Analysis and Design of Hybrid Systems Oxford, UK

On Generating a Variety of Counterexamples for Linear Dynamical Systems

Manish Goyal Parasara <u>Sridhar</u> Duggirala

July 12, 2018

SpaceEx: Filtered Oscillator

SpaceEx: Filtered Oscillator

Falsification

Staliro: Nonlinear System

Falsification

Some randomly generated counterexample

Verification or Falsification

Regulation Control Problem

• Requirement: To make the error between the observation and the desired value to be 0

Regulation Control Problem

- Requirement: To make the error between the observation and the desired value to be 0
- The control designer is most concerned about
 - The amount of overshoot that occurred, and
 - The duration for which the value of error was above the threshold

- Define Deepest and Longest Counterexamples
- Constraint Propagation
- Experimental Results

Outline

- Introduction
- Preliminaries
- Methodology
- Experimentation
- Discussion

Introduction

Deepest Counterexample

Introduction

Deepest Counterexample

Simulation-equivalent Analysis

For a dynamical system H with affine linear dynamics $\dot{x} = Ax + B$, the simulation starting from a state x_0 is computed as a sequence $\tau_H(x_0, h)$ of states at discrete time steps with step size h.

In the sequence $\tau_H(x_0, h) = x_0, x_1, x_2, ...$, each pair (x_i, x_{i+1}) corresponds to a continuous trajectory starting at x_i and reaching x_{i+1} after h time units.

Given a direction v and the unsafe set U, the depth of a simulation τ is defined as $depth(\tau, v) = max\{v \cdot x_i \mid x_i \in \tau \land x_i \in U\}$

For a direction v and a set of unsafe simulations T_U , the deepest counterexample is deepest_ce(v) = τ such that $depth(\tau, v) \ge depth(\tau', v)$ for all $\tau, \tau' \in T_U$.

Given the unsafe set U, the length of a simulation τ is defined as $length(\tau) = max\{len \mid \exists x_i, x_{i+1}, ..., x_{i+len-1} \in \tau \text{ such that } \forall i \leq j \leq i + len -1, x_j \in U\}$ The simulation with maximum length among the set of unsafe simulations is called the longest counterexample.

Star Representation

A generalized star Θ is a tuple $\langle c, V, P \rangle$ where $c \in \mathbb{R}^n$ is called the *center*, $V = \{v_1, v_2, \ldots, v_m\}$ is a set of $m \ (\leq n)$ vectors in \mathbb{R}^n called the *basis vectors*, and $P : \mathbb{R}^n \to \{\top, \bot\}$ is a predicate, defined as

Reachable Set Computation

- Represented using simulations and generalized star
- The predicate P that defines reachable set remains the same

For each star S_i having $S_i \cap U \neq \emptyset$, find depth: max {v . x_i }

For each star S_i having $S_i \cap U \neq \emptyset$, find depth: max {v . x_i }

Pick the state x' with maximum depth

For each star S_i having $S_i \cap U \neq \emptyset$, find depth: max {v . x_i }

Pick the state x' with maximum depth

Convert x' in star basis variables α'_1 and α'_2

For each star S_i having $S_i \cap U \neq \emptyset$, find depth: max {v . x_i }

Pick the state x' with maximum depth

Convert x' in star basis variables α'_1 and α'_2

Migrate these basis variables to compute The corresponding state in the initial set

Deepest Counterexample: Algorithm

Input : Initial set Θ , the simulation-equivalent reachable sequence,

direction v, and Unsafe set U

Output : Counterexample with maximum depth

 $max_depth \leftarrow \bot, max_star \leftarrow \bot$

for each star S in the sequence do

if S intersects with U then

Find its *depth* in the given direction v

if depth > max_depth then

Update *max_depth* and *max_star*

Compute corresponding basis-variables

end

end

end

Propagate max_depth basis_variables to the initial set Θ Obtain initial state as the deepest counterexample

Longest Counterexample: Algorithm

Input : Initial set Θ , the simulation-equivalent reachable sequence, and Unsafe set U

Output : Counterexample with longest contiguous time

 $max_depth \leftarrow \bot$

for each star S in the sequence do

```
if S intersects with U then
```

Transform U using star center and basis vectors

Find the longest subsequence of length L starting at S

```
if L > max_length then
```

Update *max_length*

ėnd

```
end
```

end

Propagate constraints maximum length L subsequence to initial set Θ Solve to obtain the longest counterexample

Benchmark: Harmonic Oscillator

- Dynamics $\dot{x} = -0.1 * x + y$ $\dot{y} = -x - 0.1 * y$
- Initial Set
 x ∈ [-6, -5]
 y ∈ [0,1]
- Unsafe Set
 x ∈ [-2,2]
 y ∈ [4,6]

Benchmark: Adaptive Cruise Control

Two cars in the leader-follower system. The trailing car is required to maintain safe separation (s) with the leading car. v_l is the velocity of the leading car, and v_f is of the follower. a_f is the follower's acceleration and k_{aero} is a constant.

