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Abstract. Control systems can be subject to outside inputs, environmen-
tal effects, disturbances, and sensor/actuator inaccuracy. To model such
systems, linear differential equations with constrained inputs are often
used, ẋ(t) = Ax(t) + Bu(t), where the input vector u(t) stays in some
bound. Simulating these models is an important tool for detecting de-
sign issues. However, since there may be many possible initial states and
many possible valid sequences of inputs, simulation-only analysis may
also miss critical system errors. In this paper, we present a scalable ver-
ification method that computes the simulation-equivalent reachable set for
a linear system with inputs. This set consists of all the states that can be
reached by a fixed-step simulation for (i) any choice of start state in the
initial set and (ii) any choice of piecewise constant inputs.

Building upon a recently-developed reachable set computation technique
that uses a state-set representation called a generalized star, we extend
the approach to incorporate the effects of inputs using linear program-
ming. The approach is made scalable through two optimizations based
on Minkowski sum decomposition and warm-start linear programming.
We demonstrate scalability by analyzing a series of large benchmark sys-
tems, including a system with over 10,000 dimensions (about two or-
ders of magnitude larger than what can be handled by existing tools).
The method detects previously-unknown violations in benchmark mod-
els, finding complex counter-example traces which validate both its cor-
rectness and accuracy.

1 Introduction

Linear dynamical systems with inputs are a powerful formalism for model-
ing the behavior of systems in several disciplines such as robotics, automotive,
and feedback mechanical systems. The dynamics are given as linear differential
equations and the sensor noise, input uncertainty, and modeling error make up
the bounded input signals. For ensuring the safety of such systems, an engineer
would simulate the system using different initial states and input signals, and
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check that each simulation trace is safe. While simulations are helpful in devel-
oping intuition about the system’s behavior, they might miss unsafe behaviors,
as the space of valid input signals is vast.

In this paper, we present a technique to perform simulation-equivalent reacha-
bility and safety verification of linear systems with inputs. That is, given a linear
system ẋ(t) = Ax(t) + Bu(t), where x(t) is the state of the system and u(t) is
the input, we infer the system to be safe if and only if all the discrete time sim-
ulations from a given initial set and an input space are safe. We restrict our
attention to input signals that are piecewise constant, where the value of the in-
put signal u(t) is selected from a bounded set U every h time units. We consider
piecewise constant input signals for two main reasons. First, the space of all in-
put signals spans an infinite-dimensional space and hence is hard to analyze.
To make the analysis tractable, we restrict ourselves to piecewise constant sig-
nals which can closely approximate continuous signals. Second, our approach
is driven by the desire to produce concrete counterexamples if the system has
an unsafe behavior. Counterexamples with input signals that are piecewise con-
stant can be easily validated using numerical simulations.

A well-known technique for performing safety verification is to compute the
reachable set, or its overapproximation. The reachable set includes all the states
that can be reached by any trajectory of the linear system with a valid choice of
inputs at each time instant. Typically, the reachable set is stored in data struc-
tures such as polyhedra [12], zonotopes [14], support functions [17], or Taylor
models [8]. For linear systems, the effect of inputs can be exactly computed us-
ing the Minkowski sum operation [15]. While being theoretically elegant, a po-
tential difficulty with this method is that Minkowski sum can greatly increase
the complexity of the set representation, especially in high dimensions and after
a large number of steps. This previously limited its application to reachability
methods where Minkowski sum is efficient: zonotopes and support functions.

In this paper, we demonstrate that it is possible to efficiently perform the
Minkowski sum operation using a recently-proposed generalized star represen-
tation and a linear programming (LP) formulation. The advantage of using the
generalized star representation is that the reachable set of an n-dimensional lin-
ear system (without inputs) can be computed using only n + 1 numerical sim-
ulations [10], making it scalable and fast. The method is also highly accurate
(assuming the input simulations are accurate). Furthermore, it is also capable
of generating concrete counterexamples, which is generally not possible with
other reachability approaches.

The contributions of this paper are threefold. First, we define the notion of
simulation-equivalent reachability and present a technique to compute it us-
ing the generalized star representation, Minkowski sum, and linear program-
ming. Second, we present two optimizations which improve the speed and
scalability of basic approach. The first optimization leverages a key property
of Minkowski sum and decomposes the linear program that needs to be solved
for verification. The second optimization uses the result of the LP at each step
to warm-start the computation at the next time step. Third, we perform a thor-
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ough evaluation, examining the effect of each of the optimizations and compar-
ing the approach versus existing reachability tools on large benchmark systems
ranging from 9 to 10914 dimensions. The new approach successfully analyzes
models over two orders of magnitude larger than the state-of-the-art tools, finds
previously-unknown errors in the benchmark systems, and generates highly-
accurate counter-example traces with complex input sequences that are exter-
nally validated to drive the system to an error state.

2 Preliminaries

2.1 Problem Definition

A system consists of several continuous variables evolving in the space of Rn.
States denoted as x and vectors denoted as v lie in Rn. A set of states S ⊆ Rn.

The set S1⊕S2
∆
= {x1+x2 |x1 ∈ S1, x2 ∈ S2} is defined to be the Minkowski

sum of sets S1 and S2 , where x1 + x2 is addition of n-dimensional points.
The behaviors of control systems with inputs are modeled with differential

equations. In this work, we consider time-invariant affine systems with bounded
inputs given as:

ẋ(t) = Ax(t) +Bu(t); u(t) ∈ U, (1)

whereA ∈ Rn×n andB ∈ Rn×m are constant matrices, and U ⊆ Rm is the set of
possible inputs. We assume that the system has m inputs and hence the input
function u(t) is given as u : R≥0 → Rm. Given a function u(t), a trajectory of
the system in Equation 1 starting from the initial state x0 can be defined as a
function ξ(x0, u, t) that is a solution to the differential equation, d

dtξ(x0, u, t) =
Aξ(x0, u, t)+Bu(t). If u(t) is an integrable function, the closed form expression
to the unique solution to the differential equation is given as:

ξ(x0, u, t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ. (2)

Fig. 1: The state reached at time t from x0 +

α1v1 +α2v2 is identical to ξ(x0, t)+α1(ξ(x0 +

v1, t)− ξ(x0, t))+α2(ξ(x0 +v2, t)− ξ(x0, t)).

