
HyLAA: A Tool for Computing
Simulation-Equivalent Reachability for Linear Systems

Stanley Bak
Air Force Research Laboratory
Aerospace Systems Directorate

stanleybak@gmail.com

Parasara Sridhar Duggirala
Department of Computer Science and

Engineering
University of Connecticut

psd@uconn.edu

ABSTRACT
Simulations are a practical method of increasing the confi-
dence that a system design is correct. This paper presents
techniques which aim to determine all the states that can be
reached using a particular hybrid automaton simulation al-
gorithm, a property we call simulation-equivalent reachability.
Although this is a slightly weaker property than traditional
reachability, its computation can be efficient and accurate.

We present HyLAA, the first tool for simulation-equivalent
reachability for hybrid automata with affine dynamics. Hy-
LAA’s analysis is exact; upon completion, the tool provides
a concrete simulation trace to an unsafe state if and only if
the hybrid automaton simulation engine could produce such
a trace. In the backend, the tool implements an efficient al-
gorithm for continuous post that exploits the superposition
principle of linear systems, requiring only n+ 1 simulations
per mode for an n-dimensional linear system. This technique
is capable of analyzing a replicated helicopter system with
over 1000 state variables in less than 20 minutes. The tool
also contains several novel performance enhancements, such
as invariant constraint elimination, warm-start linear pro-
gramming, and trace-guided set deaggregation.

1. INTRODUCTION
Cyber-physical systems (CPS) that involve interaction be-

tween software and the physical world can naturally be mod-
eled using the hybrid automaton formalism. These models
allow a mix of discrete and continuous behaviors. Often,
the continuous evolution is defined with differential equa-
tions that are linear (or affine). Such differential equations
represent commonly observed physical systems such as au-
tonomous vehicles, hardware circuits, biological systems, etc.
As these CPS are deployed in safety-critical scenarios, it is
important to ensure that these systems satisfy the safety spec-
ification. Further, if a given system design does not satisfy

DISTRIBUTION A. Approved for public release; Distribution un-
limited. (Approval AFRL PA #88ABW-2016-2897, 30 SEPT 2016)
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).

HSCC’17, April 18 - 20, 2017, Pittsburgh, PA, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4590-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3049797.3054973

the safety specification, it is useful for debugging to provide
the system designer with a concrete counterexample which
violates the specification.

Due to increased complexity of CPS, a model-based design
framework is increasingly being adopted by industries to do
design and development. In this approach, the CPS is mod-
eled in a framework such as Simulink/Stateflow or Model-
ica and is tested under varying scenarios by using numerical
simulations. These simulations, even when they have nu-
merical errors, are regarded as very close approximations of
the real behaviors and used for system design and debug-
ging. For CPS, the space of uncertainties is often uncount-
able, and therefore, one cannot usually conclude that the sys-
tem satisfies the safety specification from a finite number of
sample simulations.

In this paper, we introduce a tool called HyLAA (Hybrid
Linear Automata Analyzer) that performs simulation-based
verification for hybrid automata with linear ODEs. HyLAA
implements an algorithm that computes the reachable set of
states of an n-dimensional linear system using only n+1 sim-
ulations [10]. HyLAA’s goal is to perform simulation-equivalent
reachability for bounded time. That is, it computes the set
of states that would be encountered by a hybrid automa-
ton simulation algorithm for all possible nondeterministic
choices in the initial state and the discrete transitions. Hy-
LAA declares a system to be safe if and only if all the simula-
tions are safe; it declares a system to be unsafe if and only if
there exists a counterexample simulation trace that violates
the safety property, and it produces such a trace.

For efficiency, the tool makes two assumptions. First, nu-
merical computations are considered exact and errors due to
floating point computations are ignored. Second, the tool as-
sumes that the underlying ODE simulation engine provides
exact simulations for the dynamics. We believe that these
assumptions are reasonable, given the crucial role floating-
point simulations already play in system analysis and de-
sign. In practice, floating point errors are usually small, and
to reduce/eliminate these errors further, one can use simula-
tion engines with arbitrary precision [1, 12, 5]. Analysis of
HyLAA is different from other simulation based verification
tools such as C2E2 [9], Breach [8], or Strong [7] in two as-
pects. First, these tools aim to prove safety irrespective of the
semantics of the simulation engine used. Second, in worst
case, the number of simulations would be exponential in the
number of dimensions.

