
On Generating A Variety of Unsafe
Counterexamples for Linear Dynamical

Systems ?

Manish Goyal and Parasara Sridhar Duggirala ∗

∗Department of Computer Science and Engineering, University of
Connecticut, Storrs, USA. (e-mails: manish.goyal@uconn.edu,

psd@uconn.edu)

Abstract: Counterexamples encountered in formal verification are typically used as evidence
for violation of specification. They also play a crucial role in CEGAR based techniques, where
the counterexample guides the refinements to be performed on the abstractions. While several
scalable techniques for verification have been developed for safety verification of hybrid systems,
less attention has been paid to extracting the various types of counterexamples for safety
violations. Since these systems are infinite state systems, the number of counterexamples for
safety violations are potentially infinite and hence searching for the right counterexample
becomes a challenging task. In this paper, we present a technique for providing various types
of counterexamples for a safety violation of the linear dynamical system. More specifically, we
develop algorithms to extract the longest counterexample — the execution that stays in the
unsafe set for most time, and deepest counterexample — the execution that ventures the most
into the unsafe set in a specific direction provided by the user.

Keywords: Safety verification, linear dynamical systems, counterexample, dynamic
programming, linear programming.

1. INTRODUCTION

Counterexamples currently play very important role in the
domain of model checking. In the early days of model
checking, counterexamples that are obtained as a by prod-
uct during the model checking process, were regarded
as important artifacts due to their practical relevance.
They provided intuition to the system designer about the
reason why the system does not satisfy the specification.
The introduction of Counter Example Guided Abstraction
Refinement (CEGAR) Clarke et al. (2000, 2002) changed
the role of counterexamples from a mere feature to an
algorithmic tool. In CEGAR, the counterexample acts as
a primary guide to restricting the space of the possible re-
finements. Techniques to uncover deep bugs, which would
otherwise take a long time to uncover were developed
in Bradley (2011, 2012). More recently, in the domain of
automated synthesis, CEGIS Raman et al. (2015), coun-
terexamples from verification are used for synthesizing the
system that satisfies the specification.

In dynamical and hybrid systems, counterexamples are
crucial for verification, primarily because the state space is
uncountable. Thus, providing an “important” counterex-
ample would provide a better insight into the system
behavior and help the designer deal with the uncountable
state space. In verification of hybrid systems domain, while
a lot of attention was paid for extracting counterexamples
for hybrid systems with timed and rectangular dynamics,
not many approaches have been developed to generating
? The work has been supported and funded by UTC Institute for
Advanced Systems Engineering.

various counterexamples for such systems. This is primar-
ily because most of the model checking approaches in
hybrid system verification focus on computing overapprox-
imations. As a side effect, an additional effort is required
for generating counterexamples.

Our goal to generate various types of counterexamples
stems from the desire to provide intuition to the control
system designer during the process of controller synthe-
sis. To a control designer, not all counterexamples for
safety violation are equivalent. For example, the control
designer would want to observe counterexample trajec-
tory that stayed for the longest duration in the unsafe
set. Similarly, the control designer might want to explore
the counterexample that goes the farthest along a specific
direction in the unsafe set. Currently, none of the existing
model checkers provides us with a technique for generating
such counterexamples. We will illustrate the utility of the
counterexample through an example.

Example 1. Consider the classic case of a regulation con-
trol problem where the control designer wants to make the
error between the observation and the desired value to be
0. The typical profile of an execution after applying PID
controller would look similar to Figure 1. In such cases,
the control designer is most concerned about the amount
of overshoot that occurred and also the duration for which
the value of error was above the threshold. Current veri-
fication techniques, although inform the designer whether
the overshoot happened or not, but do not provide her
with enough support to find out the maximum value of
overshoot and the duration of the overshoot.

Fig. 1. Classical case of overshoot in stabilizing controllers.

In this paper, we enhance the model checking tool HyLAA
to generate various types of counterexamples. More specif-
ically, we present two types of counterexamples (longest
and deepest respectively) that we believe are most impor-
tant for the control designer, and present algorithms for
generating these counterexamples. The primary insight in
this paper is that to obtain important counterexamples for
linear dynamical system, one need not search in the func-
tional space of trajectories, but rather in the state space
of initial states. For this purpose, our approach leverages
the superposition principle property of the trajectories and
uses the symbolic representation of generalized stars.

This paper builds on our previous work of computing
reachable set Duggirala and Viswanathan (2016). To
generate the counterexamples, our algorithm reuses the
artifacts generated during the model checking process.
Our experimental evaluation suggests that the cost of
generating these counterexamples while usually being less
than the safety verification time, is dependent on the
duration of overlap between the reachable sets and the
unsafe set.

