
Rigorous Simulation-Based Analysis
of Linear Hybrid Systems

Stanley Bak1 and Parasara Sridhar Duggirala2

1 Air Force Research Laboratory
2 University of Connecticut

Abstract. Design analysis of Cyber-Physical Systems (CPS) with com-
plex continuous and discrete behaviors, in-practice, relies heavily on nu-
merical simulations. While useful for evaluation and debugging, such
analysis is often incomplete owing to the nondeterminism in the discrete
transitions and the uncountability of the continuous space. In this pa-
per, we present a precise notion of simulations for CPS called simulation-
equivalent reachability, which includes all the states that can be reached
by any simulation. While this notion is weaker than traditional reachabil-
ity, we present a technique that performs simulation-equivalent reacha-
bility in an efficient, scalable, and theoretically sound and complete man-
ner. For achieving this, we describe two improvements, namely invari-
ant constraint propagation for handling invariants and on-demand successor
deaggregation for handling discrete transitions. We use our tool implemen-
tation of the approach, HyLAA(Hybrid Linear Automata Analyzer), to
evaluate the improvements, and demonstrate computing the simulation-
equivalent reachable set for a replicated helicopter systems with over 1000
dimensions in about 10 minutes.

1 Introduction

Cyber-Physical Systems (CPS) that involve interaction between a system’s soft-
ware and the physical world can be naturally modeled using the framework
of hybrid automata [29,4]. A common industrial practice to design and debug
these systems is to use a model-based design framework such as Simulink or
Modelica, which produces concrete traces of system behavior. An engineer uses
a combination of his or her intuition about potential edge cases and sampled
simulations to try and find behaviors that violate the safety specification. While
performing large numbers of simulations can be extremely useful, the space of
possible simulations is often infinite, and so simulations can miss critical error
cases. For large and complex models, with high numbers of dimensions, the
amount of coverage provided by simulations decreases further, increasing the
chances of missing a simulation that violates safety.

In this work, we add rigor to such simulation-based analysis and compute
what we call the simulation-equivalent reachable set. To do this, we build upon

DISTRIBUTION A. Approved for public release; Distribution unlimited.
(Approval AFRL PA #88ABW-2016-5197, 18 OCT 2016)

2

a recently proposed method [18] that exploits the superposition property of
linear systems by combining the information from selected individual simu-
lations to reason about an unbounded number of simulations. We extend this
approach to analyze a general linear hybrid system, and provide an analysis
method which is exact, with respect to a particular simulation algorithm. Upon
termination, if our algorithm infers that the system is safe, then no simula-
tion enters the unsafe set; if our algorithm infers that the system is unsafe, a
counter-example trace is provided. One of the main reasons to present an alter-
native notion of reachability is fundamentally driven by the desire to generate
counterexamples which are of high importance during the debugging phase of
design analysis. Additionally, while simulation-equivalent reachability is a bit
weaker than traditional reachability, the simplifications enable analysis which
is more scalable, as well as sound and complete. The contributions of this paper
are as follows.

1. We formally state the simulation-equivalent reachability problem and pro-
vide a sound and complete algorithm for its computation.

2. We present two new improvements, first, for reducing the number of con-
straints in handling invariants, and second, for aggregating and deaggre-
gating sets after discrete transitions, without losing simulation-equivalence.

3. We present an accuracy-equivalent comparison with traditional reachabil-
ity algorithms, and evaluate the proposed techniques in a new tool called
HyLAA (Hybrid Linear Automata Analyzer).

Related Approaches: Verification techniques for hybrid automata can be clas-
sified into two main categories: flow-pipe construction [13] and deductive ver-
ification [31,24]. Flow-pipe construction methods, which are more closely re-
lated to this paper, are typically classified by the complexity allowed by their
continuous dynamics. Existing techniques can handle systems where contin-
uous dynamics are restricted to be timers [5,10], piecewise constants [26,21],
linear [25,23], and general nonlinear expressions [12,2]. In this context, our ap-
proach fits in with the class of tools used to analyze linear systems. The pro-
posed method differs, however, in that our analysis is sound and complete for
simulation-equivalent reachability, and can provide concrete counterexamples
if the system violates the safety specification. Systems with complex dynamics
are sometimes analyzed using hybridization [14,6]. In hybridization, complex
dynamics are simplified as a hybrid system with simpler dynamics and nonde-
terministic inputs, where the inputs account for the simplification errors.

Simulations have also been leveraged before to perform more formal anal-
ysis of hybrid systems. One approach studies the effects of perturbations of
the initial state on the divergence of trajectories [15,16,17,20]. These approaches
are different from the way HyLAA uses simulations, in that they reason about
tubes of states around individual simulations. Other falsification methods use
a metric to determine how close a particular simulation is to violating a for-
mal specification [19], and then apply a global optimization routine to generate
new simulation inputs which try to optimize the metric, essentially trying to
generate simulations that are closer to a violation [30,9]. While often better than

3

purely random Monte Carlo simulation, this class of approaches is incomplete
and so may still miss error trajectories.

2 Preliminaries

States and vectors are elements in Rn are denoted as x and v. Given a sequence
seq = s1, s2, . . ., the ith element in the sequence is denoted as seq[i]. In this
work, we use the following mathematical notation of a linear hybrid automata.

Definition 1. A linear hybrid automaton is defined to be a tuple
〈Loc,X, F low, Inv, Trans,Guard〉 where:
Loc is a finite set of locations (also called modes).
X ⊆ Rn is the state space of the behaviors.
Flow : Loc→ AffineDeq(X) assigns an affine differential equation ẋ = Alx+Bl for

location l of the hybrid automaton.
Inv : Loc→ 2R

n

assigns an invariant set for each location of the hybrid automaton.
Trans ⊆ Loc× Loc is the set of discrete transitions.
Guard : Trans→ 2R

n

defines the set of states where a discrete transition is enabled.
For a linear hybrid automaton, the invariants and guards are given as a conjunction of
linear constraints.