To clarify, we emphasize the differences between a hybrid
automaton simulation algorithm and an ODE simulation engine.
A simulation of hybrid automaton records an execution of

http://dx.doi.org/10.1145/3049797.3054973

the hybrid automaton starting from an initial state while tak-
ing into account the different modes, invariants and discrete
transitions(the specific algorithm is presented later). To do
this, HyLAA makes use of an ODE simulation engine, which
can only simulate the behavior of the system according to
a given differential equation. In the context of MATLAB,
a hybrid automaton simulation algorithm would be similar
to simulation engine underlying Simulink / Stateflow (al-
though our semantics are slightly different, see the next sec-
tion), whereas an ODE simulation engine refers to a standard
ODE solver such as ode45.

2. PRELIMINARIES
We consider affine hybrid automata defined as follows.
DEFINITION 1. An affine hybrid automaton is defined as a tu-

ple 〈Loc,X, F low, Inv, Trans,Guard〉 where

Loc is a finite set of locations (also called modes).
X ⊆ Rn is the state space of the behaviors.
Flow : Loc → AffineDeq(X) assigns an affine differential equa-

tion ẋ = Alx+Bl for location l of the hybrid automaton.

Inv : Loc→ 2Rn

assigns an invariant set for each location.
Trans ⊆ Loc× Loc is the set of discrete transitions.

Guard : Trans → 2Rn

defines the set of states where a discrete
transition is enabled.

For the hybrid automata we consider, the invariants and guards are
given as conjunction of linear constraints.
A reachability problem combines an affine hybrid automa-
ton with an initial set of states Q, which is a finite set of el-
ements in Loc × 2Rn

, where second element in the pair is
given as conjunction of linear constraints. An initial state q0 is
a pair (Loc0, x0), where an element exists in the initial set of
states with the given location Loc0, and the point x0 satisfies
both the corresponding linear constraints and the invariant
of Loc0. Unsafe states are indicated by having an explicit set
of error modes, U ⊆ Loc.

Given an initial state q0 = (Loc0, x0), an execution of the
hybrid automaton σ(x0) = τ0a1τ1a2 . . . is a sequence of tra-
jectories and actions such that each τi is the solution of the
affine differential equation for the location Loci and respects
its invariant, (τ0 starts from Loc0), the state before a discrete
transition ai should satisfy the Guard(ai) and the state after
the discrete transition satisfies the invariant of the successor
mode Loci+1. We abuse notation and denote the state of the
system following a trajectory after time t as τi(q0, t) where q0
is the initial state of the trajectory.

The closed form expression for the trajectories is given us-
ing the state transformation matrix Φi : R≥0 × R≥0 → Rn×n

where τi(x0, t) = Φi(t, 0)x0 +
∫ t

0
Φ(t, s)Bi(s)ds. For linear

time invariant systems (LTIs), the state transformation ma-
trix Φi(t2, t1) = eAi(t2−t1). For efficiently analyzing these
models, numerical simulations from an ODE simulation en-
gine are routinely used. We now define a trace produced by
a hybrid automaton simulation algorithm.

DEFINITION 2. Given a hybrid automaton H and an initial
set of states Q, a sequence ρH(q0, h) = q0, q1, q2, . . ., where each
qi = (Loci, xi), is called a (q0, h)-simulation of H if and only if
q0 ∈ Q and each pair (qi, qi+1) corresponds to either (i) a con-
tinuous trajectory in location Loci = Loci+1 such that a trajec-
tory starting from xi would reach xi+1 after h time units with

Figure 1: Due to superposition, τ(c + v1 + v2, t) = c′ + v′1 + v′2, where
c′ = τ(c, t), v′1 = τ(c + v1, t) − τ(c, t) and v′2 = τ(c + v2, t) − τ(c, t).
In the star representation, only the center and the basis vectors change as time
elapses. The star’s predicate, |α1| ≤ 1 ∧ |α2| ≤ 1 remains the same.

xi ∈ Inv(Loci), or (ii) a discrete transition from Loci to Loci+1

where a = (Loci, Loci+1) and a ∈ Trans such that xi = xi+1,
xi ∈ Guard(a) and xi+1 ∈ Inv(Loci+1). We drop the subscript
when it is clear from context. Bounded-time variants of these sim-
ulations are called (q0, h, T)-simulations.