• Dynamics

$$\dot{s} = (v_l - v_f)$$
$$\dot{v}_f = a_f - k_{aero} \cdot v_f$$
$$\dot{a}_f = -2 \cdot a_f - 2(v_f - v_l)$$

- Initial Set $s \in [0.1, 0.4]$ $v_f \in [63, 68]$
- Unsafe Set $s \le 0.05 \& v \ge 68$

Benchmark: Adaptive Cruise Control

Results: Deepest Counterexample

Model	Dims	Deepest	Direction	Depth	Verification	DCE Gen
		Counter-Example			Time (sec)	Time (sec)
Damped Osc.	2	$[-5.459 \ 0.1881]$	$x_1 = 1$	2.0	0.17	0.00
		$[-6 \ 0.8829]$	$x_2 = 1$	5.0	0.22	0.00
		[-6 1]	$x_2 = 1$	5.288	0.28	0.01
Vehicle	15	$x_1 = 1.071$	$x_2 = 1$	-0.182486	1.82	0.11
Platoon 1		$x_2 = 0.993$				
		$x_{3,6,9,12,15} = 1.1$				
		$x_i = 0.9$				
		$x_{3,6,9,12,15} = 1.1$	$x_2 = 1$	0.0170	2.9	0.39
		$x_i = 0.9$				
		$x_{3,6,9,12,15} = 1.1$	$x_2 = 1$	0.0170	3.51	0.40
		$x_i = 0.9$				
Vehicle	30	$x_5 = 0.9005$	$x_5 = 1$	-0.26347	4.86	0.12
Platoon 2		$x_{23} = 1.0473$				
		$x_i \in \{0.9, 1.1\}$				
		$x_2 = 0.91327$	$x_5 = 1$	-0.2217	5.20	0.27
		$x_4 = 0.9389$				
		$x_5 = 1.1, x_i = 0.9$				
		$x_i \in \{0.9, 1.1\}$	$x_5 = 1$	0.01745	10.73	1.87

Direction is the direction in which the maximum depth is computed. **DCE Time** is the time Hylaa takes to generate the deepest counterexample.

Results: Longest Counterexample

Model	Dims	Longest	Actual Inter.	LCE	Verification	LCE Gen
		Counter-Example	Duration	Duration	Time (sec)	Time (sec)
Damped	2	$[-5.37295 \ 0.0]$	$[5 \ 10]$	$[6 \ 10]$	0.17	0.01
Oscillator		[-5.0 0.3968]	$[4 \ 10][33 \ 44]$	$[33 \ 44]$	0.22	0.03
			$[66\ 74]$			
		$[-5 \ 0.296]$	$[3 \ 10][29 \ 49]$	$[59 \ 100]$	0.28	0.17
			[59 100]			
Vehicle	15	$x_8 = 1.0475$	$[27 \ 41]$	$[29 \ 41]$	1.82	0.18
Platoon 1		$x_{2,5} = 1.1$				
		$x_i = 0.9$				
		$x_{6,9} = 1.1$	$[27 \ 73]$	$[27 \ 73]$	2.90	1.40
		$x_{12} = 1.0761$				
		$x_i = 0.9$				
2		same as above	[27 100]	[27 100]	3.51	3.78
Vehicle	30	$x_9 = 0.9223$	$[42 \ 48]$	$[44 \ 48]$	4.86	0.23
Platoon 2		$x_5 = 1.0204$				
		$x_i \in 0.9, 1.1$				
		$x_{19} = 1.0501$	$[42, \ 53]$	[45 53]	5.20	0.43
		$x_i \in \{0.9, 1.1\}$				
<u></u>		$x_i = 0.9$	$[36 \ 100]$	[36 100]	10.73	9.81

LCE Duration is the interval in discrete time steps for longest counterexample. **Verification Time** is the time Hylaa takes for verification, **LCE Time** is the time taken to generate the longest counterexample.

• Search in the space of basis variables that define the initial set

- Search in the space of basis variables that define the initial set
- Counterexamples are depicted in discrete time

- Search in the space of basis variables that define the initial set
- Counterexamples are depicted in discrete time
- Variations in the size of the unsafe region and depth direction

- Search in the space of basis variables that define the initial set
- Counterexamples are depicted in discrete time
- Variations in the size of the unsafe region and depth direction
- Counterexample length and generation time

- Search in the space of basis variables that define the initial set
- Counterexamples are depicted in discrete time
- Variations in the size of the unsafe region and depth direction
- Counterexample length and generation time