If u(t) is a constant function set to
the value of u0, then we abuse notation
and use ξ(x, u0, t) to represent the tra-
jectory. If the input is a constant 0, we
drop the term u and denote the trajec-
tory as ξ(x, t). For performing verifica-
tion of linear systems, we leverage an
important property often called the su-
perposition principle. Given a state x0 ∈
Rn and vectors v1, v2, . . . , vn ∈ Rn, and
α1, α2, . . . , αn ∈ R, we have

ξ(x0 +

n∑
i=1

αivi, t) = ξ(x0, t) +

n∑
i=1

αi(ξ(x0 + vi, t)− ξ(x0, t)). (3)
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An illustration of the superposition principle in 2-d is shown in Figure 1.
We refer to the dynamics without the input (ẋ = Ax) as the autonomous

system and the system ẋ = Ax+Bu(t) as the system with the inputs. As men-
tioned in the introduction, we restrict our attention to inputs that are piecewise
constant. That is, the value of inputs are updated periodically with time period
h. The inputs stay constant for the time duration [k × h, (k + 1) × h]. A simu-
lation of such a system records the state of the system at time instants that are
multiples of h, the same as the period when the inputs get updated. A formal
definition of such a simulation is given in Definition 1.

Definition 1 (Fixed-Step Simulation of a System with Inputs). Given an initial
state x0, a sequence of input vectors u, and a time period h, the sequence ρ(x0, u, h) =
x0

u0−→ x1
u1−→ x2

u2−→ . . ., is a (x0, u, h)-simulation of a system in Equation 1
if and only if all ui ∈ U , and for each xi+1 we have that xi+1 is the state of the
trajectory starting from xi when provided with constant input ui for h time units,
xi+1 = ξ(xi, ui, h). Bounded-time variants are called (x0, u, h, T )-simulations. We
drop u to denote simulations where no input is provided.

For simulations, h is called the step size and T is called time bound. The set
of states encountered by a (x0, u, h)-simulation is the set of states in Rn at the
multiples of the time step, {x0, x1, . . .}. Given a simulation ρ(x0, h, T ) as defined
in Definition 1, we can use the closed-form solution in Equation 2 and substitute
u to obtain the relationship between xi and xi+1,

xi+1 = eAhxi +G(A, h)Bui (4)

where G(A, h) =
∑∞
i=0

1
(i+1)!A

ihi+1.

Definition 2 (Simulation-Equivalent Reachable Set). Given an initial set Θ and
time step h, the simulation-equivalent reachable set is the set of all states that can
be encountered by any (x0, u, h)-simulation starting from any x0 ∈ Θ, for any valid
sequence of input vectors u. This can also be extended to a time-bounded version.

We define the system to be safe if and only if the simulation-equivalent
reachable set and the unsafe set∆ are disjoint. In this paper, the initial setΘ, the
space of allowed inputs U , and the unsafe set ∆ are bounded polyhedra (sets
of linear constraints).

2.2 Generalized Star Sets and Reachable Set Computation

Definition 3 (Generalized Star Set). A generalized star set (or generalized star,
or simply star)Θ is a tuple 〈c, V, P 〉 where c ∈ Rn is the center, V = {v1, v2, . . . , vm}
is a set ofm vectors in Rn called the basis vectors, and P : Rm → {>,⊥} is a predicate.
The basis vectors are arranged to form the star’s n ×m basis matrix. The set of states
represented by the star is given as

[[Θ]] = {x | x = c+Σm
i=1αivi such that P (α1, . . . , αm) = >}.
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Sometimes we will refer to both the tuple Θ and the set of states [[Θ]] as Θ. In this work,
we restrict the predicates to be a conjunction of linear constraints, P (α) ∆

= Cα ≤ d
where, for p linear constraints, C ∈ Rp×m, α is the vector of m-variables i.e., α =
[α1, . . . , αm]T , and d ∈ Rp×1.

This definition is slightly more general than the one used in existing work [10],
where stars were restricted to having no more than n basis vectors. This gener-
alization is important when computing the input effects as a star. Any set given
as a conjunction of linear constraints in the standard basis can be immediately
converted to the star representation by taking the center as the origin, the n ba-
sis vectors as the standard orthonormal basis vectors, and the predicate as the
original conjunction linear condition with each xi replaced by αi. Thus, we can
assume the set of initial states Θ is given as a star.

Reachable Set Computation With Stars: Due to the superposition principle,
simulations can be used to accurately compute the time-bounded simulation-
equivalent reachable set for an autonomous (no-input) linear system from any
initial set Θ [10,6]. For an n dimensional system, only n + 1 simulations are
necessary. The algorithm, described more fully in Appendix A, takes as input
an initial set Θ, a simulation time step h, and time bound k × h, and returns a
tuple 〈Θ1, Θ2, . . . , Θk〉, where the sets of states that all the simulations starting
from Θ can encounter at time instances i× h is given as Θi.

In brief, the algorithm first generates a discrete time simulation ρ0 = s0[0],
s0[1], . . . , s0[k] of the system from the origin at each time step. Then, n simula-
tions are performed from the state which is unit distance along each orthonor-
mal vector from the origin, ρj = sj [0], sj [1], . . . , sj [k]. Finally, the reachable set
at each time instant i × h is returned as a star Θi = 〈ci, Vi, P 〉 where ci = ρ0[i],
Vi = {v1, v2, . . . , vn} where vj = ρj [i] − ρ0[i], and P is the same predicate as in
the initial setΘ. This accuracy of this approach is dependent on the errors in the
n+ 1 input simulations, which in practice can often be made arbitrarily small.