For these simulations, h is called the step size and T is called
time bound. Pairs of states corresponding to (i) are said to
arise from a continuous-post step, and pairs from condition (ii)
come from a discrete-post step.

Notice that hybrid automaton simulation traces which con-
form to Definition 2 do not check if the invariant is violated
for the entire time interval, but only at multiples of the step
size h. Also, the discrete transitions are only enabled at time
instances that are multiples of h and nondeterminism is al-
lowed in discrete transitions if more than one guard is sat-
isfied, or the invariant remains true. One subtlety is that
discrete-post pairs only have the invariant checked in the
first state. This has the effect of allowing discrete transi-
tions from states where the invariant is false (i.e., guards are
checked before invariants). This is necessary to handle the
common case of systems where a guard is the negation of a
location’s invariant, and a step of the simulation may jump
over the boundary. If such behaviors are not desired, the
guards can be explicitly strengthened to include the negation
of the invariant.

For readers familiar with the simulation engines in stan-
dard tools like Simulink / Stateflow or Modelica, the de-
scribed trajectories do not perform any special zero-crossing
detection and the transitions are not necessarily urgent. In this
paper, we attempt to determine if an affine hybrid automaton
is safe with respect all bounded-time simulations that con-
form to the conditions in Definition 2.

DEFINITION 3. A given simulation ρH(q0, h) is said to be safe
with respect to an unsafe set of modesU if and only if ∀(Loci, xi) ∈
ρH(q0, h), Loci /∈ U . Safety for time-bounded simulations are de-
fined similarly.

DEFINITION 4. A hybrid automaton H with an initial set of
statesQ, time bound T , and unsafe set of modes U is said to be safe
if all simulations starting from Q for bounded time T are safe.

Solutions to linear ODEs (in our case trajectories τi in each
mode) satisfy a superposition property, illustrated in Figure 1.
Given any initial state x0, vectors v1, . . . , vm where vi ∈ Rn,
and scalars α1, . . . , αm,

τi(x0+Σm
i=1αivi, t) = τi(x0, t)+Σm

i=1αi(τi(x0+vi, t)−τi(x0, t)).

Before describing the algorithm for computing the reach-
able set, we finally introduce a data structure called a general-
ized star, which is used to represent the reachable set of states
in HyLAA.

DEFINITION 5. A generalized star Θ is a tuple 〈c, V, P 〉where
c ∈ Rn is called the center, V = {v1, v2, . . . , vm} is a set of m
(≤ n) vectors in Rn called the basis vectors, and P : Rn →
{>,⊥} is a predicate. A generalized star Θ defines a subset of Rn

as follows.

[[Θ]] = {x |∃ᾱ = [α1, . . . , αm]T such that
x = c+ Σn

i=1αiviand P (ᾱ) = >}

Sometimes we will refer to both Θ and [[Θ]] as Θ. In this paper, we
consider predicates P that are conjunctions of linear constraints.

3. REACHABILITY ALGORITHM
In this section, we present an algorithm for computing the

simulation-equivalent reachable set of states for linear hy-
brid systems. The description is divided into two parts: (1)
computing the set of states for the linear dynamics without
considering the invariants and discrete transitions, and (2)
accommodating the invariants in each location and account-
ing for discrete transitions between locations.

3.1 Continuous Dynamics
States reachable under continuous evolution are computed

by exploiting the superposition principle and using the gen-
eralized star representation. For an n-dimensional linear sys-
tem, this technique requires at most n+1 simulations. Let the
initial set of states Q be given as a generalized star 〈c, V, P 〉
where V = {v1, v2, . . . , vm}. The ODE simulation engine for
continuous dynamics, with initial state x0, step size h, and
number of steps k, denoted ρ(x0, h, k), returns a sequence
x0, x1, . . . , xk such that xi = τ(x0, i · h). We denote xi as
ρ(x0, h, k)[i]. The reachable set at time instances i · h is com-
puted by Algorithm 1 as a generalized star.