Related Work: Generating specific type of counterexam-
ples has been an active research topic in model check-
ing. In the domain of hybrid systems, many CEGAR
based approaches pursue various notions of counterexam-
ples Fehnker et al. (2005a); Dierks et al. (2007); Clarke
et al. (2003); Alur et al. (2003, 2006); Prabhakar et al.
(2013); Fehnker et al. (2005b); Duggirala and Mitra
(2011); Ratschan and She (2005); Sankaranarayanan and
Tiwari (2011); Tiwari (2012); Frehse et al. (2006). Most
of them are restricted to the domain of timed and rect-
angular hybrid systems. The current state of the art tools
such as SpaceEx Frehse et al. (2011) and HyLAA Bak
and Duggirala (2017a) spit out the counterexample that
violates the safety specification at the first time step and
the counterexample that violates at the last time step
respectively.

The approach presented in this paper bears some resem-
blance to the CEGIS based approach described in Raman
et al. (2015). Here, the verification condition that the sys-
tem satisfies an STL specification is formulated as a satis-
fiability problem for mixed-integer liner program (MILP).
If the specification is violated, one can investigate the
results of MILP to obtain the counterexample. In Ghosh
et al. (2016), the authors extend Raman et al. (2015) and
provide an intuition/reason for the system failing to satisfy
the specification.

2. PRELIMINARIES

States and vectors are elements in Rn are denoted as x
and v. Inner product between two vectors is denoted as
v1 · v2. Given a sequence seq = s1, s2, . . ., the ith element
in the sequence is denoted as seq[i]. In this work, we use
the following mathematical notation of a linear dynamical
system.

Definition 2. A linear dynamical system H is defined to
be a tuple 〈X,F low〉 where:

X ⊆ Rn is the state space of the system.
Flow determines the system dynamics using an affine

differential equation ẋ = Ax+B.

The initial set of states Θ is a subset of X and the state
x0 ∈ Θ is called an initial state.

Definition 3. Given a linear dynamical system and an
initial state x0, the system trajectory that describes the
evolution of the state with time is denoted as ξH(x0, t).
That is, ξH is the solution of the initial value problem
for the linear differential equation. The closed form ex-
pression for the trajectory is given as ξH(x0, t) = eAtx0 +∫ t
0
eA(t−τ)Bdτ . Here eAt = I + At

1! + (At)2

2! +

The set of states encountered by all executions that con-
form to the above semantics is called the reachable set.
Even though the trajectories has a closed form expression,
the trajectory might not be finitely computable. For analy-
sis, system designers often employ numerical ODE solders
that give a finite time approximation of the trajectory.
Since this paper deals with finding counterexamples, we
focus on counterexamples that can be generated using
a specific simulation engine for linear hybrid automata.
More specifically, we use the simulation engine that is
described in Bak and Duggirala (2017b).

Definition 4. A sequence ξH(x0, h,∞) = x0, x1, x2, . . .,
is a (x0, h)-simulation of the dynamical system H from
the initial set Θ if and only if x0 ∈ Θ and each pair
(xi, xi+1) corresponds to a continuous trajectory such that
a trajectory starting from xi would reach xi+1 after exactly
h time units. We drop the subscript when it is clear from
context. Bounded-time variants of these simulations, with
time bound k × h, are called (x0, h, k)-simulations. For
simulations, h is called the step size and k is called time
bound. These are denoted as ξ(x0, h, k).

Observation On Simulation Algorithm: The simu-
lation engine given in Definition 4 simulates the system
only at discrete time instances. It is very hard to finitely
compute and represent the execution trace for the entire
continuous time interval, and hence we consider this a
valid assumption. This is the closest we can get to such
representation; by reducing the time step, one can further
get arbitrarily close to the execution.

We now define the safety property for simulations and for
a set of initial states

Definition 5. A given simulation ξH(x0, h,∞) is said to be
safe with respect to an unsafe set of states U if and only
if ∀xi ∈ ξH(x0, h,∞), xi /∈ U . Safety for bounded time
simulations are defined similarly.

Fig. 2. Observe that the state reached at time t from
x0 + α1v1 + α2v2 is identical to ξ(x0, t) + α1(ξ(x0 +
v1, t)− ξ(x0, t)) + α2(ξ(x0 + v2, t)− ξ(x0, t)).

Definition 6. A dynamical system H with initial set Θ,
time bound k, and unsafe set of states U is said to be safe
with respect to its simulations if all simulations starting
from Θ for bounded time k are safe.

Our goal in this paper is to generate two types of coun-
terexamples namely the deepest and the longest counterex-
amples respectively. We give the definitions as follows.

Definition 7. Given a dynamical system H with an initial
set Θ, time bound k, step h, unsafe set U , and direction
v, the depth of a counterexample ξ in direction v, denoted
as depth(ξ, v) = max{v · xi | xi ∈ ξ ∧ xi ∈ U}.
The counterexample ξ with the maximum value of depth
is called the deepest counterexample.