Given an unsafe set ∆ as a conjunction of linear constraints, discrete-time
safety verification can be performed by checking if the intersection of each
Θi ∩ ∆ is nonempty where Θi is the reachable set at time instant i × h. This
can be done by solving for the feasibility of a linear program which encodes (1)
the relationship between the standard orthonormal basis and the star’s basis
(given by the basis matrix), (2) the linear constraints on the star’s basis vari-
ables α from the star’s predicate, and (3) the linear conditions on the standard
basis variables from the unsafe states ∆. An example reachable set computa-
tion using this algorithm, and the associated LP formulation, is provided in
Appendix B.

If the LP is feasible, then there exists a point in the star that is unsafe. Further,
the trace from the initial states to the unsafe states can be produced by taking
the basis point from the feasible solution (α = [α1, . . . , αn]

T ) and multiplying
it by the basis matrix the star in every preceding time step. This will give a
sequence of points (one for every multiple of the time step) in the standard
basis, starting from the initial set up to a point in the unsafe states.
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2.3 Reachability of Linear Systems with Inputs

The reachable set of a linear system with inputs can be exactly written as the
Minkowski sum of two sets, the first accounting for the autonomous system
(no-input) and the second accounting for the effect of inputs [18]. From Equa-
tion 4, this relationship is expressed as Θi+1 = eAhΘi ⊕ G(A, h)BU. Here, the
eAhΘi represents the evolution of the autonomous system and G(A, h)BU rep-
resents the effect of inputs for the time duration h. Representing U = G(A, h)BU
and expanding the above equation, we have

Θi+1 = eA(i+1)hΘ ⊕ eA(i)hU ⊕ eA(i−1)hU ⊕ . . .⊕ eAhU ⊕ U . (5)

Here eA(i+1)hΘ is the set reached by the autonomous system and the rest of
the summation represents the accumulated effects of the inputs.

The performance of the algorithm based on Equation 5 critically depends on
the efficiency of the Minkowski sum operation of the set representation that is
used. In particular, representations such as polytopes were dismissed because
of the high complexity associated with computing their Minkowski sum [18],
driving researchers to instead use zonotopes and support functions.

3 Reachability of Linear Systems With Inputs using Stars

In this section, we first present the basic approach for adapting Equation 5 for
use with generalized stars. We then present two optimizations which greatly
improve the efficiency of the approach when used for safety verification.

3.1 Basic Approach

Recall that the expression for the reachable set given in Equation 5 is

Θi = eAi×hΘ ⊕ eA(i−1)×hU ⊕ eA(i−2)×hU ⊕ . . .⊕ eAhU ⊕ U .

where eAi×hΘ is the reachable set of the autonomous system and the remain-
der of the terms characterize the effect of inputs. Consider the jth term in the
remainder, namely, eA(j−1)×hU . This term is exactly same as the reachable set
of states starting from an initial set U after (j − 1)× h time units, and evolving
according to the autonomous dynamics ẋ = Ax.

Furthermore, the set U = G(A, h)BU can be represented as a star 〈c, V, P 〉
with m basis vectors, for an n-dimensional system with m inputs. This is done
by taking the origin as the center c, the set G(A, h)B as the star’s n ×m basis
matrix V , and using the linear constraints U as the predicate P , replacing each
input ui with αi. With this, a simulation-based algorithm for computing the
reachable set with inputs is given in Algorithm 1, which makes use of the Au-
tonomousReach function that is the autonomous (no-input) reachability tech-
nique described in Section 2.2.
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input : Initial state: Θ0, influence of inputs: U0 = G(A, h)BU , time bound: k × h
output: Reachable states at each time step: (Ω0, Ω1 . . . , Ωk)

1 〈Θ1, Θ2, . . . , Θk〉 ← AutonomousReach(Θ0, h, k × h) ;
2 〈U1,U2, . . . ,Uk〉 ← AutonomousReach(U0, h, k × h) ;
3 S ← U0;
4 for i = 1 to k do
5 Ωi ← Θi ⊕ S;
6 S ← S ⊕ Ui;
7 end
8 return (Ω1 . . . , Ωk);

Algorithm 1: The Basic approach computes the reachable set of states at each
time step up to time k×h, where AutonomousReach is the reachable set computa-
tion technique presented in Section 2.2. For safety verification each of the returned
stars should be checked for intersection with the unsafe states using LP.

Algorithm 1, which we refer to as the Basic approach, computes the reach-
able set of the autonomous part for initial set Θ in line 1 and the effect of the
input U in line 2. The simulation-based AutonomousReach computation avoids
the need to compute and multiply by matrix exponential at every iteration.
The variable S in the loop from lines 4 to 7 computes the Minkowski sum of
Ui ⊕ Ui−1 ⊕ . . . ⊕ U1 ⊕ U0. The correctness of this algorithm follows from the
expression for the reachable set given in Equation 5. Note that although the
computations of the Ui sets can be thought of as using an independent call to
AutonomousReach, they can be computed more efficiently by reusing to sim-
ulations used to compute the Θi sets. Finally, Algorithm 1 needs to perform
Minkowski sum with stars, for which we propose the following approach:

Minkowski Sum with Stars. Given two stars Θ = 〈c, V, P 〉 with m basis vec-
tors and Θ′ = 〈c′, V ′, P ′〉 with m′ basis vectors, their Minkowski is a new star
Θ = 〈c, V , P 〉 with m + m′ basis vectors and (i) c = c + c′, (ii) V is the list of
m + m′ vectors produced by joining the list of basis vectors of Θ and Θ′, (iii)
P (α) = P (αm)∧P ′(αm′). Here αm ∈ Rm denotes the variables in Θ, αm′ ∈ Rm′

denotes the variables for Θ′, and α ∈ Rm+m′ denotes the variables for Θ (with
appropriate variable renaming).