Algorithm 1: Algorithm that computes the simulation-
equivalent reachable set at time instances i · h from n+ 1
simulations.

input : Initial Set: Θ
∆
= 〈c, V, P 〉, time step: h, steps: k

output: Reach(Θ) = Reach0(Θ), . . . , Reachk(Θ)
1 for each i from 0 to k do
2 c′ ← ρ(c, h, k)[i];
3 for each vj ∈ V do
4 x′j ← ρ(c+ vj , h, k)[i];
5 v′j ← x′j − c′;
6 V ′ ← {v′1, . . . , v′m};
7 Reachi(Θ)← 〈c′, V ′, P 〉;
8 Append Reachi(Θ) to Reach(Θ);

9 return Reach(Θ);

The algorithm in line 2 computes the state of trajectory
starting from the initial state c at time i · h as c′. The loop
in lines 3 to 5 computes x′j , the state of the trajectory starting
from c+vj at time i·h. The reachable set at time i·h is given as
as generalized star 〈c′, V ′, P 〉, where V ′ = {v′1, . . . , v′n} with
v′j = x′j − c′. The correctness of Algorithm 1 follows from

the superposition principle and has been previously estab-
lished [10]. An illustration of the reachable set computation
as described in the algorithm is presented in Figure 1.

With this algorithm, extracting concrete trajectories which
reach a given star is straightforward. This process involves
expressing the desired point as a vector sum of star’s cen-
ter and scalar multiples along each of the basis vectors. The
scalar multiples, for an ordered basis set, is called a basis
point. The desired trajectory is the sequence of points where
the state at discrete time step is obtained by the vector sum
of the corresponding center and the multiplication of basis
point with the corresponding basis vector matrix.

3.2 Hybrid Dynamics
In this section, we use the described continuous-post al-

gorithm while accounting for invariants and discrete tran-
sitions to perform simulation-equivalent reachability. The
pseudo-code is given in Algorithm 2.

Algorithm 2: Algorithm that computes the simulation-
equivalent reachable set for hybrid automata.

input : Initial set of states: Q, Time step: h
output: Simulation-equivalent reachable set

1 ReachSet← ∅; cur_state← ∅; waiting← ∅;
2 for q ∈ Q do
3 push(waiting, q);

4 while ¬empty(waiting) ∨ cur_state 6= ∅ do
5 if cur_state = ∅ then
6 /* discrete-post step */
7 〈Θ, l〉 ← pop(waiting);
8 Θ← Θ ∩ Inv(l);
9 if Θ 6= ∅ then

10 for q ∈ discreteTransitions(Θ, l) do
11 push(waiting, q);

12 cur_state← 〈Θ, l〉;
13 ReachSet← cur_state ∪ReachSet;

14 else
15 /* continuous-post step */
16 〈Θ, l〉 ← cur_state;
17 Θ← Alg1(Θ, h, 1);
18 for q ∈ discreteTransitions(Θ, l) do
19 push(waiting, q);

20 Θ← Θ ∩ Inv(l);
21 if Θ 6= ∅ then
22 cur_state← 〈Θ, l〉;
23 ReachSet← cur_state ∪ReachSet;
24 else
25 cur_state← ∅;

26 return ReachSet;

For each given iteration of the outermost loop, the algo-
rithm performs one discrete transition or computes the reach-
able set according to continuous evolution by one step. First,
each of the elements of the initial set of states Q, which are
pairs of stars and locations, are pushed onto the waiting list
in line 3.

Initially, the reachable set for discrete transitions is calcu-
lated in lines 7 to 13 (called discrete post). In a discrete-post
step, the set of states that violate the invariant are pruned in

line 8, followed by checking for guard successors in line 10.
Pruning the set of states that violate the invariant first en-
sures two conditions as required in Definition 2: (i) all ini-
tial states satisfy the invariant of initial location, and (ii) after
each discrete-post step, the invariant of the destination mode
is satisfied. If the set of states that satisfy the invariant is non-
empty, in line 12 the star is assigned to cur_state and then it
gets added to the final reachable set.