Definition 8. Given a dynamical system H with initial set
Θ, time bound k, step h, and unsafe set U , a counterexam-
ple is said to be of length l if and only if ∃ consecutive states
xi, xi+1, . . . , xi+l−1 in ξ such that ∀i ≤ j ≤ i+l−1, xj ∈ U .

The counterexample of the maximum length is called the
longest counterexamples.

For computing the deepest and longest counterexamples,
we use the simulation equivalent reachable set approach
that is presented in Duggirala and Viswanathan (2016);
Bak and Duggirala (2017b).

2.1 Superposition principle, Generalized Stars, and
Simulation-equivalent Reachable Set

We now present some of the building blocks in com-
putation of the reachable set (from Bak and Duggirala
(2017b)). There are three main aspects of the reachable
set computation. First, is the superposition principle, sec-
ond is the generalized star representation that is used for
representing the set of reachable states and finally, the
building block reachable set algorithm for the simulation-
equivalent reachable set computation (Bak and Duggirala
(2017b)).

Definition 9. Given any initial state x0, vectors v1, . . . , vm
where vi ∈ Rn, scalars α1, . . . , αm, the trajectories of linear

differential equations ξ always satisfy

ξ(x0+Σmi=1αivi, t) = ξ(x0, t)+Σmi=1αi(ξ(x0+vi, t)−ξ(x0, t)).

We exploit the superposition property of linear systems
in order to compute the simulation-equivalent reachable
set of states. An illustration of the superposition principle
for two vectors is shown in Figure 2. Before describing
the algorithm for computing the reachable set, we finally
introduce the data structure called a generalized star that
is used to represent the reachable set of states.

Definition 10. A generalized star (or simply star) Θ is a
tuple 〈c, V, P 〉 where c ∈ Rn is called the center, V =
{v1, v2, . . . , vm} is a set of m (≤ n) vectors in Rn called
the basis vectors, and P : Rn → {>,⊥} is a predicate.

A generalized star Θ defines a subset of Rn as follows.

[[Θ]] = {x | ∃ᾱ = [α1, . . . , αm]T such that

x = c+ Σni=1αivi and P (ᾱ) = >}
Sometimes we will refer to both Θ and [[Θ]] as Θ. Addition-
ally, we refer to the variables in ᾱ as basis variables and
the variables x as orthonormal variables. Given a valuation
of the basis variables ᾱ, the corresponding orthonormal
variables are denoted as x = c+ V × ᾱ.

Similar to Bak and Duggirala (2017b), we consider predi-
cates P which are conjunctions of linear constraints. This
is primarily because linear programming is very efficient
when compared to nonlinear arithmetic. We therefore har-
ness the power of these linear programming algorithms to
improve the scalability of our approach.

Example 11. Consider a set Θ ⊂ R2 given as Θ
∆
=

{(x, y) | x ∈ [4, 6], y ∈ [4, 6]}. The given set Θ can be
represented as a generalized star in multiple ways. One way
of representing the set is given as 〈c, V, P 〉 where c = (5, 5),

V = {[0, 1]T , [1, 0]T } and P
∆
= −1 ≤ α1 ≤ 1∧−1 ≤ α2 ≤ 1.

That is, the set Θ is represented as a star with center (5, 5)
with vectors as the orthonormal vectors in the Cartesian
plane and predicate where the components along the basis
vectors are restricted by the set [−1, 1]× [−1, 1].

Reachable Set Computation For Linear Dynamical
Systems Using Simulations: Owing to space limita-
tions, we briefly describe the algorithm for computing
simulation-equivalent reachable set, this is primarily done
to present some crucial observations which will later be
used in the algorithms for generating specific counterexam-
ples. Longer explanation and proofs for these observations
and algorithms is available in prior work Duggirala and
Viswanathan (2016); Bak and Duggirala (2017b).

At its crux, the algorithm exploits the superposition
principle of linear systems and computes the reachable
states using a generalized star representation. For an n-
dimensional system, this algorithm requires at most n +

1 simulations. Given an initial set Θ
∆
= 〈c, V, P 〉 with

V = {v1, v2, . . . , vm}(m ≤ n), the algorithm performs
a simulation starting from c (denoted as ξ(c, h, k)), and
∀1 ≤ j ≤ n, performs a simulation from c + vj (denoted
as ξ(c + vj , h, k)). For a given time instance i · h, the
reachable set denoted as Reachi(Θ) is defined as 〈ci, Vi, P 〉
where ci = ξ(c, h, k)[i] and Vi = 〈v′1, v′2, . . . , v′m〉 where

Fig. 3. Illustration of the reachable set using sample sim-
ulations and generalized star representation. Notice
that in the star representation, the predicate that
defines the reachable set is same as that of the initial
set.

∀1 ≤ j ≤ m, v′j = ξ(c + vj , h, k)[i] − ξ(c, h, k)[i]. Notice
that the predicate does not change for the reachable set,
but only the center and the basis vectors are changed.

