
Rigorous Simulation-Based Analysis
of Linear Hybrid Systems

Stanley Bak Parasara Sridhar Duggirala

Motivating Example: Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

TACAS 2017 [2]

Motivating Example: Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

TACAS 2017 [3]

Control Law
if(cond1) then
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

if(cond2) then
𝑢 = −3𝑎 − 2(𝑣 − 𝑣𝑓);

Motivating Example: Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

TACAS 2017 [4]

Control Law
if(cond1) then
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

if(cond2) then
𝑢 = −3𝑎 − 2(𝑣 − 𝑣𝑓);

Physical Plant

𝐂𝟏

𝐂𝟐

𝐂𝐧

⋮
Logic

Motivating Example: Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

TACAS 2017 [5]

Control Law
if(cond1) then
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

if(cond2) then
𝑢 = −3𝑎 − 2(𝑣 − 𝑣𝑓);

Physical Plant

𝐂𝟏

𝐂𝟐

𝐂𝐧

⋮
Logic

ሶ𝐱 = 𝐟𝟏(𝐱)

ሶ𝐱 = 𝐟𝟐(𝐱)

ሶ𝐱 = 𝐟𝟑(𝐱)

Linear Hybrid Automata

𝐺1

𝐺2

𝐺3
𝑓𝑖 𝑥 = 𝐴𝑖𝑥 + 𝐵𝑖

Safety Verification Problem

▪ Given a Linear Hybrid Automata 𝐻, with initial set Θ and unsafe set
𝑈, are all the behaviors starting from Θ for bounded time 𝑇𝑏 are
safe?

TACAS 2017 6

ሶ𝐱 = 𝐟𝟏(𝐱)

ሶ𝐱 = 𝐟𝟐(𝐱)

ሶ𝐱 = 𝐟𝟑(𝐱)

Θ

U
𝑓𝑖 𝑥 = 𝐴𝑖𝑥 + 𝐵𝑖

𝐺1

𝐺2

𝐺3

Linear Hybrid Automata

Safety Verification Problem

▪ Given a Linear Hybrid Automata 𝐻, with initial set Θ and unsafe set
𝑈, are all the behaviors starting from Θ for bounded time 𝑇𝑏 are
safe?

▪ One technique: Use a safety verification tool such as SpaceEx,
Flow*, or CORA, etc.

TACAS 2017 7

ሶ𝐱 = 𝐟𝟏(𝐱)

ሶ𝐱 = 𝐟𝟐(𝐱)

ሶ𝐱 = 𝐟𝟑(𝐱)

Θ

U
𝑓𝑖 𝑥 = 𝐴𝑖𝑥 + 𝐵𝑖

Linear Hybrid Automata

𝐺1

𝐺2

𝐺3

Safety Verification Problem

▪ Given a Linear Hybrid Automata 𝐻, with initial set Θ and unsafe set
𝑈, are all the behaviors starting from Θ for bounded time 𝑇𝑏 are
safe?

▪ One technique: Use a safety verification tool such as SpaceEx,
Flow*, or CORA, etc.

▪ However, most of design analysis is done using simulations.

TACAS 2017 8

ሶ𝐱 = 𝐟𝟏(𝐱)

ሶ𝐱 = 𝐟𝟐(𝐱)

ሶ𝐱 = 𝐟𝟑(𝐱)

Θ

U
𝑓𝑖 𝑥 = 𝐴𝑖𝑥 + 𝐵𝑖

Linear Hybrid Automata

𝐺1

𝐺2

𝐺3

Safety Verification Problem

▪ Given a Linear Hybrid Automata 𝐻, with initial set Θ and unsafe set
𝑈, are all the behaviors starting from Θ for bounded time 𝑇𝑏 are
safe?

▪ One technique: Use a safety verification tool such as SpaceEx,
Flow*, or CORA, etc.

▪ However, most of design analysis is done using simulations.

TACAS 2017 9

ሶ𝐱 = 𝐟𝟏(𝐱)

ሶ𝐱 = 𝐟𝟐(𝐱)

ሶ𝐱 = 𝐟𝟑(𝐱)

Θ

U

This paper

Simulations ↔ Verification

𝑓𝑖 𝑥 = 𝐴𝑖𝑥 + 𝐵𝑖

Linear Hybrid Automata

𝐺1

𝐺2

𝐺3

Simulation-Equivalent Reachability (Safety)

Assumptions

1. We are provided with a simulation engine (oracle) that provides a
discrete time simulation for a differential equation ሶ𝑥 = 𝐴𝑥 + 𝐵.

2. All the sets encountered such as invariants, guards, initial set, and
unsafe set are all conjunctions of linear predicates.