After cur_state is assigned, the algorithm will compute the
reachable set with the continuous dynamics (called contin-
uous post). In line 17, the earlier continuous algorithm is
called for a single step h. In the continuous-post operation,
guard checking (line 18) is performed before invariant trim-
ming (line 20). This is needed to maintain the condition of
valid simulations in Definition 2 that discrete-post steps are
possible even if the destination state does not satisfy the in-
variant of the current mode (this was to be able simulate the
common case of guards being the complements of a state’s
invariant). Finally, if the reachable set for one step satisfies
the invariant, line 22 updates cur_state and adds it to the fi-
nal reachable set. Otherwise, cur_state is discarded, and the
next state can be removed from the waiting list.

As a side effect, this algorithm always keeps track of the
reachable set that satisfies the invariant (line 20). That is,
if the invariant is violated by a given state in the current
reachable set, its future continuous trajectory is not part of
the reachable set. Without this operation, some of the states
which have previously violated the invariant could re-enter
the invariant region, and then appear to be reachable. A sim-
ulation trajectory as defined in Definition 2, however, could
not contain such states. Some reachable set computation tools
postpone the pruning of the reachable set until all continuous-
post steps complete (the invariant becomes completely false
or the time bound is reached), which can lead to this type of
error. A demonstration of this is provided in Section 4.2.

The HyLAA implementation has several enhancements to
the described algorithm. In HyLAA, time is tracked by main-
taining the cumulative number of continuous-post operations
performed on each star, and another condition for stopping a
continuous-post step is if the number of steps performed ex-
ceeds the desired time bound. Additionally, the guard check
in the discrete-post logic is optional, depending on if the user
wants to support urgent transitions, where no time elapses.
It may be desirable to disable these since they can lead to in-
finite loops where time does not pass (Zeno behavior). Fur-
ther, star aggregation may need to be performed in order
to prevent large numbers of states from being added to the
waiting list. However, aggregated stars may be overapproxi-
mative and not correspond to real simulations, so deaggre-
gation may be necessary to find concrete counter-example
traces. This approach will be discussed more in Section 4.4.

In terms of efficiency and data structures, the predicates in
stars are conjunctions of linear constraints. Checking for in-
tersections with guards and invariants (which are linear con-
straints), can be done by performing a linear optimization
in the normal direction of the linear constraint’s hyperplane,
subject to the constraints that the predicate of the star is true.
If an intersection exists, pruning states that violate invariant
would require adding an extra constraint to the star. Check-
ing if a star is empty can also be done by checking if any point
satisfies the star’s linear constraints (the objective can be 0).
Thus all the main operations needed for Algorithm 2 can be
exactly and efficiently performed.

4. HYLAA TOOL IMPLEMENTATION
The HyLAA tool implements the theory presented in Sec-

tion 3. The tool is developed in Python, although many of the
core computation components are libraries written in other
languages. Simulations are performed using scipy, which
uses the FORTRAN library odepack’s lsoda solver. This
solver supports a wide variety of differential equations and
allows the user to set the simulation accuracy. Linear pro-
gramming is performed using the glpk library, and matrix
operations are done using numpy. Visualization for the reach-
able set is provided using the libraries in matplotlib. Hy-
LAA supports a live animation mode which shows the gen-
eralized stars during the course of the computation, a step-
by-step mode when the user presses a button before each
continuous or discrete-post operation, and a video export
mode that uses ffmpeg to output the visualization to a file
format such as .mp4. The model input file is Python code
instantiating HyLAA-specific objects. To ease model devel-
opment, we have created a printer using the HyST model
conversion tool [2]. This allows input models to be created
in the SpaceEx [11] format using the SpaceEx model editor,
and then exported and used by HyLAA.

In this section, we describe three novel features of HyLAA
namely, invariant constraint propagation, warm-start opti-
mization, and trace based aggregation and present some ex-
perimental evaluation in comparison to other tools. Owing
to space limitations, all the three features have not been fully
described and proofs of correctness are not presented. The
experimental evaluations have been limited to instances that
highlight the new features in HyLAA and are not extensive.
The algorithms behind each of the features and the corre-
sponding correctness proofs are presented in other work [4].