The initial set of statesΘ is a subset of Loc×2R
n

, where second element in the
pair is a conjunction of linear constraints. An initial state q0 is a pair (Loc0, x0),
such that x0 ∈ X , and (Loc0, x0) ∈ Θ. Unsafe states are indicated by having a
set of error modes, U ⊆ Loc.

Definition 2. Given a hybrid automaton and an initial set of states Θ, an execution
of the hybrid automaton is a sequence of trajectories and actions τ0a1τ1a2 . . . such that
(i) the first state of τ0 denoted as q0 is in the initial set, i.e., q0 = (Loc0, x0) ∈ Θ, (ii)
each τi is the solution of the differential equation of the corresponding location Loci,
(iii) all the states in the trajectory τi respect the invariant of the location Loci, and (iv)
the state of the trajectory before each action ai satisfies Guard(ai).

The set of states encountered by all executions that conform to the above se-
mantics is called the reachable set. For linear systems, the closed form expression
for the trajectories is given as τi(t) = eAltτ(0) +

∫ t
0
eAl(t−µ)Bldµ where Al and

Bl define the affine dynamics of the mode. Instead of computing the reachable
set of states, we compute the set of states which can be reached by a fixed sim-
ulation algorithm. We now precisely define the semantics for a simulation of
hybrid automata that we will use in this paper.

Definition 3. A sequence ρH(q0, h) = q0, q1, q2, . . ., where each qi = (Loci, xi),
is a (q0, h)-simulation of the hybrid automaton H with initial set Θ if and only if
q0 ∈ Θ and each pair (qi, qi+1) corresponds to either: (i) a continuous trajectory in
location Loci with Loci = Loci+1 such that a trajectory starting from xi would reach
xi+1 after exactly h time units with xi ∈ Inv(Loci), or (ii) a discrete transition from
Loci to Loci+1 (with Loci−1 = Loci) where ∃a ∈ Trans such that xi = xi+1,
xi ∈ Guard(a) and xi+1 ∈ Inv(Loci+1). Bounded-time variants of these simulations,
with time bound T , are called (q0, h, T)-simulations.

4

For simulations, h is called the step size and T is called time bound. While talking
about the continuous or discrete behaviors of simulations, we abuse notation
and use xi, the continuous component of the state instead of qi. Notice that
the simulation engine given in Definition 3 does not check if the invariant is
violated for the entire time interval, but only at a given time instance. Also, the
discrete transitions are only enabled at time instances that are multiples of h.
To avoid Zeno behaviors, the simulation engine forces that the system should
spend at least h time units in each mode. Hence, if two consecutive states xi
and xi+1 corresponds to a continuous trajectory of the hybrid automaton, it is
not necessary that xi+1 ∈ Inv(Loci). If a guard is enabled and the invariant is
still true, or if multiple guards are enabled, the simulation engine can make a
nondeterministic choice. We call the set of states encountered by all simulations
which conform to this definition the simulation-equivalent reachable set.

Condition (ii) in the semantics of simulations permits a discrete transition to
be taken even if the invariant condition of the predecessor mode is false. This
is necessary to handle the common case where a guard is the complement of
an invariant, and a sampled simulation jumps over the guard boundary dur-
ing a single step. If these types of behaviors are not desired, the guard can be
explicitly strengthened with the invariant of the originating mode. For readers
familiar with the simulation engines in standard tools like Simulink or Mod-
elica, the defined simulation sequences do not perform special algorithms to
isolate zero crossings, and the transitions are not necessarily urgent.

Definition 4. A given simulation ρH(q0, h) is said to be safe with respect to an unsafe
set of locations U if and only if ∀qi = (Loci, xi) ∈ ρH(q0, h), Loci /∈ U . Safety for
bounded time simulations are defined similarly.

Definition 5. A hybrid automaton H with initial set Θ, time bound T , and unsafe set
of locations U is said to be safe with respect to its simulations if all simulations starting
from Θ for bounded time T are safe.

Definition 6. Given any initial state x0, vectors v1, . . . , vm where vi ∈ Rn, scalars
α1, . . . , αm, the trajectories of linear differential equations in a given location τ always
satisfy

τ(x0 +Σm
i=1αivi, t) = τ(x0, t) +Σm

i=1αi(τ(x0 + vi, t)− τ(x0, t)).

Fig. 1: Observe that the state reached at time t from

x0 + v1 + v2 is identical to τi(x0, t) + (τi(x0 +

v1, t)− τi(x0, t)) + (τi(x0 + v2, t)− τi(x0, t)).

We exploit the superposition prop-
erty of linear systems in order to com-
pute the simulation-equivalent reach-
able set of states for a linear hybrid sys-
tem. An illustration of the superposi-
tion principle for two vectors is shown
in Figure 1. Before describing the algo-
rithm for computing the reachable set,
we finally introduce the data structure
called a generalized star that is used to
represent the reachable set of states.

5

Definition 7. A generalized star (or simply star)Θ is a tuple 〈c, V, P 〉where c ∈ Rn
is called the center, V = {v1, v2, . . . , vm} is a set of m (≤ n) vectors in Rn called the
basis vectors, and P : Rn → {>,⊥} is a predicate.

A generalized star Θ defines a subset of Rn as follows.

[[Θ]] = {x | ∃ᾱ = [α1, . . . , αm]T such that x = c+Σn
i=1αivi and P (ᾱ) = >}

Sometimes we will refer to both Θ and [[Θ]] as Θ.

In this paper, we consider predicates P which are conjunctions of linear con-
straints, in order to be able to use linear programming for several key opera-
tions on stars such as checking if a point is in a star.

