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Motivating Example: Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag
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Control Law
if(cond1) then
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

if(cond2) then
𝑢 = −3𝑎 − 2(𝑣 − 𝑣𝑓);
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Safety Verification Problem

▪ Given a Linear Hybrid Automata 𝐻, with initial set Θ and unsafe set 
𝑈, are all the behaviors starting from Θ for bounded time 𝑇𝑏 are 
safe? 
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Safety Verification Problem

▪ Given a Linear Hybrid Automata 𝐻, with initial set Θ and unsafe set 
𝑈, are all the behaviors starting from Θ for bounded time 𝑇𝑏 are 
safe? 

▪ One technique: Use a safety verification tool such as SpaceEx, 
Flow*, or CORA, etc.
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▪ However, most of  design analysis is done using simulations.
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Simulation-Equivalent Reachability (Safety)

Assumptions

1. We are provided with a simulation engine (oracle) that provides a 
discrete time simulation for a differential equation ሶ𝑥 = 𝐴𝑥 + 𝐵.

2. All the sets encountered such as invariants, guards, initial set, and 
unsafe set are all conjunctions of  linear predicates.
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Contributions

1. Compute simulation-equivalent reachable set (safety verification).

2. New technique called forward constraint propagation for 
handling invariants.

3. New on-the-fly aggregation and deaggregation techniques.

4. Sound and complete with respect to the simulation engine 
provided.
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Overview

✓Motivation and Contributions.

▪Dynamic analysis technique for linear systems verification.

▪Observations of  the dynamic analysis technique.

▪ Invariant constraint propagation.

▪Dynamic deaggregation.

▪Experimental evaluation.

▪Conclusions and Future work.

TACAS 2017 13



Dynamic Analysis Technique 
For Linear System
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Dynamic Analysis Technique

1. The representation: Generalized stars.

2. The property of  linear systems: Superposition principle.

3. The reachable set computing technique: Safety verification of  
an 𝒏 dimensional system using 𝒏 + 𝟏 simulations.
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P.S.Duggirala, M.Viswanathan, “Parsimonious, Simulation Based Verification of Linear Systems”,
International Conference on Computer Aided Verification (CAV) 2016.



Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of  vectors, 𝑃 – predicate.
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𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑣1

𝑣2

𝑐1

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐1 + 𝛼1𝑣1 + 𝛼2𝑣2
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Property: Superposition
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From simulations 𝜉0, 𝜉1, and 𝜉2, 
we can construct any simulation 

starting from a linear span of 
𝑥0, 𝑣1, and 𝑣2.

𝜉 𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡 = 𝜉 𝑥0, 𝑡 + 𝛼1𝑣1
′ + 𝛼2𝑣2

′



Technique: Basic Idea

▪ Given initial set Θ = ⟨𝑐, 𝑉, 𝑃⟩, the Reach is computed not as new 
predicate, but is done by changing the center and the basis vectors.
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𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

P.S.Duggirala, M.Viswanathan, “Parsimonious, Simulation Based Verification of Linear Systems”,
International Conference on Computer Aided Verification (CAV) 2016.



Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
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Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖
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Using Discrete Time 
Simulation Engine

Initial set Θ ≜ ⟨𝑐, 𝑉, 𝑃⟩; Simulation engine 𝜌; step size ℎ; 

For computing the reachable set at time 𝑗 ⋅ ℎ instant

1. Generate simulation 𝜌(𝑐, 𝑗 ⋅ ℎ);

2. For each 𝑣𝑖 ∈ 𝑉, generate simulation 𝜌(𝑐 + 𝑣𝑖 , 𝑗 ⋅ ℎ);

3. Reachable set denoted as Θ𝑗 is defined as ⟨𝑐′, 𝑉′, 𝑃⟩ where

1. 𝑐′ = 𝜌(𝑐, 𝑗 ⋅ ℎ);
2. 𝑣𝑖

′ = 𝜌 𝑐 + 𝑣𝑖 , 𝑗 ⋅ ℎ − 𝜌(𝑐, 𝑗 ⋅ ℎ);
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Given initial set 𝚯, procedure 𝐑𝐞𝐚𝐜𝐡(𝚯, 𝐡, 𝐤 ⋅ 𝒉) returns 𝚯𝟏, 𝚯𝟐, … , 𝚯𝒌

where 𝚯𝐣 = 𝒄𝒋, 𝑽𝒋, 𝑷 is the reachable set from Θ at time instance 𝑗 ⋅ ℎ.



Observations

1. The discrete time reachable set doesn’t change the predicate 
associated with the star. 
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Θ ≜ 〈𝑐, 𝑉, 𝑃〉
𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

𝑐′
𝑣2
′

𝑣1
′

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉
𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

To compute reachable set of a new initial set, just 
changing the predicate suffices!