4.1 Continuous-Post Scalability
We first evaluate the scalability of HyLAA, which uses the

n + 1 simulations approach described in Section 3.1. In or-
der to do this, we use the helicopter/controller benchmark
provided on the SpaceEx website1. We use the same param-
eters as the x8_over_time_large variant of the bench-
mark, which consists of a 28-dimensional helicopter plus a
time dimension, a nondeterministic set of initial states with a
30 second target time and a 0.1 second step size. As this sys-
tem contains no discrete switches, it serves as an evaluation
of the efficiency of the continuous-post operation. We com-
pared HyLAA with supp and stc scenarios in SpaceEx [11]
using the default accuracy settings. In order to show scala-
bility, we replicated the helicopter several times within the
same model. This was repeated until the computation did
not finish within the 20 minute timeout. We also attempted to
use the linear reachability mode from Flow* [6] 2.0.0, but did
not succeed in finding a suitable set of parameters with the
0.1 time step, although we did get Flow* to complete the sin-
gle helicopter case with a smaller time step in about 10 min-
utes. The results are shown in Figure 2. HyLAA’s approach
generally performs better, and is able to complete a 365 di-
mensional system (13 helicopters) in under a minute, and a
1065 dimensional system (38 helicopters) in under 20 min-
utes. The execution of the reachability tools was scripted us-
ing the hypy library [3], along with a model transformation
pass for replicating the helicopter system written in HyST [2].
The measurements were performed using a 2.30GHz Intel i5-

1http://spaceex.imag.fr/news/helicopter-example-posted-39

http://spaceex.imag.fr/news/helicopter-example-posted-39

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 50 100 150 200 250 300 350 400

S
e

c
o

n
d

s

Dimensions

Tool Scalability - Replicated Helicopter (1 min)

SpaceEx stc
SpaceEx supp

Hylaa

(a) 1 min limit

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

S
e

c
o

n
d

s

Dimensions

Tool Scalability - Replicated Helicopter (20 mins)

SpaceEx stc
SpaceEx supp

Hylaa

(b) 20 min limit

Figure 2: Scalability of reachability computation on the replicated helicopter
system with a one minute and 20 minute time limit. The n + 1 simulation
continuous-post operation in HyLAA is generally faster than the supp and
stc methods implemented in SpaceEx.

(a) SpaceEx supp (b) SpaceEx stc (c) HyLAA

Figure 3: Plots of x8 over time for a two-helicopter system show that the
default settings used for measuring SpaceEx produce less accurate reachability
plots than HyLAA. Note the y-axis scale with the suppmethod is much larger.

5300U CPU with 16 GB ram running Ubuntu 14.04 x64.
Note that the guarantees provided by SpaceEx and Hy-

LAA are different. SpaceEx computes reachable set that in-
cludes states encountered by trajectories at all time instances
whereas HyLAA computes reachable set at discrete instances
of time. However, HyLAA can produce concrete counterex-
ample traces. We would also like to highlight that there is
an inherent challenge in comparing reachability tools, since
the choice of parameters often provides a trade off between
accuracy and runtime. Under the measured default parame-
ters, Figure 3 compares output plots for the 2-helicopter case
for x8 over time, which shows that HyLAA’s result appears
more accurate. While the supp scenario seems to reach states
where x8 > 20, HyLAA’s output always remains bounded
in [−0.45, 0.45]. Furthermore, HyLAA’s accuracy does not
change for higher dimensional variants. Of course, we could
increase SpaceEx’s accuracy through parameter selection, but
this would serve only to increase the computation times mea-
sured in Figure 2, and it would be difficult to justify one
choice of parameters over another.

(a) SpaceEx stc (b) Flow* (c) HyLAA

Figure 4: Invariant trimming is performed when y > 5.1.

4.2 Invariant Constraint Elimination
During a continuous-post operation, it is possible that the

generalized star being tracked has a partial intersection with
the invariant. HyLAA eliminates states where the invariant
is violated by adding an additional linear constraint into the
predicate of the generalized star. This constraint is propa-
gated forward in time and is added to predicates of all the
following generalized stars. Therefore, successive time steps
with a partial invariant intersection result in more constraints
being added to the star. For this reason, HyLAA checks if
each newly-added constraint is strictly stronger than the pre-
vious one, and drops the previous one if so. Without this op-
timization, the number of constraints added would be equal
to the number of steps where a partial intersection takes place,
which gets larger as the step size is decreased.