Example 1. Consider a set Θ ⊂ R2 given as Θ ∆
= {(x, y) | x ∈ [2, 3], y ∈ [2, 3]}.

The given set Θ can be represented as a generalized star in multiple ways.
One way of representing the set is given as 〈c, V, P 〉 where c = (2.5, 2.5), V =

{[0, 1]T , [1, 0]T } and P
∆
= −0.5 ≤ α1 ≤ 0.5 ∧ −0.5 ≤ α2 ≤ 0.5. That is, the set

Θ is represented as a star with center (2.5, 2.5) with vectors as the orthonormal
vectors in the Cartesian plane and predicate where the components along the
basis vectors are restricted by the set [−0.5, 0.5]× [−0.5, 0.5].

Operations on Generalized Stars: In this paper we restrict our attention to stars
with predicates that are conjunctions of linear inequalities. As generalized stars
are used to represent the reachable set of states, one has to perform operations
such as basis transformation, intersection, and union. For stars with linear pred-
icates, one can perform basis and center transformation by changing the center to
another center, the basis vectors to a new basis vector set (with same rank), and
perform matrix multiplication.

Given two stars S1
∆
= 〈c, V, P1〉 and S2

∆
= 〈c, V, P2〉 the set intersection of

two stars is obtained as S∩
∆
= 〈c, V, P1 ∧ P2〉 and their aggregation as Sagg =

〈c, V, Pagg〉 where P1 ∨ P2 ⇒ Pagg . For computing Pagg one can choose several
template directions, compute the maximum and minimum values along each di-
rection using linear programming.

2.1 Reachable Set Computation For Linear Dynamical Systems Using
Simulations

We now outline the algorithm that computes the reachable set of states for con-
tinuous dynamics on which we base our approach. Owing to space limitations,
we briefly describe the algorithm here, and note that a longer explanation and
proof of correctness is available in prior work [18]. At its crux, the algorithm ex-
ploits the superposition principle of linear systems and computes the reachable
states using a generalized star representation. For an n-dimensional system,
this algorithm requires at most n+ 1 simulations.

Given an initial set Θ ∆
= 〈c, V, P 〉 with V = {v1, v2, . . . , vm}(m ≤ n), the

algorithm performs a simulation starting from c (denoted as ρ(c, h, k)), and

6

∀1 ≤ j ≤ n, performs a simulation from c + vj (denoted as ρ(c + vj , h, k)). For
a given time instance i · h, the reachable set denoted as Reachi(Θ) is defined
as 〈ci, Vi, P 〉 where ci = ρ(c, h, k)[i] and Vi = 〈v′1, v′2, . . . , v′m〉 where ∀1 ≤ j ≤
m, v′j = ρ(c+ vj , h, k)[i]− ρ(c, h, k)[i]. Notice that the predicate does not change
for the reachable set, but only the center and the basis vectors are changed.

input : Initial Set: Θ = 〈c, V, P 〉, time step: h, time bound: k · h
output: Reach(Θ) = Reach0(Θ), . . . , Reachk(Θ)

1 for each i from 0 to k do
2 ci ← ρ(c, h, k)[i];
3 for each vj ∈ V do
4 v′j ← ρ(c+ vj , h, k)[i]− ci;
5 end
6 Vi ← {v′1, . . . , v′m};
7 Reachi(Θ)← 〈ci, Vi, P 〉;
8 Append Reachi(Θ) to Reach(Θ);
9 end

10 return Reach(Θ);

Algorithm 1: Algorithm that computes the reachable set at time instances
i · h from n+ 1 simulations.

Fig. 2: Illustration of the reachable set using sample

simulations and generalized star representation. Notice

that in the star representation, the predicate that defines

the reachable set is same as that of the initial set.

An illustration of this reachable
set computation is shown in Figure 2.
Here, as the system is 2-dimensional,
a total number of three simulations
are performed, one from center c and
one from c + v1 and one from c + v2.
the reachable set after time i·h is given
as the star with center c′ = ρ(c, h, k)[i],
basis vectors v′1 = ρ(c + v1, h, k)[i] −
ρ(c, h, k)[i], and v′2 = ρ(c+v2, h, k)[i]−
ρ(c, h, k)[i] and the same predicate P
as the given in the initial set.

Remark 1. Observe that the reachable set computation described in Algorithm 1
is not dependent on the predicate of the initial set. Therefore, if the given initial
set Θ ∆

= 〈c, V, P 〉 is changed to 〈c, V, P ′〉, the reachable set computed in line 7
changes from 〈ci, Vi, P 〉 to 〈ci, Vi, P ′〉. This key observation helps us in propos-
ing new techniques for handling invariants and discrete transitions.

Assumptions: Since our method for reasoning about states reachable in the
continuous space uses numerical simulations and superposition, we make a
few key assumptions. First, the numerical computations performed by our al-
gorithm are exact (we do not track floating-point errors through the computa-
tions). Second, the underlying ODE simulation engine provides an exact result.
We believe that these assumptions are reasonable, because in practice, most of

7

the system designers accept that numerical simulations are a very close approx-
imation to a model’s true behavior, and using numerical simulations requires
the same assumptions. A user concerned about the inaccuracy of numerical
simulation can either use validated simulations [1] or compute the linear ODE
solution as a matrix exponential to an arbitrary degree of precision.

3 Constraint Propagation For Invariants

The goal of this paper is to perform simulation-equivalent reachability for hy-
brid automata. While Algorithm 1 computes reachable set for a dynamical sys-
tem, it does not take into account the invariant and the discrete transitions.
An earlier extension of Algorithm 1 for hybrid systems propose handling the
invariants by performing Reachi ∩ Inv(l) where Inv(l) is the invariant of the
current mode [18].