An illustration of this reachable set computation is shown
in Figure 3. Here, as the system is 2-dimensional, a total
number of three simulations are performed, one from
center c and one from c + v1 and one from c + v2. the
reachable set after time i · h is given as the star with
center c′ = ξ(c, h, k)[i], basis vectors v′1 = ξ(c+v1, h, k)[i]−
ξ(c, h, k)[i], and v′2 = ξ(c+v2, h, k)[i]− ξ(c, h, k)[i] and the
same predicate P as the given in the initial set.

The reachable set algorithm computeSimEquivReach re-
turns the reachable set in the form of a sequence. The first
node of the sequence is the initial set Θ. Each node in this
sequence corresponds to a generalized star Si of the form

Si
∆
= 〈ci, Vi, Pi〉 corresponding to the set of states visited

at a discrete step. Each node in the reach sequence has one
continuous successor that corresponds to the evolution in
this mode for one step. We denote the sequence form of
the reachable set from an initial state Θ as ReachSeq.

Definition 12. Given an initial set Θ, bound T , and step h,
and the simulation equivalent reachable set as ReachSeq,
given a star Si ∈ ReachSeq, we call a sequence of stars
σ = R1, R2, . . . , Rm a chain starting from Si if and only if
R1 = Si and ∀2 ≤ j ≤ m,Rj is a continuous successor of
Rj−1.

Remark 13. Given a star Si
∆
= 〈ci, Vi, Pi〉 in ReachSeq

and a valuation ᾱ of the basis vectors such that Pi(ᾱ) =
>, one can use this valuation of basis variables to gen-
erate the trace starting from the initial set Θ to Pi.
We call the procedure that generates this execution as
getExecution(ᾱ, Si, ReachSeq). This observation is cru-
cial for our algorithm as it reduces the problem of finding
the counterexample from the functional space of trajecto-
ries ξ to the valuation of the basis variables ᾱ. We solve
the problem of generating the appropriate counterexample
by selecting the appropriate value of ᾱ.

Assumptions: Similar to the assumptions in our earlier
work Bak and Duggirala (2017b), we assume that ODE
solvers give the exact result. While theoretically unsound,
such an assumption is adopted due to its practicality. Sec-
ond, we use floating-point arithmetic in our computations
and do not track the errors by floating point arithmetic.

Fig. 4. Figure illustrating the deepest counterexample in
the direction specified.

A user concerned about the inaccuracy of numerical sim-
ulation can either use validated simulations (Computer
Assisted Proofs in Dynamic Groups 1) or compute the lin-
ear ODE solution as a matrix exponential to an arbitrary
degree of precision. The algorithms presented are oblivious
to the simulation engine used.

3. DEEPEST COUNTEREXAMPLE

In this section, we will present the algorithm that would
return the deepest counterexample for a safety specifica-
tion and a direction. We will illustrate the way to obtain
the deepest counterexample using Figure 4.

Suppose that in the ReachSeq computation, there are three
stars S1, S2, and S3 that overlap with the unsafe set U .
Given a direction v, the procedure to compute the deepest
counterexample would be the following. (1) For each of the
stars Si, compute the maximum depth depthi of star Si as
max v ·x with x ∈ Si∩U . (2) Select the star Sj with maxi-
mum value of depthj . (3) Extract the corresponding value
of basis variables ᾱ which achieves the maximum depth
and extract the corresponding execution. The correctness
of the algorithm trivially follows from Definition 7 and the
correctness of the simulation-equivalent reachable set. The
algorithm is presented formally in Algorithm 1

input : Initial Set: Θ and the simulation equivalent
reachable sequence ReachSeq, direction v,
Unsafe set U

output: Counterexample ce with maximum depth
1 depthmax ← −∞; depthStar ← ⊥; ce← ⊥;
2 for each star Si in ReachSeq do
3 if Si ∩ U 6= ∅ then
4 OptProbi ← max {v · x} given [x ∈ Si ∩ U];
5 depthi ← solution(OptProbi);
6 if depthi > depthmax then
7 depthmax ← depthi;
8 ᾱmax ← getBasisV ariables(OptProbi);
9 depthStar ← Si;

10 end
11 end
12 end
13 if depthmax 6= −∞ then
14 ce← getExection(ᾱmax, depthStar,ReachSeq);
15 end
16 return ce;

Algorithm 1: Algorithm that computes the deepest coun-
terexample with respect to a direction v in the unsafe set.

The main loop of the algorithm in lines 2 - 12 iterates
through all the stars in the reachable set given in the
1 http://capd.ii.uj.edu.pl/index.php

Fig. 5. Figure illustrating the longest counterexample.

sequence format as ReachSeq and selects the stars that
overlap with the unsafe set U . The optimization problem
for maximizing the value of the function v · x for the
overlap with the unsafe set is generated in line 4, which
is then solved in line 5. If the maximum value of depth
computed in line 5 is greater than the current maximum
value (lines 6 - 10), then the maximum value of depth is
updated, the value of basis variables corresponding to the
optimal solution is stored, and the star corresponding to
the maximum depth is also stored. In line 14, the execution
corresponding to the maximum depth is computed using
the value of ᾱ and returned.