Notice that both the number of variables in the star and the number of con-
straints grow with each Minkowski sum operation. In an LP formulation of
these constraints, this would mean that both the number of columns and the
number of rows grows at each step in the algorithm. However, even though the
constraint matrix is growing in size, the number of non-zero entries added to
the matrix at each step is constant, so, for LP solvers that use a sparse matrix
representation, this may not be as bad as it first appears.

Example 1 (Harmonic Oscillator with Inputs). Consider a system with dynamics
ẋ = y+u1, ẏ = −x+u2, where u1, u2 are inputs in the range [−0.5, 0.5] that can



8

Init

π/4

π/2

Fig. 2: A plot of the simulation-equivalent reachable states for Example 1 using a π
4

step
size, and the associated linear constraints representing the set at time π

2
(after two steps).

vary at each time step, and the initial states are x = [−6,−5], y = [0, 1]. A plot of
the simulation-equivalent reachable states of this system is shown in Figure 2
(left). The trajectories of this system generally rotate clockwise over time, al-
though can move towards or away from the origin depending on the values of
the inputs. The LP constraints which define the reachable states at time π

2 are
given in Figure 2 (right). Simulations are used to determine the values of the
autonomous star’s basis matrix (the red encircled values in the matrix). At each
time step, the input-free basis matrix gets updated exactly as in the case where
there were no inputs. Rows 3-6 in the constraints come from the conditions on
the initial states. Additionally, at each step, two columns are added to the LP
in order to account for the effects of the two inputs in the model. Rows 7-10
are the conditions on the inputs from the first step, and rows 11-14 are from the
second step. The blue dotted values are the each step’s input star’s basis matrix,
U = G(A, h)B. The basis matrix of the combined star is the 2 by 6 matrix con-
structed by combining the matrices of the basis matrices from the autonomous
star and each of the input-effect stars, each of which are 2 by 2. Notice that,
at each step, both the number of rows and the number of columns in the LP
constraints gets larger, although the number of non-zero entries added to the
matrix is constant. To extract a counter-example trace to a reachable state, the
LP would be solved in order to give specific assignments to each of the vari-
ables. The values of x and y would be the final position that is reachable, that
could be, for example, minimized or maximized in the LP. Then, α1 and α2 in-
dicate the initial starting position, u′1 and u′2 are the inputs to apply at the first
step, and u1 and u2 are the inputs to apply at the second step.

3.2 Minkowski Sum Decomposition for Efficient Safety Verification

Algorithm 1 computes the reachable set Ωi at each step [18] in line 5 based on
Equation 5 for safety verification with respect to an unsafe set ∆. As noted in
Section 3.1, the number of variables in Ωi increases linearly with i and hence
for high dimensional systems, checking whether Ωi ∩ ∆ = ∅ using linear pro-
gramming becomes increasingly difficult. To improve the scalability of safety
verification, we observe that it is not necessary to compute Ωi in the star repre-
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sentation and then check for intersection with∆. Consider a specific case where
∆ is defined as a half-space v · x ≥ a. Checking safety of Ωi with respect to ∆
is equivalent to computing the maximum value of the cost function v · x over
the set Ωi and checking if maxv·x(Ωi) ≥ a. As Ωi is a Minkowski sum of several
sets, computing maxv·x(Ωi) is equivalent to computing the maximum value of
v · x for each of the sets in the Minkowski sum and adding these maximum
values. This property is described rigorously in Proposition 1. This observation
was first made in [18] for zonotopes and the authors leverage this property to
avoid computing Minkowski sum for safety verification. In this paper, we ex-
plicitly state the property for Minkowski sum of any two sets and any linear
cost function and note that it is independent of the data structure used for rep-
resenting the sets.

Proposition 1. If S = S1⊕S2, then maxv(S) = maxv(S1)+maxv(S2), where maxv
is defined as the maximum value of the cost function v ·x, v is any n-dimensional vector
and v · x is the dot product.

Proof. Let p1 and p2 be states in S1 and S2 respectively which maximize the
dot product. From the definition of Minkowski sum, p1 + p2 = p ∈ S. Since
p is in S, maxv(S) ≥ p · v, and therefore maxv(S) ≥ p · v = p1 · v + p2 · v =
maxv(S1) + maxv(S2).

For the other inequality, let q be the point in S which maximizes the dot
product. By the definition of Minkowski sum, there exist two points q1 ∈ S1

and q2 ∈ S2 where q = q1 + q2. Therefore, q · v = q1 · v + q2 · v. Notice now
that maxv(S1) ≥ q1 · v and maxv(S2) ≥ q2 · v, and so we can substitute to get
maxv(S) = q · v ≤ maxv(S1) + maxv(S2).

Since both inequalities must hold, maxv(S) = maxv(S1) + maxv(S2). �

As Ωi = Θi ⊕ Ui−1 ⊕ U1 ⊕ U (Equation 5), it follows from Proposition 1
that, for safety verification in the case of unsafe set ∆ ∆

= v · x ≥ a, it suffices to
compute maxv·x Uj for all j and maxv·xΘi; add these values; and compare the
summation with a. In the general case, the unsafe states∆may be a conjunction
of half-planes, say (v1·x ≥ a1)∧(v2·x ≥ a2)∧. . .∧(vl ·x ≥ al). For such instances,
if Ωi ∩ ∆ 6= ∅, it is a necessary condition that ∀j,maxvj ·x(Ωi) ≥ aj . Thus, we
do not compute the full Minkowski sum representation of Ωi until the above
necessary condition is satisfied. Informally, we perform lazy computation of Ωi.