Fig. 3: Figure depicting the overapproxima-

tion of the reachable set computed by perform-

ingReachi ∩ Inv(l) without invariant propa-

gation.

Although sound, such procedure would
result in an overapproximation, but not a
simulation-equivalent reachable set. Con-
sider the illustration in Figure 3 depicting
reachable sets Reachi and Reachi+1 and
their overlap with the invariant of the cur-
rent mode. If one considers the executions
that visitReachi∩Inv(l), one can only reach
the states labeled as ActualReachi+1(Θ). To
avoid such overapproximations, we present
an algorithm that performs constraint prop-
agation for computing the reachable set
while respecting the invariant.

We exploit the observation made in Remark 1 for performing constraint
propagation. Consider the scenario where Reachi contains states that satisfy
the invariant and states that violate the invariant. For accurately computing
the reachable set for all the future iterations, one must only consider the states
originating fromReachi∩Inv(l). GivenReachi = 〈ci, Vi, P 〉, we perform center
and basis transformation on Inv(l) to represent it as a star with center ci and
basis Vi such that Inv(l) = 〈ci, Vi, Qi〉. Hence, Reachi∩ Inv(l) = 〈ci, Vi, P ∧Qi〉.
From the correctness of Algorithm 1, it follows that the simulations reaching
〈ci, Vi, P ∧Qi〉 should originate from Θ′ ⊆ Θ where Θ′ = 〈c, V, P ∧Qi〉.

For the time instances j > i, since the simulations should visit 〈ci, Vi, P∧Qi〉,
they should originate from Θ′ = 〈c, V, P ∧Qi〉. This implies that the constraints
Qi should be added to the predicate in Reachj . Therefore, for every instance i,
we propagate the constraints Qi for all future time instances. The reachable set
at time instance j accumulates the constraints from time instances 0, 1, . . . , j−1
and updates the predicate with the conjunction of these constraints. We call
this technique as invariant constraint propagation. This procedure is formally pre-
sented in Algorithm 2 and its correctness is given in Theorems 2 and 1.

8

input : Initial Set: Θ = 〈c, V, P 〉, time step: h, time bound: k · h, Invariant: Inv
output: Reach(Θ) = Reach0(Θ), . . . , Reachk(Θ) that respect the invariant

1 ConstraintsList ← ∅;
2 AccumulatedConstraints ← >;
3 R← Alg1(Θ, h, k);
4 for each i from 1 to k do
5 Ri = 〈ci, Vi, Pi〉 ← R[i];
6 Qi ← Tranformation(Inv, ci, Vi);
7 AccumulatedConstraints ← AccumulatedConstraints ∧Qi;
8 Ri ← 〈ci, Vi, P ∧AccumulatedConstraints〉;
9 Append Ri to Reach(Θ);

10 Append Qi to ConstraintsList ;
11 end
12 return (Reach(Θ),ConstraintsList);

Algorithm 2: Algorithm that computes the reachable set at time instances
i · h from n+ 1 simulations and respects the invariant.

Theorem 1 (Soundness). Consider initial setΘ ∆
= 〈c, V, P 〉, time bound k·h, invari-

ant Inv, and reachable set computed by Algorithm 2 as Reach(Θ) = R0, R1, . . . , Rk.
Consider a simulation x0, x1, . . . , xj where j ≤ k such that x0 ∈ Θ, and ∀0 ≤ i ≤
j, xi ∈ Inv, then we have ∀0 ≤ i ≤ j, xi ∈ Ri.

Proof. Consider the initial state x0 ∈ Θ ∩ Inv, it automatically follows that x0 ∈
〈c0, V0, P ∧Q0〉, where Q0 is computed in line 6 in the first iteration of the loop
(lines 4- 11). Hence, it follows that ∀i > 0, xi ∈ 〈ci, Vi, P ∧Q0〉.

Consider xi, 0 < i ≤ k, the ith state in the simulation that respects invariant.
Therefore, we have that ∀m < i, xm ∈ Inv. Consider Q0, Q1, . . . , Qi−1 be the
clauses computed in line 6 for the iterations 0, 1, . . . , i − 1 of the loop respec-
tively. Since ∀m ≤ i, xm ∈ Inv, if follows that xm ∈ 〈cm, Vm, P ∧ Qm〉. There-
fore, the simulation should originate in 〈c, V, P ∧ Q0 ∧ Q1 ∧ . . . ∧ Qi〉. Hence,
xi ∈ 〈ci, Vi, P ∧Q0 ∧Q1 ∧ . . . ∧Qi〉. Therefore, xi ∈ Ri.

Theorem 2 (Completeness). Given an initial set Θ ∆
= 〈c, V, P 〉, dynamics A,B,

time bound k · h, invariant Inv, and the reachable set computed as Reach(Θ) =
R0, R1, . . . , Rk by Algorithm 2, we have ∀0 ≤ j ≤ k, given any xj ∈ Rj , the simula-
tion x0, x1, . . . , xj that reaches xj is such that x0 ∈ Θ and ∀0 ≤ i ≤ j, xi ∈ Inv.

Proof. Consider the reachable set Reach(Θ) = R0, R1, . . . , Rk computed by Al-
gorithm 2 and an element xj ∈ Rj . Consider the simulation x0, x1, . . . , xj be a
simulation that reaches xj . Let Q0, Q1, . . . , Qj represents the constraints com-
puted in line 6 for the iterations 0, 1, . . . , j of the loop from lines 4- 11 respec-
tively. Since xj ∈ Rj

∆
= 〈cj , Vj , P ∧ Q0 ∧ Q1 ∧ . . . ∧ Qj〉, it follows that the sim-

ulation should origin from Θ′ = 〈c, V, P ∧Q0 ∧Q1 ∧ . . . ∧Qj〉. This simulation
therefore respects the invariant at time instances m ≤ j as Θ′ ⊆ 〈c, V, P ∧Qm〉.
Therefore the simulation x0, x1, . . . , xj is indeed a valid simulation.