TACAS 2017 10

Simulation-Equivalent Reachability (Safety)

Assumptions

1. We are provided with a simulation engine (oracle) that provides a
discrete time simulation for a differential equation ሶ𝑥 = 𝐴𝑥 + 𝐵.

2. All the sets encountered such as invariants, guards, initial set, and
unsafe set are all conjunctions of linear predicates.

Contributions

1. Compute simulation-equivalent reachable set (safety verification).

2. New technique called forward constraint propagation for
handling invariants.

3. New on-the-fly aggregation and deaggregation techniques.

4. Sound and complete with respect to the simulation engine
provided.

TACAS 2017 11

Simulation-Equivalent Reachability (Safety)

Assumptions

1. We are provided with a simulation engine (oracle) that provides a
discrete time simulation for a differential equation ሶ𝑥 = 𝐴𝑥 + 𝐵.

2. All the sets encountered such as invariants, guards, initial set, and
unsafe set are all conjunctions of linear predicates.

Contributions

1. Compute simulation-equivalent reachable set (safety verification).

2. New technique called forward constraint propagation for
handling invariants.

3. New on-the-fly aggregation and deaggregation techniques.

4. Sound and complete with respect to the simulation engine
provided.

TACAS 2017 12

Overview

✓Motivation and Contributions.

▪Dynamic analysis technique for linear systems verification.

▪Observations of the dynamic analysis technique.

▪ Invariant constraint propagation.

▪Dynamic deaggregation.

▪Experimental evaluation.

▪Conclusions and Future work.

TACAS 2017 13

Dynamic Analysis Technique
For Linear System

TACAS 2017 14

Dynamic Analysis Technique

1. The representation: Generalized stars.

2. The property of linear systems: Superposition principle.

3. The reachable set computing technique: Safety verification of
an 𝒏 dimensional system using 𝒏 + 𝟏 simulations.

TACAS 2017 15

P.S.Duggirala, M.Viswanathan, “Parsimonious, Simulation Based Verification of Linear Systems”,
International Conference on Computer Aided Verification (CAV) 2016.

Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of vectors, 𝑃 – predicate.

TACAS 2017 16

𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑣1

𝑣2

𝑐1

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐1 + 𝛼1𝑣1 + 𝛼2𝑣2
.

Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of vectors, 𝑃 – predicate.

TACAS 2017 17

𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5𝑣1

𝑣2

𝑐1

Property: Superposition

TACAS 2017 18

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

Property: Superposition

TACAS 2017 19

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

Property: Superposition

TACAS 2017 20

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

𝜉(𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

Property: Superposition

TACAS 2017 21

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

.
𝛼1v1

′ + 𝛼2v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

𝜉 𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡 = 𝜉 𝑥0, 𝑡 + 𝛼1𝑣1
′ + 𝛼2𝑣2

′

Property: Superposition

TACAS 2017 22

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

.
𝛼1v1

′ + 𝛼2v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

From simulations 𝜉0, 𝜉1, and 𝜉2,
we can construct any simulation

starting from a linear span of
𝑥0, 𝑣1, and 𝑣2.

𝜉 𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡 = 𝜉 𝑥0, 𝑡 + 𝛼1𝑣1
′ + 𝛼2𝑣2

′

Technique: Basic Idea

▪ Given initial set Θ = ⟨𝑐, 𝑉, 𝑃⟩, the Reach is computed not as new
predicate, but is done by changing the center and the basis vectors.

TACAS 2017 23

𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

P.S.Duggirala, M.Viswanathan, “Parsimonious, Simulation Based Verification of Linear Systems”,
International Conference on Computer Aided Verification (CAV) 2016.

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set

TACAS 2017 24

𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

TACAS 2017 25

𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

TACAS 2017 26

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

TACAS 2017 27

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

TACAS 2017 28

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

TACAS 2017 29

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

Using Discrete Time
Simulation Engine

Initial set Θ ≜ ⟨𝑐, 𝑉, 𝑃⟩; Simulation engine 𝜌; step size ℎ;

For computing the reachable set at time 𝑗 ⋅ ℎ instant

1. Generate simulation 𝜌(𝑐, 𝑗 ⋅ ℎ);

2. For each 𝑣𝑖 ∈ 𝑉, generate simulation 𝜌(𝑐 + 𝑣𝑖 , 𝑗 ⋅ ℎ);

3. Reachable set denoted as Θ𝑗 is defined as ⟨𝑐′, 𝑉′, 𝑃⟩ where

1. 𝑐′ = 𝜌(𝑐, 𝑗 ⋅ ℎ);
2. 𝑣𝑖

′ = 𝜌 𝑐 + 𝑣𝑖 , 𝑗 ⋅ ℎ − 𝜌(𝑐, 𝑗 ⋅ ℎ);

