16.6
	,	0.05	1m15s		$1.3 \cdot 10^{-3}$	16.55
		0.01	6 m 3 s		$1.1 \cdot 10^{-3}$	16.56
		0.005	12m18s		$1.1 \cdot 10^{-3}$	16.555
		0.001	1h1m		$1.5 \cdot 10^{-3}$	16.544
	Sim (1e-12)	0.1	8m38s		$3.3 \cdot 10^{-9}$	16.6
		0.05	8m35s		$3.3 \cdot 10^{-9}$	16.6
		0.01	9m31s		$3.3 \cdot 10^{-9}$	16.56
		0.005	10 m 30 s		$3.3 \cdot 10^{-9}$	16.555
		0.001	16m57s		$3.3 \cdot 10^{-9}$	16.554
	ExpM (64-bit)	0.1	15.8s		$3.5 \cdot 10^{-9}$	16.6
		0.05	30.1s		$3.5 \cdot 10^{-9}$	16.6
		0.01	2m16s		$3.5 \cdot 10^{-9}$	16.56
		0.005	4m30s		$3.5 \cdot 10^{-9}$	16.555
		0.001	22m5s		3.5.10 *	16.554
FOM* $1008 \ y_1 \ge 45$	Sim (1e-6)	0.1	3m6s	\checkmark		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6)	$0.1 \\ 0.05$	3m6s 3m17s	√ √		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6)	$0.1 \\ 0.05 \\ 0.01 \\ 0.05 \\ 0$	3m6s 3m17s 8m41s	< < <		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6)	$0.1 \\ 0.05 \\ 0.01 \\ 0.005 \\ 0.001$	3m6s 3m17s 8m41s 15m1s 52m24a	~ ~ ~ ~ ~		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6)	$\begin{array}{c} 0.1 \\ 0.05 \\ 0.01 \\ 0.005 \\ 0.001 \\ 0.1 \end{array}$	3m6s 3m17s 8m41s 15m1s 53m24s 35.2s	< < < < < < < < < < < < < < < < < < <		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) ExpM (32-bit)	$\begin{array}{c} 0.1 \\ 0.05 \\ 0.01 \\ 0.005 \\ 0.001 \\ 0.1 \\ 0.05 \end{array}$	3m6s 3m17s 8m41s 15m1s 53m24s 35.2s 1m6s	< < < < < < < < < < < < < < < < < < <		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6)	$\begin{array}{c} 0.1 \\ 0.05 \\ 0.01 \\ 0.005 \\ 0.001 \\ 0.1 \\ 0.05 \\ 0.01 \end{array}$	3m6s 3m17s 8m41s 15m1s 53m24s 35.2s 1m6s 4m52s	くくくくくくく		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) ExpM (32-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ \end{array}$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ \end{array}$	< < < < < < < < < < < < < < < < < < <		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) ExpM (32-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.001\\ \end{array}$	3m6s 3m17s 8m41s 15m1s 53m24s 35.2s 1m6s 4m52s 9m26s 47m29s 37m29s			
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ĖxpM (32-bit) • Šim (1e-12) • •	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.1\\ 0.01\end{array}$	3m6s 3m17s 8m41s 15m1s 53m24s 35.2s 1m6s 4m52s 9m26s 47m29s 6m43s 6m23s	$\langle \langle $		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\end{array}$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m43s\\ 6m31s\\ 12m44s\end{array}$	$\langle \checkmark \checkmark$	• • • • • • • • •	
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ \end{array}$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\end{array}$	< < < < < < < < < < < < < < < < < < <		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ \end{array}$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m \end{array}$	< < < < < < < < < < < < < < < < < < <		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.00\\ 0.01\\ 0.00$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 4m52s\\ 9m26s\\ 4m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\end{array}$			
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.01\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.000\\ 0.000$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\end{array}$			
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.000\\ 0.000\\ 0.$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\end{array}$	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.005\\ 0.005\\ 0.001\\ 0.005\\ 0.$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 4m52s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\end{array}$	<pre></pre>		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) ExpM (32-bit) Sim (1e-12) ExpM (64-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ \end{array}$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 55m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\end{array}$	< < < < < < < < < < < < < < < < < < <		
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ĖxpM (32-bit) • Šim (1e-12) • ĖxpM (64-bit) Sim (1e-6)	0.1 0.05 0.001 0.005 0.001 0.05 0.001 0.05 0.001 0.05 0.001 0.05 0.001 0.05 0.001 0.05 0.001	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 55m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m18s\\ $		2.5.10 ⁻⁴	0.2
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) · ĖxpM (32-bit) · Šim (1e-12) · · · · ĖxpM (64-bit) Sim (1e-6)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.000\\ 0.001\\ 0.005\\ 0.000\\$	3m6s 3m17s 8m41s 15m1s 53m24s 35.2s 1m6s 4m52s 9m26s 47m29s 6m43s 6m43s 6m31s 12m44s 18m29s 1h0m 35.6s 53.9s 4m6s 8m15s 39m18s 3m13s 3m13s 3m13s 3m2s		2.5·10 ⁻⁴ 2.6·10 ⁻⁴	0.2
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ĖxpM (32-bit) • Šim (1e-12) • ĖxpM (64-bit) Sim (1e-6)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.000\\ 0.000\\ 0.$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m8s\\ 2m2s\\ 3m8s\\ 2m2s\\ 2m0. \end{array}$		$2.5 \cdot 10^{-4}$ $2.6 \cdot 10^{-4}$ $1.3 \cdot 10^{-4}$ $1.3 \cdot 10^{-4}$	0.2 0.2 0.07 0.07