Discussion: Theorems 2 and 1 establish that the reachable set returned by Al-
gorithm 2 only contains all the states that are reachable by a simulation that

9

respects the invariant. One potential drawback of the constraint propagation
is that the number of clauses can increase linearly with the number of steps
in the simulation. We mitigate this by performing three optimizations. First,
we do not add any constraints if Reachi ⊆ Inv(l) because in such instances
P ⇒ Qi. Second, a constraint Qi is added to the list of constraints only if it is
strictly stronger than the existing constraints. Formally, Qi is added if and only
if ¬(P ∧ Q0 ∧ Q1 ∧ . . . ∧ Qi−1 ⇒ Qi). Third, we remove the redundant con-
straints, i.e., a constraint Qj is dropped from the list if (P

∧i 6=j
i=1...kQi) ⇒ Qj . In

practice, we observe that these optimizations drastically reduce the number of
constraints to an almost constant.

4 Discrete Transitions and Reachable Set Computation

In this section, we discuss computing the simulation-equivalent reachable set
for a given hybrid automaton across discrete transitions.

4.1 Guards

Input : Reachable set R obtained from Algorithm 1, List of constraints
ConstraintsList from Algorithm 2

Output: NextReach , a list of stars that take the discrete transition.
1 ConstraintsList

∆
= Q0, Q1, . . . , Qk; R ∆

= R0, R1, . . . , Rk;
2 NextReach ← ∅;
3 for each i from 1 to k do
4 Ri = 〈ci, Vi, P 〉 ← R[i];
5 R′i ← 〈ci, Vi, P ∧Q0 ∧ . . . ∧Qi−1〉;
6 for each guard Ga for a discrete transition a do
7 if Ga ∩R′i 6= ∅ then
8 append R′i ∩Ga to NextReach ;
9 end

10 end
11 end
12 return NextReach ;

Algorithm 3: Computing the states after discrete transitions.

Algorithm 3, which computes the set of states obtained after a discrete tran-
sition takes an input the set of reachable states computed by Algorithm 1 (which
does not take into account the invariant), and the list of constraints that needed
to be added to predicates for respecting the invariants ConstraintsList com-
puted by Algorithm 2. The algorithm for checking discrete transition does not
consider the first element R0 in the sequence R0, R1, . . . , Rk. This is because
the simulations generated enforce that at least a minimum time h is spent in
each mode of the hybrid automaton. Given 1 ≤ i ≤ k, the set of state in Ri
that can be reached by simulations that respect the invariants for time instances
0, 1, . . . , i − 1 is computed by adding the constraints Q0, Q1, . . . , Qi−1 to the
predicate. This new set is assigned as R′i in line 5. Notice that the number of

10

constraints added for Ri does not include Qi. This is because the discrete tran-
sition can be taken even when the state does not satisfy the invariant of the
current location. The correctness of Algorithm 3 is given in Theorem 3

Theorem 3 (Correctness). Given a reachable set R = R0, R1, . . . , Rk from initial
set Θ computed by Algorithm 1, and the list of constraints Q0, Q1, . . . , Qk computed
by Algorithm 2, the following statements about NextReach returned by Algorithm 3
are true.

1. ∀S ∈ NextReach,∀x ∈ S, ∃ρ = x0, x1, . . . , xm, x such that x0 ∈ Θ and ρ is a
valid simulation.

2. For any valid simulation ρ = x0, x1, . . . , xm, xm+1 starting from Θ, such that
∀0 ≤ i ≤ m,xi ∈ Inv, and xm+1 ∈ Ga, ∃R ∈ NextReach such that xm+1 ∈ R.

Proof. Consider S ∈ NextReach and x ∈ S, we have that ∃R0, R1, . . . , Rm, Rm+1

and constraintsQ0, Q1, . . . , Qm+1 such that S = 〈cm+1, Vm+1, P ∧Q0∧. . .∧Qm〉.
Therefore, it follows that x ∈ 〈cm+1, Vm+1, P ∧Q0 ∧ . . . ∧Qm〉, therefore, there
exists a simulation x0, . . . , xm, x such that 0 ≤ i ≤ m,xi ∈ Inv. and x0 ∈ Θ.

Next, consider a simulation ρ = x0, x1, . . . , xm, xm+1, where ∀0 ≤ i ≤
m,xi ∈ Inv, xm+1 ∈ Ga for some a, it follows that xi ∈ 〈ci, Vi, P ∧Q0∧ . . .∧Qi〉.
Hence xm+1 ∈ 〈cm+1, Vm+1, P ∧ Q0 ∧ . . . ∧ Qm〉. From Algorithm 3, it follows
that 〈cm+1, Vm+1, P ∧ Q0 ∧ . . . ∧ Qm〉 ∈ NextReach . Therefore ∃R ∈ NextReach
such that xm+1 ∈ R.

4.2 Algorithm For Computing Simulation-Equivalent Reachable Set

input : Initial set Θ, Hybrid automaton H , Time bound k · h, Unsafe locations U .
output: ReachSet as the set of reachable states.

1 queueStars ← ∅; append Θ to queueStars ; ReachSet ← ∅;
2 while queueStars is not empty do
3 S ← dequeue(queueStars);
4 if S.loc ∈ U then
5 return (Unsafe, execution leading to S);
6 end
7 R← SimulationsReachableSet(S);
8 (R′,ConstraintsList)← InvariantTrimming(R);
9 ReachSet ← ReachSet ∪R′;

10 nextRegions ← discreteTrans(R,ConstraintsList);
11 append nextRegions to queueStars ;
12 end
13 return (Safe, ReachSet);

Algorithm 4: Algorithm that computes bounded time simulation equiva-
lent reachable set.