An example demonstrating this is the harmonic oscillator
system, with ẋ = y and ẏ = −x. Trajectories of this system
rotate clockwise around the origin. The initial states are x ∈
[−6,−5] and y ∈ [0, 1], and the single mode’s invariant is
taken as 0 ≤ y ≤ 5.1. In this system, trajectories from most
of the initial states actually violate the invariant, and should
be pruned from the reachable set.

Reachability plots for this system in SpaceEx stc, Flow*
and HyLAA are shown in Figure 4. Notice that SpaceEx
does not perform such pruning during the continuous-post
operation (instead postponing it until afterwards), resulting
in large error in the computed set of states. Flow*’s result
appears correct, with the seeming overapproximation being
an artifact of the octagon plotting mode. HyLAA’s general-
ized star adds several constraints to account for the invari-
ant and hence the final star in the reachable set has 79 con-
straints. With invariant constraint elimination, this number
is reduced to 25.

4.3 Warm-Start Linear Programming
At each step during a continuous-post operation, the gen-

eralized star representation of reachable set must handle pos-
sible discrete transitions by checking if a guard condition
can be satisfied. Moreover, additional constraints might be
added to the star to prune the states that violate invariant. If
plotting is enabled, the generalized star set has to be pro-
jected accurately on a 2-d plane for visualization. A sim-
ple box overapproximation can be rendered by finding max-
imum and minimum values of each axis variables. To obtain
a more accurate plot, HyLAA chooses a number equidistant
angles (for example, 64), maximizes the cost function along
these directions, and renders the projection on 2d plane. Since
these operations are performed by solving linear programing
(LP) problems, the optimization of the LP engine is essential
to HyLAA’s performance.

HyLAA uses the GNU Linear Programming Kit (glpk)
to solve LPs, which is an optimized ANSI C implementa-

tion that gets called from HyLAA’s Python code. Internally,
glpk uses a two-phase Simplex method to solve LPs. The
first phase comes up with a feasible solution and the second
phase applies the simplex heuristics to drive the feasible so-
lution to the optimal solution. To improve the performance
of solving multiple linear programs, HyLAA uses a warm-
start LP optimization. Here, HyLAA stores the solution of
the previous LP, and uses it as an initial guess for subsequent
LPs. This allows glpk to skip the first phase of LP, and in
many instances the second phase as well. For example, when
plotting, a vertex of the star is the maximal point for many
plotting directions. In these cases, the LP engine would be
able to detect this and terminate immediately with zero ad-
ditional Simplex iterations.

This warm-start optimization is helpful during guard (and
invariant) intersections as well. For guard intersections, Hy-
LAA finds the vertex of the star that is closest to the guard.
After a single time step, the basis vectors in the star often
only change slightly, and thus the same vertex of the star is
often remains the closest one to the guard. The previous LP
solution, in this case, would immediately lead to the new LP
solution and improves the efficiency of HyLAA.

4.4 Trace-Guided Deaggregation
A well-known issue with flow-pipe construction reacha-

bility analysis is that, upon encountering a guard intersec-
tion, a single set of states might yield to multiple states in
the successor location after a discrete transition. This can be
observed in the invariant trimming example in Figure 4. If
there was a guard with condition y ≥ 5.1, then the guard
would be enabled at multiple time steps, creating several
successor stars in the next mode. As the time duration for
which the guard is enabled remains constant, using a smaller
step size might increase the number of successor stars. In the
worst case, every star set has multiple successor stars during
a discrete transition, leading to an exponential increase in the
number of stars to be tracked after a few discrete transitions.

One common solution to this problem is to aggregate states
in the same mode prior to each continuous-post operation.
While this prevents the exponential problem described above,
it might lead to a different set of potential problems. First, the
aggregation is usually not exact. For generalized stars where
the predicate is a set of linear constraints, for example, the
exact union of two stars cannot generally be expressed us-
ing a conjunction of linear constraints. To see this, notice that
a set of linear constraints defines a convex set, whereas the
union of two stars can be non-convex, or even disjoint. Since
the aggregation is not exact, it is no longer the case that if an
aggregated star reaches an unsafe state then a concrete trace
exists to the unsafe state. Second, in general, full aggrega-
tion based on convex representations (such as support func-
tions in SpaceEx or parallelotopes in Flow*) cannot bound
error. To see this, imagine the single mode whose reachable
set was shown in Figure 4 contains a guard with a true con-
dition. Since the guard is always enabled, all of the states in
the plot would be aggregated. Therefore, perfect convex ag-
gregation would include all of the states in the middle of the
semi-circle, that are not part of the reachable set.

