HyLAA: A Tool for Computing Simulation-Equivalent Reachability for Linear Systems

Stanley Bak and Parasara Sridhar Duggirala

DISTRIBUTION A: Approved for public release; distribution unlimited (#88ABW-2016-2897).

 Computing Simulation-Equivalent Reachability using Linear Stars

 Invariant Constraint Trimming / Sucessor Deaggregation

Hylaa Tool Demonstration

Motivation

- Observation: Numerical simulations are *extremely* useful
 - High-dimension scalability
 - Tunable accuracy
 - Fast
 - Trusted in practice
- But simulation is not perfect:
 - Model fidelity issues
 - Simulation accuracy
 - Point-based analysis (not on continuous trajectories)
 - Insufficient coverage of a system's nondeterminism (initial states / inputs / switching / disturbances)

Motivation

- Observation: Numerical simulations are *extremely* useful
 - High-dimension scalability
 - Tunable accuracy
 - Fast
 - Trusted in practice
- But simulation is not perfect:
 - Model fidelity issues
 - Simulation accuracy
 - Point-based analysis (not on continuous trajectories)
 - Insufficient coverage of a system's nondeterminism (initial states / switching / disturbances)

Simulation-Equivalent Reachability

- We strive to compute exactly the set of states that any simulation might reach, which we call simulation-equivalent reachability
- For continuous systems, this is like discrete-time reachability. For hybrid systems, a false invariant forces a transition (no sophisticated zero-crossing).
- For every state that is reachable, however, there should be a corresponding simulation which can be produced (counter-example generation)

Generalized Star Sets

 Hylaa uses a state representation which is a version of a generalized star set.

DEFINITION 5. A generalized star Θ is a tuple $\langle c, V, P \rangle$ where $c \in \mathbb{R}^n$ is called the center, $V = \{v_1, v_2, \dots, v_m\}$ is a set of m $(\leq n)$ vectors in \mathbb{R}^n called the basis vectors, and $P : \mathbb{R}^n \to \{\top, \bot\}$ is a predicate. A generalized star Θ defines a subset of \mathbb{R}^n as follows.

$$\llbracket \Theta \rrbracket = \{ x \mid \exists \bar{\alpha} = [\alpha_1, \dots, \alpha_m]^T \text{ such that} \\ x = c + \sum_{i=1}^n \alpha_i v_i \text{ and } P(\bar{\alpha}) = \top \}$$

6/21

"Parsimonious, Simulation Based Verification of Linear Systems", P. S. Duggirala and M. Viswanathan. International Conference on Computer Aided Verification, (CAV 2016)

Superposition

Point Containment

$$\llbracket \Theta \rrbracket = \{ x \mid \exists \bar{\alpha} = [\alpha_1, \dots, \alpha_m]^T \text{ such that} \\ x = c + \sum_{i=1}^n \alpha_i v_i \text{ and } P(\bar{\alpha}) = \top \}$$

Superposition

 $\llbracket \Theta \rrbracket = \{x \mid \exists \bar{\alpha} = [\alpha_1, \dots, \alpha_m]^T \text{ such that }$ $x = c + \sum_{i=1}^{n} \alpha_i v_i \text{ and } P(\bar{\alpha}) = \top \}$

Harmonic Oscillator Example

Dynamics: x' = y, y' = -x

Initial condition: $x(0) \in [-6, -5], y(0) \in [0, 1]$

At time $\pi/4$ - basis vector #1: (1, 0) \rightarrow (0.707, -0.707) basis vector #2: (0, 1) \rightarrow (0.707, 0.707)

Continuous Post Scalability

- In 2 dimensions, we need to do 3 simulations (one for each basis vector, and one for the center)
- In N-dimensions, we need N+1 simulations
- Two main computations:
 - Run n+1 simulations
 - Solve a linear program
- Both seem scalable... how scalable is the method?

Scalability Comparison

Comparison of Hylaa vs SpaceEx
Replicated Helicopter (28 dims each)

Mode Invariant Error

- The "standard" reachability algorithm:
 - Continuous Post until invariant is false
 - Trim to invariant
 - Discrete Post

- (repeat)

Mode Invariant Error

- The "standard" reachability algorithm:
 - Continuous Post until invariant is false
 - Trim to invariant
 - Discrete Post

- (repeat)

(Hylaa Demo) invariant_trim.py

- Upon taking a discrete transition, successors are aggregated
- Desired operation is set union, but often only convex-hull is possible

- Upon taking a discrete transition, successors are aggregated
- Desired operation is set union, but often only convex-hull is possible

Deaggregation

- To eliminate this error, we still perform aggregation, but then deaggregate (split) upon reaching a subsequent guard
- Example:
 - Steps 10 to 20 have a guard enabled, and get aggregated into a single set [10, 20]
 - In the successor mode, continuous post for 1.5 seconds before another guard is reached
 - Split into two sets, [10, 14] and [15, 20]
 - Continue with each of those two sets, skipping the first 1.5 seconds

Deaggregation and Simulation-Equivalence

With deaggregation, only states with concrete simulations can pass through guards

Unsafe states are defined as entire modes

- Therefore, unsafe states are reachable only if a concrete simulation exists
 - Simulation-equivalent safety

Conclusion

Hylaa is a new tool that computes *simulation-equivalent reachability.*

The Hylaa tool code, repeatability scripts, an interactive demo, and videos are all available online:

Our ARCH2017 paper used Hylaa to verify linear systems with over 10000 dimensions*!

* "Direct Verification of Linear Systems with over 10000 Dimensions",
S. Bak and P. S. Duggirala, Applied Verification for Continuous and Hybrid Systems (ARCH 2017)