Additionally, all the Uj ’s appearing in Minkowski sum formulation of Ωi
also appear in Ωi+1. Therefore, we keep a running sum of the maximum values
for each Uj for all the linear functions and check the necessary conditions for all
Ωi. Only after checking the necessary conditions, we computing the Minkowski
sum and formulate the linear program for checking Ωi ∩∆ = ∅. We refer to this
approach, shown in Algorithm 2, as the Decomp method.

The algorithm starts by extracting each constraint hyperplane’s normal di-
rection and value in lines 1 and 2. Lines 9 and 10 compute the maximum over
all the normal directions in the sets Θi and Ui. The tuple µ accumulates the
maximum over all inputs up to the current iteration, whereas λ is recomputed
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input : Initial state: Θ, influence of inputs: U , time bound: k × h, unsafe set: ∆
output: SAFE or UNSAFE

1 〈v1, v2, . . . , vl〉 ← NormalDirections(∆);
2 〈a1, a2, . . . , al〉 ← NormalValues(∆);
3 〈Θ1, Θ2, . . . , Θk〉 ← AutonomousReach(Θ, h, k × h);
4 〈U1,U2, . . . ,Uk〉 ← AutonomousReach(U , h, k × h);
5 U0 ← U ;
6 Θ0 ← Θ ;
7 µ← 〈0, 0, . . . , 0〉;
8 for i = 1 to k do
9 λ← 〈maxv1(Θi),maxv2(Θi), . . . ,maxvl(Θi)〉;

10 µ← 〈µ[1] + maxv1(Ui−1), µ[2] + maxv2(Ui−1), . . . , µ[l] + maxvl(Ui−1)〉;
11 if ∀j ∈ {1, . . . , l}, λ[j] + µ[j] ≥ aj then
12 if Θi ⊕ Ui−1 ⊕ Ui−2 ⊕ . . .⊕ U0 ∩∆ 6= ∅ then
13 return UNSAFE;
14 end
15 end
16 end
17 return SAFE;

Algorithm 2: The Decomp algorithm uses Minkowski sum decomposition to
avoid needing to solve the full LP at each iteration.

at each step based on the autonomous system’s current generalized star. Only
if all the linear constraints can exceed their constraint’s value (the check on
line 11), will the full LP be formulated and checked on line 12.

3.3 Optimizing with Warm-Start Linear Programming

In this section, we briefly outline the core principle behind warm-start opti-
mization and explain why it is effective in safety verification using general-
ized stars. Consider a linear program given as maximize cT y, Subject to:
Hy ≤ g where y ∈ Rm. To solve this LP, we use a two-phase simplex algo-
rithm [19]. First, the algorithm finds a feasible solution and second, it traverses
the vertices of the polytope defined by the set of linear conditions in the m-
dimensional space to reach the optimal solution. Finding the feasible solution
is performed using slack variables and the traversal among feasible solutions
is done by relaxing and changing the set of active constraints. The time taken
for the simplex algorithm to terminate is directly proportional to the time taken
to find a feasible solution and the number of steps in the traversal from the
feasible solution to the optimal solution.

The warm-start optimization allows the user (perhaps using a solution to an
earlier linear program) to explicitly specify the initial set of active constraints.
Internally, the slack variable associated with these constraints are assigned to
be 0. This can speed-up the running time of simplex in two ways. If the set of
active constraints gives a feasible solution, then the first phase of simplex ter-
minates without any further computation. Second, if the user-provided active
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constraints correspond to a feasible solution is close to the optimal solution, the
steps needed during the second phase are reduced.

Similar to [6], we have used warm-start optimization in this paper for im-
proving the efficiency of safety verification. Warm-start optimization works in
this context because we use the generalized star representation for sets. Con-
sider two consecutive reachable sets of the autonomous system Θi = 〈ci, Vi, P 〉
and Θi+1 = 〈ci+1, Vi+1, P 〉 represented as generalized stars. Consider solving a
linear program for maximizing a cost function v ·x overΘi andΘi+1. These two
stars differ in the value of the center and the set of basis vectors, but the predicate
remains unchanged. Moreover, if we choose have small time-steps, the differ-
ence between the values of center and basis vectors is also small. Therefore,
the set of active constraints in the predicate P is often identical for the optimal
solutions. Even in the cases where the active constraints are not identical, the
corresponding vertices are often close, reducing the work needed.

In this paper, we feed the active constraints of the first linear program i.e.,
maximizing v · x over Θi as a warm-start to the second linear program, i.e.,
maximizing v · x over Θi+1. We apply the same principle for the input stars Ui
and Ui+1. Hence, the warm-start optimization can also be used together with
the Minkowski sum decomposition optimization.

4 Evaluation

We encoded the techniques developed in this paper into a tool named Hylaa
(HYbrid Linear Automata Analyzer). Using this tool, we first evaluate the ef-
fects of each of the proposed optimizations on the runtime of reachability com-
putation. Then, we evaluate the overall approach on a benchmark set of systems
ranging from 9 to 10914 coupled continuous variables. All of the measurements
are run on a desktop computer running Ubuntu 16.04 x64 with an Intel i7-3930K
processor (6 cores, 12 threads) running at 3.5 GHz with 24 GB RAM.