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.01\\ 0.005\\ 0.001\\ 0.000\\ 0.0$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m13s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 2m23s\\ 2m9s\\ 2m35s\\ 2$		$2.5 \cdot 10^{-4}$ $2.6 \cdot 10^{-4}$ $1.3 \cdot 10^{-4}$ $1.3 \cdot 10^{-4}$ $1.3 \cdot 10^{-4}$	0.2 0.2 0.07 0.07 0.069
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6) • ExpM (32-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.05\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.0$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m12s\\ 35m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m13s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8\frac{As}{s}\\ 2m9s\\ 1m35s\\ 8\frac{As}{s}\\ 2m4s\\ 3m4s\\ 2m4s\\ 2m4s\\ 3m4s\\ 3m4$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-6} \end{array}$	0.2 0.2 0.2 0.07 0.07 0.069
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6) • ExpM (32-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.05\\ 0.001\\ 0.000\\ 0.0$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 118m29s\\ 118m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m13s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8.4s\\ 84s\\ \end{array}$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \end{array}$	0.2 0.2 0.2 0.07 0.07 0.07 0.2 0.2 0.2
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6) • ExpM (32-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.05\\ 0.001\\ 0.05\\ 0.001\\ 0.05\\ 0.001\\ 0.000\\ 0.000\\ 0.$	$\begin{array}{r} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m13s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.2s\\ \end{array}$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \end{array}$	0.2 0.2 0.07 0.07 0.069 0.2 0.2 0.2 0.07
FOM* 1008 $y_1 \ge 45$ FOM 1008 $y_1 \ge 7$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6) • ExpM (32-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.05\\ 0.001\\ 0.05\\ 0.001\\ 0.005\\ 0.000\\ 0.00$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 55m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 4m52s\\ 9m26s\\ 4m729s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m13s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.2s\\ 8.6s\\ 8.6s\\ \end{array}$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \end{array}$	0.2 0.2 0.07 0.07 0.069 0.2 0.2 0.07 0.07
FOM* 1008 $y_1 \ge 45$ FOM 1008 $y_1 \ge 7$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6) • ExpM (32-bit)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 4m52s\\ 9m26s\\ 4m62s\\ 6m31s\\ 12m44s\\ 18m29s\\ 18m29s\\ 18m29s\\ 18m29s\\ 18m29s\\ 3m13s\\ 3m8s\\ 3m13s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.2s\\ 8.6s\\ 8.5s\\ 8.5s\\ 15.1s\\ \end{array}$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.9 \cdot 10^{-6} \end{array}$	0.2 0.2 0.07 0.07 0.069 0.2 0.2 0.07 0.07 0.07 0.07 0.069
FOM* 1008 $y_1 \ge 45$ FOM 1008 $y_1 \ge 7$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6) • ExpM (32-bit) • Sim (1e-12)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 4m52s\\ 9m26s\\ 4m52s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m8s\\ 2m23s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8.4s\\ 8.4s\\ 8.2s\\ 8.4s\\ 8.2s\\ 8.6s\\ 15.1s\\ 6m43s\\ \end{array}$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.9 \cdot 10^{-9} \end{array}$	0.2 0.2 0.07 0.07 0.069 0.2 0.2 0.07 0.07 0.07 0.07 0.069 0.2
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ĖxpM (32-bit) • Šim (1e-12) • ĖxpM (64-bit) Sim (1e-6) • ĖxpM (32-bit) • Šim (1e-12)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.01\\ 0.005\\ 0.001\\ 0.01\\ 0.005\\ 0.001\\ 0.01\\ 0.005\\ 0.001\\ 0.01\\ 0.005\\ 0.001\\ 0.01\\ 0.005\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.01\\ 0.05\\ 0.001\\ 0.00\\$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.6s\\ 15.1s\\ 6m43s\\ 6m34s\\ \end{array}$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.9 \cdot 10^{-9} \\ 1.9 \cdot 10^{-9} \\ 1.9 \cdot 10^{-9} \end{array}$	0.2 0.2 0.2 0.07 0.069 0.2 0.2 0.2 0.2 0.2 0.07 0.069 0.2 0.2 0.2
FOM* 1008 $y_1 \ge 45$	Sim (1e-6) • ExpM (32-bit) • Sim (1e-12) • ExpM (64-bit) Sim (1e-6) • ExpM (32-bit) • Sim (1e-12)	$\begin{array}{c} 0.1\\ 0.05\\ 0.01\\ 0.005\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.05\\ 0.001\\ 0.001\\ 0.005\\ 0.001\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.0$	$\begin{array}{c} 3m6s\\ 3m17s\\ 8m41s\\ 15m1s\\ 53m24s\\ 35.2s\\ 1m6s\\ 4m52s\\ 9m26s\\ 47m29s\\ 6m43s\\ 6m31s\\ 12m44s\\ 18m29s\\ 1h0m\\ 35.6s\\ 53.9s\\ 4m6s\\ 8m15s\\ 39m18s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 3m8s\\ 2m23s\\ 2m9s\\ 1m35s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.4s\\ 8.6s\\ 15.1s\\ 6m43s\\ 6m34s\\ 3m36s\\ \end{array}$		$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 2.6 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.1 \cdot 10^{-6} \\ 1.9 \cdot 10^{-9} \\ 1.9 \cdot 10^{-9} \\ 1.9 \cdot 10^{-9} \\ 1.3 \cdot 10^{-9} \end{array}$	0.2 0.2 0.2 0.07 0.069