Thus, it is undesirable not to do aggregation due to expo-
nential blowup in tracked states, but it is also undesirable to
do aggregation due to unbounded error with convex over-
approximations. HyLAA includes a compromise between
these two, where aggregation is performed aggressively, but,

upon reaching a guard, a concrete trace needs to be generated
which reaches the guard. If such a trace cannot be gener-
ated, it means one of the stars along the path from the initial
states to the current star includes an aggregated star which
contributes to the overapproximation. This aggregated star
is identified by backtracking, split into two smaller aggre-
gated stars with less overapproximation, and the reachable
set computation is resumed with the new aggregated stars.
In this way, a guard is taken if and only if a concrete trace
exists to the guard. Since the set of unsafe states is defined
as subset of modes in the hybrid automaton, such a state will
only be reached if there exists a concrete path. To the authors
knowledge, this is the first approach to offer such aggrega-
tion and deaggregation strategies. A video demonstration of
the deaggregation method is available on HyLAA website 2.

5. CONCLUSION
In this paper, we have presented a tool called HyLAA for

performing simulation-equivalent reachability of affine hy-
brid automata. HyLAA can efficiently compute all the states
reached by a specific hybrid automaton simulation algorithm.
We have demonstrated the efficiency of the continuous-post
operation on HyLAA by computing reachable set of a 1065
dimensional system in under 20 minutes, and described sev-
eral improvements to handle the discrete transitions.

HyLAA is still in its early phases and many further en-
hancements are being considered. We plan to add support
for resets on guards, as well as support for nondeterminis-
tic inputs within the differential equations. We wish to add
support for hierarchical models and parallelize the simula-
tion engine to improve scalability.

6. REFERENCES
[1] Computer Assisted Proofs in Dynamic Groups (CAPD).

http://capd.ii.uj.edu.pl/index.php.
[2] S. Bak, S. Bogomolov, and T. T. Johnson. HyST: A source transformation

and translation tool for hybrid automaton models. In 18th International
Conference on Hybrid Systems: Computation and Control, Seattle,
Washington, Apr. 2015. ACM.

[3] S. Bak, S. Bogomolov, and C. Schilling. High-level hybrid systems
analysis with hypy. In ARCH 16: Proc. of the 3rd Workshop on Applied
Verification for Continuous and Hybrid Systems, 2016.

[4] S. Bak and P. S. Duggirala. Rigorous simulation-based analysis of linear
hybrid systems. In Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2017.

[5] O. Bouissou and M. Martel. GRKLib: a guaranteed runge kutta library.
In IMACS, 2006.

[6] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe
construction for non-linear hybrid systems. 2013 IEEE 34th Real-Time
Systems Symposium, 0:183–192, 2012.

[7] Y. Deng, A. Rajhans, and A. A. Julius. STRONG: a trajectory-based
verification toolbox for hybrid systems. In Quantitative Evaluation of
Systems, pages 165–168. Springer, 2013.

[8] A. Donzé. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In Computer Aided Verification, pages 167–170. Springer,
2010.

[9] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2E2: a
verification tool for stateflow models. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 68–82. Springer, 2015.

[10] P. S. Duggirala and M. Viswanathan. Parsimonious, simulation based
verification of linear systems. In International Conference on Computer
Aided Verification, pages 477–494. Springer, 2016.

[11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable
verification of hybrid systems. In Proc. 23rd International Conference on
Computer Aided Verification (CAV), LNCS. Springer, 2011.

[12] N. Nedialkov. VNODE-LP: Validated solutions for initial value problem
for ODEs. Technical report, McMaster University, 2006.

2http://stanleybak.com/hylaa/#hscc2017

http://capd.ii.uj.edu.pl/index.php
http://stanleybak.com/hylaa/#hscc2017

	Introduction
	Preliminaries
	Reachability Algorithm
	Continuous Dynamics
	Hybrid Dynamics

	HyLAA Tool Implementation
	Continuous-Post Scalability
	Invariant Constraint Elimination
	Warm-Start Linear Programming
	Trace-Guided Deaggregation

	Conclusion
	References

