Simulation-Equivalent Reachability of Large Linear Systems with Inputs

Stanley Bak and Parasara Sridhar Duggirala

Distribution A. Approved for public release; Distribution unlimited. (Approval AFRL PA #88ABW-2017-3460, 19 JULY 2017

Inspiration + Potential

Automatic Ground Collision Avoidance System (Auto-GCAS)

F-16 Aircraft

Good News: Very well-studied system!

F-16 Aircraft

Good News: Very well-studied system!

Bad News: Differential Equations ~15 variables (dimensions) Nonlinear Discrete Switches Look-up Tables

F-16 Aircraft

Good News: Very well-studied system!

Bad News: Differential Equations ~15 variables (dimensions) Nonlinear Discrete Switches Look-up Tables

Good News:

We're researchers; lots of problems to work on

One-Slide Contribution Summary

Computing reachability (and safety checking) for linear systems with inputs

$$\dot{x} = Ax + Bu(t)$$

- State of the art: 10s to 100s of dimensions

One-Slide Contribution Summary

Computing reachability (and safety checking) for linear systems with inputs

$$\dot{x} = Ax + Bu(t)$$

State of the art: 10s to 100s of dimensions
New method: 1000+ dimensions

One-Slide Contribution Summary

Computing reachability (and safety checking) for linear systems with inputs

$$\dot{x} = Ax + Bu(t)$$

- State of the art: 10s to 100s of dimensions
- New method: 10000+ dimensions
- Bonus: Accurate counter-example generation

Linear Dynamical Systems

A linear system with inputs

$$\dot{x} = Ax + Bu(t)$$

has the solution

Set-based Constraints

If we have sets of initial states and inputs

$$x(0) \in \mathcal{X}_0 \qquad \qquad u(t) \in \mathcal{V}$$

then the possible solutions at time t are

Minkowski Sum

Definition 2.2 (Minkowski sum). The Minkowski sum of two sets \mathcal{X} and \mathcal{Y} is the set of sums of elements from \mathcal{X} and \mathcal{Y} :

$$\mathcal{X} \oplus \mathcal{Y} = \{ x + y : x \in \mathcal{X} \text{ and } y \in \mathcal{Y} \}$$

Figure 2.2: Minkowski sum of a square and a disk.

Image From: Colas Le Guernic. Reachability analysis of hybrid systems with linear continuous dynamics. Diss. Université Joseph-Fourier-Grenoble I, 2009. stanleybak.com/hylaa

Fixed-Step Fixed-Inputs

If we assume inputs are fixed, we can solve for the set of input-effects after one step

$$\begin{aligned} \mathcal{X}_t &= e^{At} \mathcal{X}_0 \oplus \int_0^t e^{A(t-s)} B \mathcal{V} \, ds \\ &= e^{At} \mathcal{X}_0 \oplus \mathcal{U} \end{aligned}$$

Note: If we wanted dense-time reachability, we could add bloating terms to this equation.

Multiple Step Solution

For two steps, we can express the set of states recursively

$$\begin{aligned} \mathcal{X}_{2t} &= e^{At} \mathcal{X}_t \oplus \mathcal{U} \\ &= e^{A2t} \mathcal{X}_0 \oplus e^{At} \mathcal{U} \oplus \mathcal{U} \end{aligned}$$

which generalizes after i steps to

$$\mathcal{X}_{it} = e^{Ait} \mathcal{X}_0 \oplus e^{A(i-1)t} \mathcal{U} \oplus e^{A(i-2)t} \mathcal{U} \oplus \ldots \oplus e^{At} \mathcal{U} \oplus \mathcal{U}$$

Step-by-step computation

$$\mathcal{X}_{it} = e^{Ait} \mathcal{X}_0 \oplus e^{A(i-1)t} \mathcal{U} \oplus e^{A(i-2)t} \mathcal{U} \oplus \ldots \oplus e^{At} \mathcal{U} \oplus \mathcal{U}$$

At each new time step, we need to:

- $e^{Ait} X_0$
- e^{A(i-1)t} U
- Perform Minkowski sum
- (Optional) Intersection check with unsafe states

Linear Star Representation

- Linear Stars are a specialized version of generalized star sets

 Presented in CAV '16
- Efficient for computing:
 - Time elapse (matrix multiplication)
 - Intersection checking (linear programming)
 - Minkowski sum (new)

Linear Star Constraints

The basis matrix is equal to the matrix exponential at the current step (e^{At}).