Figure 2: Plot of the first 0.25 seconds of the reachable states for the Building (50 dimensions) model produced in SpaceEx [?]. Notice that fixed-time simulations with a time step of 0.1 or 0.05 do not enter the unsafe states ($x_{25} > 0.004$).

	0.001	2m20s	$1.3 \cdot 10^{-9}$	0.069
Exj	pM (64-bit) 0.1	7.6s	$2.2 \cdot 10^{-9}$	0.2
	0.05	7.6s	$2.2 \cdot 10^{-9}$	0.2
	0.01	7.2s	$1.4 \cdot 10^{-9}$	0.07
	0.005	7.6s	$1.4 \cdot 10^{-9}$	0.07
	0.001	12.4s	$1.5 \cdot 10^{-9}$	0.069

The star-based reachability method is confirmed as scalable, and finishes on all of the benchmarks, often taking only minutes for systems with hundreds of dimensions.

All four approaches, as well as all values of the time step are able to correctly verify or find counter-examples traces to the unsafe error states for all the models, with the exception of the Building (50 dimensions) model when using a time step of 0.1 or 0.05. Examining the plot of the reachable states of this system (Figure ??), the reason becomes apparent.

4 Conclusion

We analyzed nine benchmark systems using reachability analysis. Our main result is that the recently proposed technique for linear systems is capable of scaling to large systems, and can detect errors in models with high-dimensional initial sets of states. In the future, we plan to look into hybrid systems verification using the simulation-based continuous post approach.