4.1 Optimization Evaluation

We examine the effects of each of our proposed optimizations for computing
reachability for linear-time invariant systems with inputs. We compare the Ba-
sic algorithm from Section 3.1, against the Decomp approach described in Sec-
tion 3.2. The Warm method is the enhancement of the Basic approach with
warm-start optimization as described in Section 3.3, and Hylaa is the approach
used in our tool, which uses both Minkowski sum decomposition and LP warm-
start. For reference, we also include measurements for the no-input system
(NoInput), which could be considered a lower-bound for the simulation-based
methods if the time to handle the inputs could be eliminated completely. Fi-
nally, we compared the approach with both optimizations (Hylaa) with other
state-of-the-art tools which handle time-varying inputs. We used the support
function scenario in the SpaceEx [13] tool (SpaceEx), and the linear ODE mode
with Taylor model order 1 (fastest speed) in the Flow* [8] tool (Flow*).
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Fig. 3: The performance of the generalized star and linear programming approach for
reachability computation (Basic), is improved by the warm-start linear programming
optimization (Warm), but not as much as when the Minkowski sum decomposition op-
timization is used (Decomp). Combining both optimizations works even better (Hylaa).
The reachability time for the system without inputs (NoInput) is a lower bound.

For evaluation, we use the harmonic oscillator with input system, as de-
scribed in Example 1. Recall that the full LP grows at each step both in terms of
the number of columns and the number of rows. The unsafe condition used is
x+ y ≥ 100, which is never reached but must be checked at each step.

We varied the number of steps in the problem by changing the step size and
keeping the time bound fixed at 2π. We then measured the runtime for each
of the methods, recording 10 measurements in each case. Figure 3 shows the
results with both the average runtime (lines), and the runtime ranges over all
10 runs (slight shaded regions around each line). Each optimization is shown to
improve the performance of the method, with Minkowski sum decomposition
having a larger effect on this example compared with warm-start LP. The fully
optimized approach (Hylaa) is not too far from the lower bound computed by
ignoring the inputs in the system (NoInput). In the tool comparison shown in
Figure 4, the approach is shown to be comparable to the other reachability tools,
and outperforms both SpaceEx and Flow* when the model has a large number
of steps.

4.2 High-Dimensional Benchmark Evaluation

We evaluated the proposed approach using a benchmark suite for reachability
problems for large-scale linear systems [21]. This consists of nine reachability
benchmarks for linear systems with inputs of various sizes, taken from “di-
verse fields such as civil engineering and robotics.” For each benchmark, we
also considered a variant with a weakened or strengthened unsafe condition,
so that each system would have both a safe and an unsafe case. For all the sys-
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Fig. 4: The performance of our optimized generalized star representation reachabil-
ity approach (Hylaa) is compared to state-of-the art tools which use support functions
(SpaceEx) and Taylor Models (Flow*) as the state set representation. As the number of
steps gets larger, our approach surpasses the other tools on this example.

tems, we used a step size of 0.005 and the original time bound of 20. The results
are shown in Table 1.

Our Hylaa tool was able to successfully verify or disprove invariant safety
conditions for all of the models, including the MNA5 model, which has 10914
dimensions. To the best of our knowledge, this is significantly (about two orders
of magnitude) larger than any system that has been verified without using any
type of abstraction methods to reduce the system’s dimensionality.

We also attempted to run SpaceEx (0.9.8f) and Flow* (2.0.0) on the bench-
mark models3. With Flow*, in order to successfully run the Motor (9 dimen-
sions) benchmark, we needed to use a smaller step size (0.0002), and set the
Taylor Model order parameter to 20. For SpaceEx, we used the support function
scenario which only requires a step size parameter. In the Motor (9 dimensions)
benchmark, however, this required us to halve the step size to 0.0025 in order
for SpaceEx to be able to prove the unsafe error states were not reachable with
the original safety condition. Consistent with the earlier analysis [21], SpaceEx’s
computation only succeeded for the Motor (9 dimensions) and Building (49
dimensions) benchmarks.

We also ran the benchmarks toggling the different optimizations, and could
show cases where warm-start greatly improves performance, and even outper-
forms Decomp. In the Beam model, for instance, Warm completes the safe case
in about 4 minutes, whereas Decomp takes 12 minutes (using both optimiza-
tions takes about 1.4 minutes).

3 Performance comparisons are difficult since runtime depends on the parameters
used. Since the submission of this work, the Building model has been used as part
of a reachability tools competition [1], in which both SpaceEx and Flow* participated.
Using the parameters from the competition, which were hand-tuned by the tool au-
thors, is likely to produce better runtimes than what we achieved in this paper.
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Table 1: Benchmark Results. Stars (*) indicate original specifications.