TACAS 2017 30

Using Discrete Time
Simulation Engine

Initial set Θ ≜ ⟨𝑐, 𝑉, 𝑃⟩; Simulation engine 𝜌; step size ℎ;

For computing the reachable set at time 𝑗 ⋅ ℎ instant

1. Generate simulation 𝜌(𝑐, 𝑗 ⋅ ℎ);

2. For each 𝑣𝑖 ∈ 𝑉, generate simulation 𝜌(𝑐 + 𝑣𝑖 , 𝑗 ⋅ ℎ);

3. Reachable set denoted as Θ𝑗 is defined as ⟨𝑐′, 𝑉′, 𝑃⟩ where

1. 𝑐′ = 𝜌(𝑐, 𝑗 ⋅ ℎ);
2. 𝑣𝑖

′ = 𝜌 𝑐 + 𝑣𝑖 , 𝑗 ⋅ ℎ − 𝜌(𝑐, 𝑗 ⋅ ℎ);

TACAS 2017 31

Given initial set 𝚯, procedure 𝐑𝐞𝐚𝐜𝐡(𝚯, 𝐡, 𝐤 ⋅ 𝒉) returns 𝚯𝟏, 𝚯𝟐, … , 𝚯𝒌

where 𝚯𝐣 = 𝒄𝒋, 𝑽𝒋, 𝑷 is the reachable set from Θ at time instance 𝑗 ⋅ ℎ.

Observations

1. The discrete time reachable set doesn’t change the predicate
associated with the star.

TACAS 2017 32

𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

Observations

1. The discrete time reachable set doesn’t change the predicate
associated with the star.

TACAS 2017 33

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

𝑐′
𝑣2
′

𝑣1
′

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉
𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

To compute reachable set of a new initial set, just
changing the predicate suffices!

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

TACAS 2017 34

𝑷𝟏

𝑷𝟐

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

Notice: all have same center and
basis in their representation

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

TACAS 2017 35

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝑷𝟏

𝑷𝟐

Notice: all have same center and
basis in their representation

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

TACAS 2017 36

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

Notice: all have same center and
basis in their representation

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

TACAS 2017 37

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝚯𝒂𝒈𝒈
′ = ⟨𝒄′, 𝑽′, 𝑷𝒂𝒈𝒈⟩

Want to deaggregate?

Notice: all have same center and
basis in their representation

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

TACAS 2017 38

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝚯𝒂𝒈𝒈
′ = ⟨𝒄′, 𝑽′, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏
′ = ⟨𝒄′, 𝑽′, 𝑷𝟏⟩

𝚯𝟐
′ = ⟨𝒄′, 𝑽′, 𝑷𝟐⟩

𝑷𝟏

𝑷𝟐
Want to deaggregate?
Just change the predicates!

Notice: all have same center and
basis in their representation

Handling Invariants and
Discrete Transitions

TACAS 2017 39

The Problems With Invariants

▪ Given Θ1, Θ2, … , Θ𝑘 as discrete time reachable sets for a given
mode, performing just Θ𝑗 ∩ 𝐼𝑛𝑣 only gives an overapproximation.

TACAS 2017 40

Θ𝑖

Θ𝑖+1

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1

𝐼𝑛𝑣(𝑙)

The Problems With Invariants

▪ Given Θ1, Θ2, … , Θ𝑘 as discrete time reachable sets for a given
mode, performing just Θ𝑗 ∩ 𝐼𝑛𝑣 only gives an overapproximation.

TACAS 2017 41

Θ𝑖

Θ𝑖+1

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1

𝐼𝑛𝑣(𝑙) Q) How to compute 𝑨𝒄𝒕𝒖𝒂𝒍𝑹𝒆𝒂𝒄𝒉𝒊+𝟏?
A) Use constraint propagation!

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

TACAS 2017 42

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ

TACAS 2017 43

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Originated from
⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ

4. Propagate constraint 𝑄𝑖 forward --- add it to predicates of itself
and all future stars.

TACAS 2017 44

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1
⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Originated from
⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩

Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of Θ𝑖 as
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. For each Θ𝑖 , add 𝑄1 ∧ 𝑄2 ∧ ⋯∧ 𝑄𝑖 into its predicate.

TACAS 2017 45

Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of Θ𝑖 as
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. For each Θ𝑖 , add 𝑄1 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖 into its predicate.

TACAS 2017 46

Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of Θ𝑖 as
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. For each Θ𝑖 , add 𝑄1 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖 into its predicate.