4. LONGEST COUNTEREXAMPLE

In this section, we will describe the algorithm for obtaining
the counterexample that spends the longest contiguous
time in the unsafe set. We illustrate the problem of finding
the longest counterexample through an illustration given
in Figure 5. Consider the three consecutive stars in the
reachable set S1, S2, and S3 having overlap with the unsafe
set as shown. If one picks the state e1 ∈ S1 as shown, then
the post states of e1, denoted as e2 and e3 in the figure
respectively, do not lie in the unsafe set. However, if one
picks the state l1 ∈ S1 as shown, then the post states of l2
and l3 lie in the unsafe set.

The key insight for the generation of longest counterex-
amples is that one has to select the appropriate state
which visits the maximum number of overlaps between the
unsafe set and the reachable set. In this instance, any state
x1 ∈ S1 such that x1 ∈ S1 ∩ U , with its successors x2, x3
such that x2 ∈ S2 ∩U , and x3 ∈ S3 ∩U is the appropriate
choice.

For finding such a state, we perform constraint propa-
gation (similar to the invariant constraint propagation
in Bak and Duggirala (2017b)). That is, we identify the
constraints C on the basis variables (ᾱ) such that ∀ᾱ such
that C(ᾱ) = >, we have, x1 = c1 + V × ᾱ ∈ S1 ∩ U ,
x2 = c2 +V2× ᾱ ∈ S2 ∩U , and x3 = c3 +V3× ᾱ ∈ S3 ∩U .

To extract these set of constraints, we convert the unsafe
set U into the center and basis vectors of each of the stars
S1, S2, and S3. hence Si ∩ U = 〈ci, Vi, Pi ∧ Qi〉. From
Remark 13, we know that the set of states that reach
〈ci, Vi, Pi ∧Qi〉 originate from 〈c0, V0, Pi ∧Qi〉. Hence, the
set of states that would visit all the intersections of the
unsafe set should originate from 〈c0, V0, P1∧Q1∧P2∧Q2∧
P3∧Q3〉. Hence, if the set of constraints P1∧Q1∧P2∧Q2∧
P3 ∧ Q3 is satisfiable, then the corresponding trajectory
corresponding to the basis variables that satisfies these
constraints visits the unsafe set in all of the stars S1, S2,
and S3.

Building on the above discussion, the algorithm to com-
pute the longest counterexample would iterate as fol-
lows. We first consider contiguous sequences of stars
S1, S2, . . . , Sm that overlap with the unsafe set U . We
then compute the set of constraints C such that if C is
satisfiable, then, there exists a trajectory that stays in the
unsafe set for at least m duration. We find the longest se-
quence of stars such that the corresponding constraint C is
satisfiable and provide the corresponding counterexample
trace. This procedure is formally defined in Algorithm 2

input : Initial Set: Θ and the simulation equivalent
reachable sequence ReachSeq, Unsafe set U

output: Counterexample ce that spends longest time in
U

1 lengthmax ← −∞; lengthStar ← ⊥; ce← ⊥;
2 for each star Si in ReachSeq do
3 if Si ∩ U 6= ∅ then
4 for each sequence of stars σ starting with Si do
5 Transform U into 〈ci, Vi, Qi〉 where

σ[i]
∆
= 〈ci, Vi, Pi〉;

6 Cσ ←
∧|σ|
i=1Qi ∧ Pi;

7 if Cσ is feasible and |σ| > lengthmax then
8 lengthmax ← |σ|;
9 ᾱlen ← feasible(Cσ);

10 lengthStar ← Si;
11 end
12 end
13 end
14 end
15 if lengthmax 6= −∞ then
16 ce← getExection(ᾱlen, lengthStar,ReachSeq);
17 end
18 return ce;

Algorithm 2: Algorithm that computes the counterexam-
ple that stays in the unsafe set U for the longest contiguous
duration.

The algorithm proceeds as follows: the main loop (lines 2 -
14) iterates over all the stars that have a overlap with the
unsafe set U . The inner loop (lines 4 - 12) enumerates all
the contiguous sequences σ starting with Si and computes
the set of constraints Cσ for the sequence. If the constraints
are feasible, then the valuation of the basis variables
that satisfies these constraints is stored, the star that
begins the start of the longest counterexample is stored,
and finally, the length of the longest counterexample is
updated. In line 16, the execution corresponding to the
longest counterexample is obtained.

Theorem 14. The execution returned by Algorithm 2 re-
turns the longest counterexample.