Observations

2.  It is easy to aggregate and de-aggregate sets on-the-fly.
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𝑷𝟏

𝑷𝟐

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

Notice: all have same center and 
basis in their representation
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2.  It is easy to aggregate and de-aggregate sets on-the-fly.
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𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝚯𝒂𝒈𝒈
′ = ⟨𝒄′, 𝑽′, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏
′ = ⟨𝒄′, 𝑽′, 𝑷𝟏⟩

𝚯𝟐
′ = ⟨𝒄′, 𝑽′, 𝑷𝟐⟩

𝑷𝟏

𝑷𝟐
Want to deaggregate?
Just change the predicates!

Notice: all have same center and 
basis in their representation



Handling Invariants and 
Discrete Transitions
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The Problems With Invariants

▪ Given Θ1, Θ2, … , Θ𝑘 as discrete time reachable sets for a given 
mode, performing just Θ𝑗 ∩ 𝐼𝑛𝑣 only gives an overapproximation.
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Θ𝑖

Θ𝑖+1

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1

𝐼𝑛𝑣(𝑙) Q) How to compute 𝑨𝒄𝒕𝒖𝒂𝒍𝑹𝒆𝒂𝒄𝒉𝒊+𝟏?
A) Use constraint propagation!



Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩
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𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩
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Forward Constraint Propagation
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2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ
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Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ

4. Propagate constraint 𝑄𝑖 forward --- add it to predicates of  itself  
and all future stars.
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𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1
⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Originated from 
⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩



Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of  Θ𝑖 as 
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. For each Θ𝑖 , add 𝑄1 ∧ 𝑄2 ∧ ⋯∧ 𝑄𝑖 into its predicate.
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Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of  Θ𝑖 as 
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. For each Θ𝑖 , add 𝑄1 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖 into its predicate.
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Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of  Θ𝑖 as 
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. For each Θ𝑖 , add 𝑄1 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖 into its predicate.
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Optimizations

1. If  Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If  Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.
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Optimizations

1. If  Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If  Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if  and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)
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Optimizations

1. If  Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If  Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if  and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)

4. [Empirical heuristic]: Compare successive constraints 𝑄𝑖 and 
𝑄𝑖+1 and if  𝑄𝑖+1 is stronger than 𝑄𝑖, replace 𝑄𝑖 with 𝑄𝑖+1.
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Discrete Transitions

▪ Discrete transitions are enabled when the reachable set overlaps 
with the guard condition.

▪ If  reachable set from Θ overlaps with guard 𝐺𝑖 at Θ𝑖,1, Θ𝑖,2, … , Θ𝑖,𝑙. 
That is, Θ has 𝑙 successor sets.

▪ After 𝑚 discrete transitions, the number of  sets to keep track will 
be 𝑙𝑚. (exponential blow-up).
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That is, Θ has 𝑙 successor sets.

▪ After 𝑚 discrete transitions, the number of  sets to keep track will 
be 𝑙𝑚. (exponential blow-up).

TACAS 2017 52



Aggregation – A Necessary Evil

▪Necessary to reduce the number of  sets to keep 
track of.
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Aggregation – A Necessary Evil

▪Necessary to reduce the number of  sets to keep 
track of.

▪Aggregation introduces overapproximation that 
we can never get rid of!

▪Might cause spurious discrete transitions; cannot 
give concrete counterexamples.
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Aggregation – A Necessary Evil

▪Necessary to reduce the number of  sets to keep 
track of.

▪Aggregation introduces overapproximation that 
we can never get rid of!

▪Might cause spurious discrete transitions; cannot 
give concrete counterexamples.

Damned if  you do! 
Damned if  you don’t!
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Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.
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Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set, 
then deaggregate.
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Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set, 
then deaggregate.
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Overview

✓Motivation and Contributions.

✓Dynamic analysis technique for linear systems verification.

✓Observations of  the dynamic analysis technique.

✓Invariant constraint propagation.

✓Dynamic deaggregation.

▪Experimental evaluation.

▪Conclusions and Future work.
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Experimental Evaluation
HyLAA

Scalability with respect to number of  dimensions.***
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*** accurate comparison of tools is very hard owing 
to semantics and parameters during verification. 
HyPro might be a good solution.

http://stanleybak.com/hylaa/


HyLAA
Constraint Propagation
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HyLAA
Aggregation and Deaggregation

▪ Without aggregation is 
very expensive

▪ Completely aggregated 
introduces new transitions 
and doesn’t terminate.

▪ Dynamic deaggregation
has 1.2x – 5x speedup 
based on the system.
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HyLAA
Aggregation and Deaggregation

▪ Automotive drivetrain system with additional masses (8 + 2𝜃).

▪ In lower dimensions, the synchronous behavior of  masses gives a 
better performance for aggregation.

▪ In higher dimensions, the benefits of  aggregation are low because 
deaggregation is performed more often.
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Conclusion

▪ Notion of  simulation equivalent reachable set and safety verification.

▪ New invariant constraint propagation methods for handling invariants.

▪ Dynamic aggregation and deaggregation for handling discrete transitions.

▪ Implemented these in a tool called HyLAA and demonstrated the 
benefits of  these techniques.

Future work

▪ Giving guarantees over dense-time semantics.

▪ Templates for aggregation and deaggregation.

Recently verified 10,000 dimensional system 
using enhancements on HyLAA.
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