TACAS 2017 47

Optimizations

1. If Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

TACAS 2017 48

Optimizations

1. If Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)

TACAS 2017 49

Optimizations

1. If Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)

4. [Empirical heuristic]: Compare successive constraints 𝑄𝑖 and
𝑄𝑖+1 and if 𝑄𝑖+1 is stronger than 𝑄𝑖, replace 𝑄𝑖 with 𝑄𝑖+1.

TACAS 2017 50

Discrete Transitions

▪ Discrete transitions are enabled when the reachable set overlaps
with the guard condition.

▪ If reachable set from Θ overlaps with guard 𝐺𝑖 at Θ𝑖,1, Θ𝑖,2, … , Θ𝑖,𝑙.
That is, Θ has 𝑙 successor sets.

▪ After 𝑚 discrete transitions, the number of sets to keep track will
be 𝑙𝑚. (exponential blow-up).

TACAS 2017 51

Discrete Transitions

▪ Discrete transitions are enabled when the reachable set overlaps
with the guard condition.

▪ If reachable set from Θ overlaps with guard 𝐺𝑖 at Θ𝑖,1, Θ𝑖,2, … , Θ𝑖,𝑙.
That is, Θ has 𝑙 successor sets.

▪ After 𝑚 discrete transitions, the number of sets to keep track will
be 𝑙𝑚. (exponential blow-up).

TACAS 2017 52

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

TACAS 2017 53

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

▪Aggregation introduces overapproximation that
we can never get rid of!

▪Might cause spurious discrete transitions; cannot
give concrete counterexamples.

TACAS 2017 54

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

▪Aggregation introduces overapproximation that
we can never get rid of!

▪Might cause spurious discrete transitions; cannot
give concrete counterexamples.

TACAS 2017 55

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

▪Aggregation introduces overapproximation that
we can never get rid of!

▪Might cause spurious discrete transitions; cannot
give concrete counterexamples.

Damned if you do!
Damned if you don’t!

TACAS 2017 56

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

TACAS 2017 57

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

TACAS 2017 58

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set,
then deaggregate.

TACAS 2017 59

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set,
then deaggregate.

TACAS 2017 60

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set,
then deaggregate.

TACAS 2017 61

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

Overview

✓Motivation and Contributions.

✓Dynamic analysis technique for linear systems verification.

✓Observations of the dynamic analysis technique.

✓Invariant constraint propagation.

✓Dynamic deaggregation.

▪Experimental evaluation.

▪Conclusions and Future work.

TACAS 2017 62

Experimental Evaluation
HyLAA

Scalability with respect to number of dimensions.***

TACAS 2017 63http://stanleybak.com/hylaa/

*** accurate comparison of tools is very hard owing
to semantics and parameters during verification.
HyPro might be a good solution.

http://stanleybak.com/hylaa/

HyLAA
Constraint Propagation

TACAS 2017 64http://stanleybak.com/hylaa/

http://stanleybak.com/hylaa/

HyLAA
Aggregation and Deaggregation

▪ Without aggregation is
very expensive

▪ Completely aggregated
introduces new transitions
and doesn’t terminate.

▪ Dynamic deaggregation
has 1.2x – 5x speedup
based on the system.

TACAS 2017 65http://stanleybak.com/hylaa/

http://stanleybak.com/hylaa/

HyLAA
Aggregation and Deaggregation

▪ Automotive drivetrain system with additional masses (8 + 2𝜃).

▪ In lower dimensions, the synchronous behavior of masses gives a
better performance for aggregation.

▪ In higher dimensions, the benefits of aggregation are low because
deaggregation is performed more often.

TACAS 2017 66http://stanleybak.com/hylaa/

http://stanleybak.com/hylaa/

Conclusion

▪ Notion of simulation equivalent reachable set and safety verification.

▪ New invariant constraint propagation methods for handling invariants.

▪ Dynamic aggregation and deaggregation for handling discrete transitions.

▪ Implemented these in a tool called HyLAA and demonstrated the
benefits of these techniques.

Future work

▪ Giving guarantees over dense-time semantics.

▪ Templates for aggregation and deaggregation.

Recently verified 10,000 dimensional system
using enhancements on HyLAA.

TACAS 2017 67http://stanleybak.com/hylaa/

http://stanleybak.com/hylaa/

Conclusion

▪ Notion of simulation equivalent reachable set and safety verification.

▪ New invariant constraint propagation methods for handling invariants.

▪ Dynamic aggregation and deaggregation for handling discrete transitions.

▪ Implemented these in a tool called HyLAA and demonstrated the
benefits of these techniques.

Future work

▪ Giving guarantees over dense-time semantics.

▪ Templates for aggregation and deaggregation.

Recently verified 10,000 dimensional system
using enhancements on HyLAA.

TACAS 2017 68http://stanleybak.com/hylaa/

http://stanleybak.com/hylaa/