Proof. We prove this by contradiction. Suppose that

the given initial set Θ
∆
= 〈c0, V0, P0〉 and the longest

counterexample ξ = x0, x1, . . . , xk which spends dura-
tion m in the unsafe set U . Consider that the states
xj , xj+1, . . . , xj+m−1 in the execution ξ lie in the unsafe
set. Additionally, suppose that the execution returned by
Algorithm 2 returns a counterexample of length strictly
less than m.

From the soundness and completeness result of simulation
equivalent reachability Bak and Duggirala (2017b), we

have that ∃ stars Sj , Sj+1, . . . , Sj+m−1 in ReachSeq such
that ∀j ≤ r ≤ j +m− 1, xr ∈ Sr. Therefore, it should be
the case that ∀r, j ≤ r ≤ j+m−1, U∩Sr 6= ∅. Additionally,
since the trajectory ξ passes through U ∩ Sr, it should be

the case that ξ ∈ 〈c0, V0, Pr ∧Qr〉 where Sr
∆
= 〈cr, Vr, Pr〉

and U
∆
= 〈cr, Vr, Qr〉. Therefore, the constraint Cσ that

is computed for the sequence σ = Sj , Sj+1, . . . , Sj+m−1
should be feasible and would be updated as the longest
counterexample in lines 7 - 11. Which is a contradiction.

Analysis and Optimizations: In our implementation,
we consider only those sequence of stars where all of
them overlap with unsafe set U . One of the optimization
that can be performed is to adopt a procedure that
is similar to a binary search. That is, given a star Si
that overlaps with U , we can generate the maximum
contiguous sequence of stars, σ starting from Si. Instead
of generating constraint Cσ incrementally, we can generate
constraints in a binary search fashion so as to arrive at the
longest feasible subsequence by checking feasibility of only
O(logm) constraints generated.

5. EXPERIMENTS

The proposed algorithm has been implemented in a
Python based verification tool named HyLAA; although,
some of the computational libraries used may be writ-
ten in other languages. Simulations for reachable sets
are performed using scipy’s odeint function, which can
handle stiff and non-stiff differential equations using the
FORTRAN library odepack’s lsoda solver. Linear pro-
gramming is performed using the GLPK library, and matrix
operations are performed using numpy. The measurements
were performed on a system running Ubuntu 16.04 with
an 2.70GHz Intel i7-6820HQ CPU with 8 cores and 16 GB
RAM.

HyLAA has a provision to perform verification in aggrega-
tion mode for better performance. However, for our exper-
iments, we run HyLAA in deaggregation mode. By default,
HyLAA terminates as soon as it finds a counterexample.
But, we let the tool run for the entire duration because we
perform our analysis on all the stars intersecting with the
unsafe set.

The benchmarks for our study are taken from The Bench-
marks of continuous and hybrid systems 2 . These linear
continuous systems benchmarks - Harmonic Oscillator, Ve-
hicle Platoon 1 and Vehicle Platoon 2 are simulated for
maximum 100 time steps with step size 0.2 sec.

Each benchmark is originally safe. Since our objective is to
find the counterexamples and to classify them, we choose
unsafe set in a manner that the reachable set intersects
with the unsafe set at multiple time steps. We further
adjust the size of the unsafe set and observe that the
intersection window of the reachable set with the unsafe
set differs proportionally. The values in a duration interval
are time steps not the real time values.

For each benchmark, the unsafe set is varied in such a
way that with increase in it’s size, the number of stars
intersecting with the unsafe set increases. This, in turn,
2 https://ths.rwth-aachen.de/research/projects/
hypro/benchmarks-of-continuous-and-hybrid-systems/

Model LCE Actual LCE Verification,

(Dims) Intersection Duration LCE Gen.

Duration Time (sec)

Harmonic

Oscillator (2)

SU [-5.373 0.0] [5 10] [6 10] 0.17, 0.01

MU [-5.0 0.3968] [4 10][33 44] [33 44] 0.22, 0.03

[66 74]

LU [-5 0.296] [3 10][29 49] [59 100] 0.28, 0.17

[59 100]

Vehicle

Platoon 1 (15)

SU x8 = 1.0475 [27 41] [29 41] 1.82, 0.18

x2,5 = 1.1

xi = 0.9

MU x6,9 = 1.1 [27 73] [27 73] 2.90, 1.40

x12 = 1.0761

xi = 0.9

LU -do- [27 100] [27 100] 3.51, 3.78

Vehicle

Platoon 2 (30)

SU x9 = 0.9223 [42 48] [44 48] 4.86, 0.23

x5 = 1.0204

xi ∈ 0.9, 1.1

MU x19 = 1.0501 [42, 53] [45 53] 5.20, 0.43

xi ∈ {0.9, 1.1}
LU xi = 0.9 [36 100] [36 100] 10.73, 9.81

Table 1. Longest Counterexample (LCE) Experi-
ments. Dims is the no. of dimensions, SU, MU,
LU are the variations of the unsafe set - Small,
Medium and Large. LCE is a point in the
initial set, simulation from which stays the
longest in the unsafe set. xi represents all the
variables whose values are not explicitly given.
xi ∈ {0.9, 1.1} signifies that the value is either
0.9 or 1.1. Actual Intersection Duration is the
set of time step intervals when reachable set
intersects with the unsafe set. LCE Duration
is the interval for the longest counterexample.
Verification Time is the time HyLAA takes for
verification, LCE Gen. Time is the time it takes

to generate the longest counterexample.

may lead to longer counter-examples. The increase in
the number of error stars with growth in the unsafe set
size translates directly into the counterexample generation
time. The reason being every new star adds to the analysis
time during counterexample generation.