Algorithm 4 that computes the simulation-equivalent reachable set for hy-
brid automata uses Algorithm 2 and Algorithm 3 as sub-routines for handling
invariants and discrete transitions respectively. The set of initial states for each
mode are stored in the queue called queueStars . The algorithm first computes

11

the reachable set using n+1 simulations by calling SimulationsReachableSet (Al-
gorithm 1). Next, calling the InvariantTrimming procedure (Algorithm 2) uses
the invariant of the mode to return the set of states that respect the invari-
ant (R′) and the corresponding list of constraints for each set in the sequence
(ConstraintsList). The call to discreteTrans then produces the initial states for
the next mode, which get added to queueStars . The correctness of Algorithm 4
follows from the correctness of Algorithms 2 and 3.

4.3 Aggregation and Deaggregation

A component of many flow-pipe construction methods is the aggregation of
states that result from a discrete transition. This is often necessary because mul-
tiple regions in the reachable set have the guard enabled resulting in several re-
gions being added to the nextRegions queue. Over multiple discrete transitions,
this can cause an exponential blowup in the number of states in queueStars .

The drawback of aggregation is that it introduces conservativeness in the
reachability analysis. In general, a single convex set cannot exactly capture the
union of two or more convex sets, so an overapproximation of the union is
the only sound option. If the reachable set from an aggregated star reaches an
unsafe mode, the user cannot discern whether this is because of overapproxi-
mation due to aggregation or if it corresponds to an unsafe simulation of the
system.

For this reason, we propose a new aggregation and deaggregation approach.
By default, we aggregate all the stars that make a discrete transition into to
the same mode as Sagg and compute the reachable set of Sagg . If Sagg reaches
a state when a guard is enabled, we deaggregate the star by splitting it into
two stars. If Sagg is an aggregation of S1, S2, . . . Sw, then the two new stars are
aggregations of S1, . . . , Sw/2 and of Sw/2+1, . . . , Sw respectively. This process
can repeat recursively if the new stars intersect the guard.

If m · h time units have elapsed before Sagg reaches a guard, the compo-
nent stars skip the first m steps in the reachable set computation and checking
for discrete transitions. This is because if Sagg did not reach any guard until
m steps, then its component stars also did not reach any guard. However, one
has to propagate the constraints from the invariants for all the deaggregated
stars. This approach ensures that whenever a discrete transition is taken, there
exists an unaggregated star for which the discrete transition is enabled. There-
fore, if an unsafe mode is reached, there exists a simulation trace of the sys-
tem that starts from initial set and reaches the unsafe mode, thus maintaining
simulation-equivalence.

5 Implementation and Evaluation

The proposed simulation-equivalent algorithm has been implemented in a tool
named HyLAA that is mostly written in Python, although computational li-
braries are used which may be written in other languages. Simulations are per-
formed using scipy’s odeint function, which can handle stiff and non-stiff

12

(a) SpaceEx supp (b) SpaceEx stc (c) HyLAA

Fig. 4: Plots of x8 over time for the helicopter system show the selected accuracy settings
result in similar plots. This remained true for replicated variants.

differential equations using the FORTRAN library odepack’s lsoda solver.
Linear programming is performed using the GLPK library, and matrix oper-
ations are performed using numpy. HyLAA can produce static visualizations
of the reachable set and live animations during the reachable set computa-
tion (that can be exported as videos) using matplotlib. The following ex-
periments were performed using the model generation capability within the
Hyst [7] tool, and hypy [8] was used to script together the the model generation
with the tool execution. The measurements were performed using a 2.30GHz
Intel i5-5300U CPU with 16 GB RAM.

5.1 Scalability

We performed scalability measurement on a replicated version of the helicopter
benchmark available on SpaceEx website3. This model consists of a 28 dimen-
sional helicopter plus controller system, along with a time dimension. We used
the x8 over time large variant of the benchmark, considering the same ini-
tial states, step size, and time bound.

We emphasize that we tried to explicitly control for the accuracy of the re-
sult in the comparison, which is not straightforward as different approaches use
different parameters. From a preliminary analysis, we observed the x8 variable
always stays below 0.45, so we used this as a metric for accuracy. By adding
a transition to unsafe mode if x8 ≥ 0.45, we tuned tool parameters until the
condition was on the verge of being violated. For SpaceEx [23], we found that
a flowpipe-tolerance of 0.0304 was safe for the stc scenario [22], whereas
0.5222 was safe for the supp scenario [28]. Furthermore, increasing these pa-
rameters by 0.0001 would cause forbidden error states to be reached. We also
attempted to use Flow*’s [12] linear ODE mode, although failed to find a set
of parameters for which the accuracy condition was satisfied. For HyLAA, we
used the default simulation parameters used by odeint, absolute tolerance
and relative tolerance of 1.49 · 10−8, and no error states were reached. Then, for
the actual runtime measurements, we removed the error states while keeping
each tool’s accuracy parameters. This results in a plot of the reachable set of
states that is qualitatively similar, as shown in Figure 4.

3 http://spaceex.imag.fr/news/helicopter-example-posted-39

http://spaceex.imag.fr/news/helicopter-example-posted-39

13

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200

S
e

c
o

n
d

s

Dimensions

Tool Scalability (Replicated Helicopter)

SpaceEx supp
SpaceEx stc

Hylaa

Dims supp stc HyLAA

29 2.98 2.60 0.42

57 10.93 9.48 0.67

141 94.83 79.23 2.65

253 583.27 587.42 9.79

449 - - 52.67

1009 - - 605.38

Fig. 5: The runtime for the n + 1 simulation continuous-post operation in HyLAA is
generally faster than SpaceEx’s supp and stc methods.