Model Dims Unsafe Error Condition Tool Time (s) Safe? CE Error (Abs/Rel) CE Time

Motor* 9 x1 ∈ [0.35, 0.4] ∧ x5 ∈ [0.45, 0.6] Hylaa 2.3s X - -

SpaceEx 6.8s X - -

Flow* 13m19s X - -

Motor 9 x1 ∈ [0.3, 0.4] ∧ x5 ∈ [0.4, 0.6] Hylaa 0.4s 2.5·10−7/2.4·10−7 0.04

SpaceEx 9.6s - -

Flow* 14m11s - -

Building* 49 x25 ≥ 0.006 Hylaa 2.7s X - -

SpaceEx 59.8s X - -

Building 49 x25 ≥ 0.004 Hylaa 0.9s 4.4·10−8/1.8·10−6 0.07

SpaceEx 59.2s - -

PDE* 85 y1 ≥ 12 Hylaa 3.8s X - -

PDE 85 y1 ≥ 10.75 Hylaa 1.2s 1.5·10−8/6.7·10−8 0.025

Heat* 201 x133 ≥ 0.1 Hylaa 11.8s X - -

Heat 201 x133 ≥ 0.02 Hylaa 10.1s 5.8·10−8/1.6·10−7 15.67

ISS 271 y3 /∈ [−0.0007, 0.0007] Hylaa 1m28s X - -

ISS* 271 y3 /∈ [−0.0005, 0.0005] Hylaa 1m23s 8.5·10−6/1.3·10−5 13.71

Beam 349 x89 ≥ 2100 Hylaa 1m23s X - -

Beam* 349 x89 ≥ 1000 Hylaa 1m19s 2.0·10−5/4.2·10−9 16.045

MNA1* 579 x1 ≥ 0.5 Hylaa 4m4s X - -

MNA1 579 x1 ≥ 0.2 Hylaa 3m49s 1.9·10−6/4.9·10−7 16.555

FOM 1007 y1 ≥ 185 Hylaa 4m10s X - -

FOM* 1007 y1 ≥ 45 Hylaa 1m7s 1.0·10−6/5.6·10−7 0.29

MNA5* 10914 x1 ≥ 0.2 ∨ x2 ≥ 0.15 Hylaa 6h23m X - -

MNA5 10914 x1 ≥ 0.1 ∨ x2 ≥ 0.15 Hylaa 37m27s 1.4·10−6/1.8·10−6 1.92

One important difference to keep in mind is that SpaceEx and Flow* overap-
proximate reachability at all times, which is slightly different than simulation-
equivalent reachability computed by Hylaa. Unlike Hylaa, they may catch error
cases that occur between time steps. The cost of this is that there may also be
false-positives; they do not produce counterexample traces when a system is
deemed unsafe. For example, choosing too small of a Taylor Model order or
too large of a time step in Flow* can easily result in all states, [−∞,∞], to be
computed as potentially reachable for all variables, which is not useful.

Another important concern is the accuracy of result. Since the proposed ap-
proach uses numerical simulations that may not be exact as well as floating-
point computations and a floating-point LP solver, there may be errors that
accumulate in the computation. To address the issue of accuracy, we examine
the counterexamples produced when the error condition is reachable.

Upon finding that an unsafe error state is reachable, Hylaa uses the ap-
proach described in Example 1 to determine the initial point and inputs to use
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Fig. 5: Hylaa found a counterexample trace in the ISS model, generating a very specific
set of inputs to use at each point in time. The post-verification analysis (external, high-
accuracy simulation) confirms that the found violation is a true violation of the system.

at each step in order to reach the unsafe state. It creates a Python script using
this start point and inputs to perform a simulation with high accuracy param-
eters in order to try to reproduce the counterexample error trace. We perform
this check for each of the benchmark systems where an error state is found, and
compute the l2-norm of the difference between the expected final point given
by Hylaa and the post-analysis high-accuracy simulation point. The values in
the CE Error column in Table 1 indicate that the counterexamples are highly-
accurate on all the models, both in terms of absolute and relative error.

Consider the structural model of component 1R (Russian Service Module) of
the International Space Station (ISSmodel, 271 dimensions). The high-accuracy
simulation of the counterexample trace found this system is shown in Figure 5.
Here, the final point in the post-analysis simulation and the Hylaa’s predicted
final point differ, in terms of l2-norm, by around 10−5. The figure shows the
state of the output value (top) and the values of the three inputs at each point
in time, computed by Hylaa. This is an extremely complicated set of inputs that
would be difficult to find using random simulations.

We attempted to use a falsification tool on this system to try find the vi-
olation. A falsification tool [3,9,20] performs stochastic optimization to mini-
mize the difference between simulation runs and the violation region. We ran
S-Taliro [3] on this system for 2000 simulations, which took 4.5 hours, but it did
not find a violation.

Exhaustive testing for this case would require checking simulations from
each of the corner points of the initial states (270 of the dimensions can be in an
initial interval range), multiplied by 8 combinations of choices of the 3 inputs
at each of the 2742 steps before a counterexample was found (Hylaa found the
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counterexample at time 13.71). This would be 2270 ·82742 = 3.5·102557 individual
simulations, an unfathomably large number.

In communications with the benchmark authors, the original safety specifi-
cations for all the models were chosen based on simulations of the system while
holding the inputs constant. For some of the benchmarks, Hylaa was able to
find cases where the original safety specification was violated. For example, in
the ISS model, the shown error trace in Figure 5 violates the original specifi-
cation. This was a bit unexpected, but possible since we are considering inputs
which can vary over time. When we kept the inputs constant in the ISS model,
no violation was found. In other systems, for example the Beam model, the
counterexample trace Hylaa finds has the same input values at every time step.
This shows the incompleteness (and danger) of pure simulation-based analysis,
where the safety specification was derived based on a finite set of simulations
that did not include the violation. As far as we are aware, the generalized star
reachability approach is the first to find violations in the benchmark’s original
safety conditions, as well as the first approach to verify systems of this size.

5 Related Work

Early work on handling inputs for linear systems was done for the purpose of
creating abstractions that overapproximate behaviors of systems with nonlin-
ear dynamics [4]. In this approach, a bound on the input is used to bloat a ball
to account for the effect of any possible input. While sound, such an approach
does not give a tight result and could not be used to generate concrete traces.
Later, a formulation was given which explicitly used the Minkowski sum oper-
ation [15], along with a reachability algorithm based on zonotopes, which is a
set representation that can efficiently compute both linear transformation and
Minkowski sum. This allowed for more precise tracking of the reachable set of
states, although the complexity of the zonotopes grew quadratically with the
number of discrete time steps performed, so a reduction step was used to limit
the expansion of the order of the zonotopes, leading to overapproximation. An
important improvement removed this overapproximation by using two zono-
topes, one to track the time-invariant system and one to track the effects of
inputs [18]. The two zonotopes could be combined at any specific time step in
the computation to perform operations on the reachable set at that time instant
such as guard checks, but the time-elapse operation was done on the two zono-
topes separately. A similar approach was applied for a support functions repre-
sentation rather than zonotopes [17], which also allows for efficient Minkowski
sum. The methods proposed in this paper also use this general approach, us-
ing the generalized star set data structure rather than zonotopes. The difficulty
with this is that generalized star sets are similar to polytopes specified using
hyperplane constraints, and the number of hyperplanes necessary to represent
the Minkowski sum can become extremely large in high dimensions [11,22].
For systems with nonlinear dynamics, a different method using Taylor mod-
els can be used for the time-elapse operation, with inputs given as bounded
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time-varying uncertainties [7]. This method essentially replaces time-varying
parameters by their interval enclosure at every integration step.