The longest counterexample generation can be slower
than the overall verification (Refer LU Vehicle Platoon
1 benchmark). As explained in the algorithm in Section
4, the combined number of constraints to be solved can
become fairly large, which increases the counterexample
generation time. It is worth noticing that the length of
a counterexample is not necessarily same as the actual
duration for which the reachable set intersects with the
unsafe set. This is the direct consequence of our approach:
if a system of constraints during certain time interval is not
feasible, we prune the list and again check for it’s feasibility
until we find a solution. Refer Figure 7.

As shown in the Tables 1 and 2, variations in the unsafe
set size can provide us varying counterexamples. Similarly,
change in the direction while computing the deepest coun-
terexample may give us a different counterexample. Refer
Figure 6

Model DCE Direction Depth Verification,

(Dims) DCE Gen.

Time (sec)

Harmonic

Oscillator (2)

SU [-5.459 0.188] x1 = 1 2.0 0.17, 0.00

MU [-6 0.8829] x2 = 1 5.0 0.22, 0.00

LU [-6 1] x2 = 1 5.288 0.28, 0.01

Vehicle

Platoon 1 (15)

SU x1 = 1.071 x2 = 1 -0.1825 1.82, 0.11

x2 = 0.993

xi ∈ {0.9, 1.1}
MU xi ∈ {0.9, 1.1} x2 = 1 0.0170 2.9, 0.39

LU xi ∈ {0.9, 1.1} x2 = 1 0.0170 3.51, 0.40

Vehicle

Platoon 2 (30)

SU x5 = 0.9005 x5 = 1 -0.26347 4.86, 0.12

x23 = 1.0473

xi ∈ {0.9, 1.1}
MU x2 = 0.91327 x5 = 1 -0.2217 5.20, 0.27

x4 = 0.9389

x5 = 1.1, xi = 0.9

LU xi ∈ {0.9, 1.1} x5 = 1 0.01745 10.73, 1.87

Table 2. Deepest Counterexample (DCE) Ex-
periments. DCE is a point in the initial set,
simulation from which goes the deepest in the
given direction in the unsafe set. xi ∈ {0.9, 1.1}
designates that the variable’s value is either 0.9
or 1.1. Verification Time is the time HyLAA
takes for verification, DCE Gen. Time is the
time it takes to generate the deepest coun-

terexample.

Fig. 6. Illustration of the Deepest counterexample (DCE):
The figure corresponds to the SU iteration of Damped
Oscillator benchmark. It illustrates two counterexam-
ples that go deepest in different directions. The coun-
terexample in solid red is the deepest in the y direction
and the counterexample in solid blue is the deepest
in the x direction. The default counterexample by
HyLAA is shown in pink. The figure illustrates that
change in the depth direction may lead to different
counterexamples. The figure also emphasizes that the
counterexample originally generated by HyLAA can
differ from the deepest counterexample.

Fig. 7. Illustration of the Longest counterexample (LCE):
The figure corresponds to the MU iteration of Har-
monic Oscillator benchmark. It graphically represents
the system simulation with the help of reachable sets
(stars) at discrete time steps. The longest counterex-
ample is shown in blue and the default counterexam-
ple generated by HyLAA is shown in pink. It shows
that the actual duration of the intersection with the
unsafe set ([4 10][33 44][66 74]) can be different from
the duration of the longest counterexample ([33 44]).
The figure also emphasizes that the counterexample
originally generated by HyLAA may differ from the
longest counterexample.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we provided an approach for the generating
a variety of counterexamples. We defined two new types
of counterexamples namely deepest and longest counterex-
ample and developed algorithms for generating the same.
The primary insight behind our technique being for gen-
erating these counterexamples, one need not search in
the space of trajectories, but rather in the space of basis
variables that define the initial set. Our technique lever-
ages the superposition principle and the generalized star
representation. We note that using linear stars helps us
in using linear programming solvers and hence contribute
to the efficiency of our procedure. We also observe that
the variations in unsafe set size and optimizing direction
may generate different counterexamples. To the best of our
knowledge, this is the first work that focuses on generating
various counterexamples for unsafe violation for linear
systems.