We replicated the 28-dimensional helicopter multiple times within the same
model, and measured the runtime of the reachability computation. The results
are shown in Figure 5. The simulation-equivalent approach outperforms the
two SpaceEx scenarios on this model, and is capable of analyzing a 449 dimen-
sional system (16 replicated helicopters plus time) in under a minute, and a sys-
tem with 1009 dimensions (36 helicopters) in about 10 minutes. It is important
to be aware that SpaceEx’s analysis is a guaranteed overapproximation (subject
to floating-point error), whereas HyLAA’s correctness is subject to the accuracy
of the underlying simulations, and only reasons about states at exact multiples
of the time step.

5.2 Invariant Constraint Propagation

We next provide a simple evaluation of the importance of invariant constraint
propagation as well as our proposed optimization. Consider a 2-D harmonic
oscillator, a single-mode system with ẋ = y and ẏ = −x. Trajectories of this sys-
tem rotate clockwise around the origin. The initial set of states are x ∈ [−6,−5]
and y ∈ [0, 0.1], and the invariant is 0 ≤ y ≤ 5.1.

This system is designed so that most of the trajectories actually get trimmed
away because of the invariant. Reachability analysis of this system was per-
formed using SpaceEx’s stc scenario, Flow*, and HyLAA, and is shown in
Figure 6. Here, SpaceEx removes states which violate the invariant after com-

(a) SpaceEx stc (b) Flow* (c) HyLAA

Step No Trim Trim

0.05 16 5

0.005 119 9

0.001 576 25

0.0005 1148 45

Fig. 6: The harmonic oscillator system with invariant 0 ≤ y ≤ 5.1 demonstrates
the benefit of invariant constraint propagation.

14

Init
G

ua
rd

 1

G
ua

rd
 2

(a) Simulations

Init

Neg Angle Dead Zone Pos Angle

G
ua

rd
 1

G
ua

rd
 2

(b) Unaggregated

Init

Neg Angle Dead
Zone Pos Angle

G
ua

rd
 1

G
ua

rd
 2

(c) Aggregated (incomplete)

Init

Neg Angle Dead Zone Pos Angle

G
ua

rd
 1

G
ua

rd
 2

(d) Deaggregated

Fig. 7: Projections of x3 versus x1 for the 10-dimensional drivetrain system. While com-
plete aggregation fails to complete for this model, using deaggregation produces a sim-
ilar plot to the unaggregated method in less time.

puting states reachable by the continuous dynamics, which is sound, but results
in an overapproximation. Flow* uses domain contraction of Taylor models [12]
to trim invariant-violating states, and its result appears correct. HyLAA per-
forms invariant constraint propagation, and also produces a correct result. The
table shows the number of constraints in the final star when using HyLAA,
with and without the invariant constraint trimming optimization.

5.3 Successor Deaggregation

We next consider a benchmark which models the effects of backlash on an au-
tomotive drivetrain system [3,27]. This a 7-dimensional linear system, which
can be scaled as large as desired by adding additional rotating masses, each
of which adds two dimensions to the system. The model has a PID controller
and the reference input is changed from −5 to 5 at time 0.2. We add a time di-
mension to generate the reference input, bringing the number of dimensions to
8 + 2θ where θ is the number of additional masses. This model was specifically
designed to stress guard intersection, and SpaceEx was noted as not being able
to finish on smallest version of the benchmark, without shrinking the initial set
to 5% of its original size.

Plots of the reachable set of states are shown in Figure 7 for θ = 1. The
system starts in the NegAngle mode (green). After 0.2 seconds, the reference
trajectory changes from −5 to 5 (cyan). Then, the system’s trajectories reach
the DeadZone mode (orange), and finally end in the PosAngle mode (ma-
genta). Similar to SpaceEx, HyLAA did not complete reachable set computa-

15

Table 1: Drivetrain benchmark runtimes.

Dims 10 12 14 16 18 20 24 30 42

Deaggregated 25.70 44.94 24.71 131.82 47.72 267.71 450.42 331.57 516.21

Unaggregated 112.94 79.24 98.63 145.87 214.80 409.55 561.47 384.55 672.60

tion with full aggregation (without deaggregation). The reason is that aggrega-
tion introduces overapproximation error which leads the approach to examine
states that are not actually reachable. In this system, the aggregated star intro-
duces new spurious discrete transitions from the DeadZone mode back to the
NegAngle mode, leading to additional error when further discrete transitions
are taken. Essentially, the computation explores spurious sequences of discrete
transitions. The deaggregation method, however, splits aggregated states upon
reaching a discrete transition, ensuring that every sequence of modes explored
corresponds to a true simulation of the system. The result is closer to the exact
unaggregated case, although using less computation time. A video of HyLAA’s
visualization of this computation is available online4.

To evaluate the effect of the deaggregatation approach, Table 1 shows the
runtime as we increased the number of rotating masses. Notice that times can
actually go down for some higher-dimensional versions of the benchmark, as
the extra rotating masses can cause the generalized star to cross the guard
boundary at a more orthogonal angle, reducing the number of stars in the suc-
cessor mode. For example, in the unaggregated 10-d case, there are 24 succes-
sor stars after the second guard, compared with 13 successor stars in the 12-d
case. Generally, deaggregation provides improvement over no aggregation, al-
though the benefits are reduced in higher dimensions. This is because in these
cases even a small amount of aggregation often causes enough error to reach
new locations, resulting in immediate splitting of the aggregated star, which
shows the importance of finding good template directions for aggregation [11].

6 Conclusion
In this paper, we introduced the notion of simulation-equivalent reachability
analysis, and provided a sound and complete algorithm for its computation. We
do not believe this type of approach is at odds with traditional hybrid automata
reachability computation, as the goal for both methods is to improve the state
of practice of system design from an incomplete analysis based on simulations
towards more rigorous approaches. Furthermore, the proposed enhancements,
the elimination of accumulated invariant constraints and on-demand successor
deaggregation, may be applied to both methods.