Building on the time-elapse operation, a hybrid automaton reachability al-
gorithm needs to perform intersections with guard sets. For zonotopes, this
can be done by performing conversions to/from polytopes [16,2], although
this process may introduce overapproximation error. For support functions,
this can be done by converting to/from template polyhedra [13]. In non-linear
reachability computation with Taylor models, guard intersections can leverage
domain-contraction and range-overapproximation (converting to other repre-
sentations such as polytopes) [8]. Although not explored in this work, we be-
lieve this operation can be done using generalized star sets, without conver-
sions that may introduce error.

6 Conclusion

In this paper, we described a new approach for computing reachability for lin-
ear systems with inputs, using a generalized star set representation and linear
programming. Our approach is simulation-equivalent, which means that we
can detect an unsafe state is reachable if and only if a fixed-step simulation ex-
ists to the unsafe states. Furthermore, upon reaching an unsafe state, a counter-
example trace is generated for the system designer to use.

The proposed method has unprecedented scalability. On the tested bench-
marks, we successfully analyzed a system with 10914 dimensions, whereas the
current state-of-the-art tools did not succeed on any model larger than 48 di-
mensions. Such large models frequently arise by discretizing partial differential
equations (PDEs). For example, a 100× 100 grid over a PDE model results in a
10,000 dimensional model. Thus, we believe the proposed approach opens the
door to the computer-aided verification of PDE models with ranges of possible
initial conditions, inputs, and uncertainties.
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A Reachability of Autonomous Systems using Stars

Here, we expand on the algorithm for computing simulation-equivalent reach-
ability for an autonomous (no-input) system. Given an initial set Θ as a con-
junction of linear predicates P , the algorithm generates one simulation from
the center origin and one simulation from state orthoi where orthoi is unit dis-
tance along the ith vector in the orthonormal basis. The reachable set at a time
instance is computed as a new star 〈c′, V ′, P 〉where the new center and the ba-
sis vectors are calculated based on the simulations, but the predicate remains
the same. This simulation-based approach is also extremely easy to parallelize.
It has been shown to be quite scalable, and is capable of analyzing an certain
affine 1000-dimensional systems in 10-20 minutes [5,6].

input : Initial set Θ ∆
= P , time step: h, time bound: k · h

output: Reachable states at each time step: (Θ0, Θ1 . . . , Θk)
1 Sim0 ← ρ(origin, h, k · h);
2 for j = 1 to n do
3 Simj ← ρ(orthoj , h, k · h);
4 end
5 for i = 0 to k do
6 ci ← Sim0[i];
7 for j = 1 to n do
8 vj ← Simj [i]− Sim0[i];
9 end

10 Vi ← {v1, . . . , vn};
11 Θi ← 〈ci, Vi, P 〉;
12 end
13 return (Θ0, Θ1 . . . , Θk);

Algorithm 3: Computes the simulation-equivalent reachable set up to time
k · h from n+ 1 simulations, for linear system without inputs.

The procedure is given in Algorithm 3. In the algorithm, Sim0 represents the
simulation starting from the origin and Simj represents the simulation start-
ing at unit distance along the jth orthonormal vector. Given a simulation Sim,
Sim[i] represents the ith state in the simulation, i.e, the state reached after i · h
time units. Algorithm 3 computes the reachable set of the set Θ at time instance
i ·h, returned as Θi as a generalized star with the center as Sim0[i], the jth basis
vector as Simj [i]− Sim0[i] and the same predicate P as the initial set. Observe
that for all Θi, the predicate in the star representation is the same, only the cen-
ter and the basis vectors change. Applying the Equation 2, for the closed loop
system without the inputs, we have that Θi = eAi·hΘ. The correctness of this
algorithm is due to the superposition principle of linear systems [10].
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B Example of Autonomous System Reachability

We go through an example computation using the autonomous (no-input) reach-
ability algorithm, and provide the associated LP formulation.

Example 2 (Harmonic Oscillator). Consider the 2-d harmonic oscillator with dy-
namics ẋ = y, ẏ = −x, and initial states x = [−6,−5], y = [0, 1]. The trajecto-
ries of this system rotate clockwise around the origin. A plot of the simulation-
equivalent reachable states of this system and the LP formulation at π4 is shown
in Figure 6. Given these constraints, linear programming can quickly determine
if unsafe states, provided as a conjunction of linear constraints, intersect with
the reachable states. As described above, simulations are used to determine the
values of the basis matrix (the red encircled values in the matrix), which gets
updated at each time step, while the rest of the constraints remains unchanged.
Rows 3-6 in the constraints come from the conditions on the initial states (the
predicate in the initial state star). The initial basis matrix is ( 1 0

0 1 ) , where each
column is the difference between a concrete simulation and the origin simu-
lation. Since this is a 2-dimensional system (n = 2), 3 (n + 1) simulations are
needed, one from the origin, one from ( 10 ), and one from ( 01 ). In this case,
the simulation from the origin always stays at ( 00 ). After π

4 time, the simula-
tion from state ( 10 ) goes to

(
0.707
−0.707

)
and the simulation from state ( 01 ) goes to

( 0.7070.707 ) . Thus, the basis matrix at time π
4 , which is the one shown the figure, is(

0.707 0.707
−0.707 0.707

)
. At time π

2 , the basis matrix in the constraints would be
(

0 1
−1 0

)
.

Init

π/4

π/2

Fig. 6: Plot of the simulation-equivalent reachable states for the system in Example 2
with a step size of π

4
, and the associated LP formulation at π

4
. The red circled values are

the star’s basis matrix, which changes at each step. Rows 3-6 come from the initial state
constraints. Additional rows could be added to check for intersection with the unsafe
states.
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