The next step is to extend the counterexample generation
approach to linear hybrid systems. We would like to
generate such counterexamples and use template based
methods for automatically generating the set of unsafe sets
that are safe for a given initial set. We believe that these
counterexamples give a special insight into the behavior
of the system and hence can be useful in counterexample
guided synthesis techniques for linear systems.

REFERENCES

Alur, R., Dang, T., and Ivancic, F. (2006).
Counterexample-guided predicate abstraction of
hybrid systems. Theoretical Computer Science, 354(2),
250–271.

Alur, R., Dang, T., and Ivančić, F. (2003). Counter-
example guided predicate abstraction of hybrid systems.
In Tools and Algorithms for the Construction and Anal-
ysis of Systems, 208–223. Springer.

Bak, S. and Duggirala, P.S. (2017a). Hylaa: A tool for
computing simulation-equivalent reachability for linear
systems. In Proceedings of the 20th International Con-
ference on Hybrid Systems: Computation and Control,
173–178. ACM.

Bak, S. and Duggirala, P.S. (2017b). Rigorous simulation-
based analysis of linear hybrid systems. In International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, 555–572. Springer.

Bradley, A.R. (2011). Sat-based model checking without
unrolling. In Vmcai, volume 6538, 70–87. Springer.

Bradley, A.R. (2012). Ic3 and beyond: Incremental, induc-
tive verification. In CAV, 4.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
(2000). Counterexample-guided abstraction refinement.
In Computer Aided Verification, 154–169.

Clarke, E., Jha, S., Lu, Y., and Veith, H. (2002). Tree-like
counterexamples in model checking. In lics, 19–29.

Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg,
O., and Theobald, M. (2003). Verification of hybrid
systems based on counterexample-guided abstraction re-
finement. In Tools and Algorithms for the Construction
and Analysis of Systems, 192–207. Springer.

Dierks, H., Kupferschmid, S., and Larsen, K. (2007). Auto-
matic Abstraction Refinement for Timed Automata. In
Proceedings of the International Conference on Formal
Modelling and Analysis of Timed Systems, 114–129.

Duggirala, P.S. and Mitra, S. (2011). Abstraction-
refinement for stability. In Proceedings of 2nd
IEEE/ACM International Conference on Cyber-physical
systems (ICCPS 2011). Chicago, IL.

Duggirala, P.S. and Viswanathan, M. (2016). Parsimo-
nious, simulation based verification of linear systems.
In International Conference on Computer Aided Verifi-
cation, 477–494. Springer.

Fehnker, A., Clarke, E., Jha, S., and Krogh, B. (2005a).
Refining Abstractions of Hybrid Systems using Coun-
terexample Fragments. In Proceedings of the Interna-
tional Conference on Hybrid Systems Computation and
Control, 242–257.

Fehnker, A., Clarke, E.M., Jha, S.K., and Krogh, B.H.
(2005b). Refining abstractions of hybrid systems using
counterexample fragments. In HSCC‘2005, 242–257.

Frehse, G., Krogh, B.H., and Rutenbar, R.A. (2006). Ver-
ifying analog oscillator circuits using forward/backward
abstraction refinement. In Proceedings of the Conference
on Design, Automation and Test in Europe: Proceedings,
DATE ’06, 257–262. European Design and Automation
Association, 3001 Leuven, Belgium, Belgium. URL
http://dl.acm.org/citation.cfm?id=1131481.1131553.

Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray,
R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., and
Maler, O. (2011). Spaceex: Scalable verification of hy-
brid systems. In Proc. 23rd International Conference on

Computer Aided Verification (CAV), LNCS. Springer.
Ghosh, S., Sadigh, D., Nuzzo, P., Raman, V., Donzé, A.,

Sangiovanni-Vincentelli, A.L., Sastry, S.S., and Seshia,
S.A. (2016). Diagnosis and repair for synthesis from
signal temporal logic specifications. In Proceedings of
the 19th International Conference on Hybrid Systems:
Computation and Control, 31–40. ACM.

Prabhakar, P., Duggirala, P.S., Mitra, S., and
Viswanathan, M. (2013). Hybrid automata-based
cegar for rectangular hybrid systems. In Verification,
Model Checking, and Abstract Interpretation, 48–67.
Springer.

Raman, V., Donzé, A., Sadigh, D., Murray, R.M., and
Seshia, S.A. (2015). Reactive synthesis from signal
temporal logic specifications. In Proceedings of the 18th
International Conference on Hybrid Systems: Computa-
tion and Control, 239–248. ACM.

Ratschan, S. and She, Z. (2005). Safety verification of
hybrid systems by constraint propagation based abstrac-
tion refinement. In Hybrid Systems: Computation and
Control, 573–589. Springer.

Sankaranarayanan, S. and Tiwari, A. (2011). Relational
abstractions for continuous and hybrid systems. In
Computer Aided Verification, 686–702. Springer.

Tiwari, A. (2012). Hybridsal relational abstracter. In
Computer Aided Verification, 725–731. Springer.