The advantage of the simulation-equivalent approach is increased scalabil-
ity, which makes it applicable to larger CPS models. Furthermore, the approach
and tool implementation generate concrete traces whenever a simulation can
violate the system specification, making it useful to system engineers who may
not have a formal methods background.

4 http://stanleybak.com/hylaa/

http://stanleybak.com/hylaa/

16

References

1. Computer Assisted Proofs in Dynamic Groups (CAPD). http://capd.ii.uj.edu.
pl/index.php.

2. M. Althoff. An introduction to cora 2015. In Proc. of the Workshop on Applied Verifica-
tion for Continuous and Hybrid Systems, 2015.

3. M. Althoff and B. H. Krogh. Avoiding geometric intersection operations in reacha-
bility analysis of hybrid systems. In Hybrid Systems: Computation and Control, pages
45–54, 2012.

4. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

5. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

6. S. Bak, S. Bogomolov, T. A. Henzinger, T. T. Johnson, and P. Prakash. Scalable static
hybridization methods for analysis of nonlinear systems. In Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control, HSCC ’16, pages
155–164, New York, NY, USA, 2016. ACM.

7. S. Bak, S. Bogomolov, and T. T. Johnson. HyST: A source transformation and trans-
lation tool for hybrid automaton models. In 18th International Conference on Hybrid
Systems: Computation and Control, Seattle, Washington, Apr. 2015. ACM.

8. S. Bak, S. Bogomolov, and C. Schilling. High-level hybrid systems analysis with
hypy. In ARCH16: Proc. of the 3rd Workshop on Applied Verification for Continuous and
Hybrid Systems, 2016.

9. A. Balkan, P. Tabuada, J. V. Deshmukh, X. Jin, and J. Kapinski. Underminer: a frame-
work for automatically identifying non-converging behaviors in black box system
models. In Proceedings of the 13th International Conference on Embedded Software,
page 7. ACM, 2016.

10. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal - a tool suite
for automatic verification of real-time systems. In Hybrid Systems III, pages 232–243.
Springer, 1996.

11. X. Chen and E. Ábrahám. Choice of directions for the approximation of reachable
sets for hybrid systems. In International Conference on Computer Aided Systems Theory,
pages 535–542. Springer, 2011.

12. X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe construc-
tion for non-linear hybrid systems. 2013 IEEE 34th Real-Time Systems Symposium,
0:183–192, 2012.

13. A. Chutinan and B. H. Krogh. Computational techniques for hybrid system verifi-
cation. IEEE transactions on automatic control, 48(1):64–75, 2003.

14. T. Dang, C. Le Guernic, and O. Maler. Computing reachable states for nonlinear
biological models. In International Conference on Computational Methods in Systems
Biology, pages 126–141. Springer, 2009.

15. A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In HSCC,
pages 174–189, 2007.

16. P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of annotated models from
executions. In Proceedings of the 13th International Conference on Embedded Software
(EMSOFT 2013), Montreal, Canada, 2013.

17. P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2e2: A verification tool for
stateflow models. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 68–82. Springer, 2015.

http://capd.ii.uj.edu.pl/index.php
http://capd.ii.uj.edu.pl/index.php

17

18. P. S. Duggirala and M. Viswanathan. Parsimonious, simulation based verification
of linear systems. In International Conference on Computer Aided Verification, pages
477–494. Springer, 2016.

19. G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

20. C. Fan, J. Kapinski, X. Jin, and S. Mitra. Locally optimal reach set over-
approximation for nonlinear systems. In Proceedings of the 13th International Con-
ference on Embedded Software, page 6. ACM, 2016.

21. G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In HSCC,
pages 258–273, 2005.

22. G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe approximation and clustering
in space-time. In Proc. Hybrid Systems: Computation and Control (HSCC’13), pages
203–212. ACM, 2013.

23. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In Proc.
23rd International Conference on Computer Aided Verification (CAV), LNCS. Springer,
2011.

24. N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer. Keymaera x: An axiomatic
tactical theorem prover for hybrid systems. In International Conference on Automated
Deduction, pages 527–538. Springer, 2015.

25. A. Girard. Reachability of uncertain linear systems using zonotopes. In International
Workshop on Hybrid Systems: Computation and Control, pages 291–305. Springer, 2005.

26. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. In Computer Aided Verification, pages 460–463. Springer, 1997.

27. A. Lagerberg. A benchmark on hybrid control of an automotive powertrain with
backlash. Technical report, Technical Report, 2007.

28. C. Le Guernic and A. Girard. Reachability Analysis of Hybrid Systems Using Support
Functions, pages 540–554. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

29. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Work-
shop/School/Symposium of the REX Project (Research and Education in Concurrent Sys-
tems), pages 447–484. Springer, 1991.

30. T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta, and G. J. Pappas.
Monte-carlo techniques for falsification of temporal properties of non-linear hybrid
systems. In Proceedings of the 13th ACM international conference on Hybrid systems:
computation and control, pages 211–220. ACM, 2010.

31. A. Platzer. Differential dynamic logic for hybrid systems. Journal of Automated Rea-
soning, 41(2):143–189, 2008.

	Rigorous Simulation-Based Analysis of Linear Hybrid Systems
	Introduction
	Preliminaries
	Reachable Set Computation For Linear Dynamical Systems Using Simulations

	Constraint Propagation For Invariants
	Discrete Transitions and Reachable Set Computation
	Guards
	Algorithm For Computing Simulation-Equivalent Reachable Set
	Aggregation and Deaggregation

	Implementation and Evaluation
	Scalability
	Invariant Constraint Propagation
	Successor Deaggregation

	Conclusion