Minkowski Sum

Minkowski sum with linear stars can be done by combining the basis matrices & constraints

Optimizations

"Engineering matters: you can't properly evaluate a technique without an efficient implementation" - Ken McMillan

- Optimization 0 (old) Use Simulations for e^{At}
- Optimization 1 Decomposed LP
- Optimization 2 Warm-Start LP

Optimization #1

$$\mathcal{X}_{it} = e^{Ait} \mathcal{X}_0 \oplus e^{A(i-1)t} \mathcal{U} \oplus e^{A(i-2)t} \mathcal{U} \oplus \ldots \oplus e^{At} \mathcal{U} \oplus \mathcal{U}$$

Proposition 1. If $S = S_1 \oplus S_2$, then $\max_v(S) = \max_v(S_1) + \max_v(S_2)$

- Maximizing over a Minkowski sum can be decomposed into maximizing over the component sets
 - Necessary and sufficient for single constraint
 - Necessary for a conjunction of constraints
- Possible future optimization with conjunctions of constraints: Danzig-Wolfe decomposition for LP

Optimization #2

- Safety checking requires solving a linear program (LP) at each step
- We can reuse previous solutions to seed subsequent computations
 - Usually reduces required LP iterations to zero!

Benchmarks

We implemented the method in a tool, **Hylaa**. We then evaluated the method on a large linear systems with inputs verification benchmark suite*:

- Motor (11 dims)
- Building (50 dims)
- Partial Differential Equation (86 dims)
- Heat (202 dims)
- International Space Station (274 dims)
- Clamped Beam (350 dims)
- MNA1 (588 dims)
- FOM (1008 dims)
- MNA5 (10923 díms)

* "Large-scale linear systems from order-reduction", H. D. Tran, L. V. Nguyen, and T. T. Johnson, 3rd Applied Verification for Continuous and Hybrid Systems Workshop (ARCH 2016) stanleybak.com/hylaa

21/28

Benchmarks

We implemented the method in a tool, **Hylaa**. We then evaluated the method on a large linear systems with inputs verification benchmark suite*:

22/28

- MNA5 (10923 dims)

* "Large-scale linear systems from order-reduction", H. D. Tran, L. V. Nguyen, and T. T. Johnson, 3rd Applied Verification for Continuous and Hybrid Systems Workshop (ARCH 2016) stanleybak.com/hylaa

International Space Station Model (271 dimensions)

ISS	271	$y_3 \notin [-0.0007, 0.0007]$	Hylaa	1m28s	\checkmark	-	-
ISS*	271	$y_3 \notin [-0.0005, 0.0005]$	Hylaa	1m23s		$8.5 \cdot 10^{-6} / 1.3 \cdot 10^{-5}$	13.71

- The original safety specification was created using simulations. For most models it was safe.
- For the International Space Station model, however, it was not! This shows that simulation can miss errors. The error was not known before analysis with Hylaa.

Reachability Plot

Space Station Specification Violation

 $2^{270} \times 8^{(13.71/0.005)} = 3 \times 10^{2557}$ cases!

Falsification tool did not succeed after 4 hours. stanleybak.com/hylaa

25/28

MNA5 Model (10923 dimensions)

MNA5*	10914	x_1	$\geq 0.2 \lor x_2$	≥ 0.15	Hylaa	6h23m	\checkmark	-	-
MNA5	10914	x_1	$\geq 0.1 \lor x_2$	≥ 0.15	Hylaa	37m27s		$1.4 \cdot 10^{-6} / 1.8 \cdot 10^{-6}$	1.92

- Completed analysis of 11000 dimensional system, for 4000 steps, in about 6.5 hours
- Unsafe variant counter-example is highly accurate (relative error of about 1.8 * 10-6)

The Journey to 10000 Dimensions

- The original 10000-dimensional MNA5 benchmark model file is empty!
- SpaceEx Model Editor freezes! Use text editor. Gedit → Geany
- Hyst conversion (ANTRL Grammar Exception), 11k * 2 initial conditions
- Hyst stack overflow \rightarrow internal expression tree unbalanced
- 800MB Python script \rightarrow OS freezes (cannot run first line)
- OS effectively freezes when swap is active and large sim time is used
- Change Hyst to initialize matrix of zeros and assign entries (sparse matrix)
- Out of memory while computing... 800 MB * 4000 steps = 3.2 TB RAM needed!
 - Don't use explicit Jacobian in ODEINT
 - Python uses processes for parallelism... keep dynamics sparse
 - Run simulations a few steps at a time
- Random crashes "pickling" matrices, LP solving GLPK errors... bad memory stick! stanleybak.com/hylaa

Conclusion

Time-bounded safety verification including <u>counter-example generation</u> for large (10000+ dimensional) linear systems with inputs – **Two orders of magnitude improvement!**

Future: even larger linear systems, verification methods for partial-differential equations, hybrid and nonlinear models

Hylaa Source: github.com/stanleybak/hylaa

stanleybak.com/hylaa

28/28