
1

Aggregation Strategies in Reachable Set Computation
of Hybrid Systems

PARASARA SRIDHAR DUGGIRALA, University of North Carolina at Chapel Hill

STANLEY BAK, Safe Sky Analytics LLC

Computing the set of reachable states is a widely used technique for proving that a hybrid system satisfies its

safety specification. Flow-pipe construction methods interleave phases of computing continuous successors

and phases of computing discrete successors. Directly doing this leads to a combinatorial explosion problem,

though, as with each discrete successor there may be an interval of time where the transition can occur, so

that the number of paths becomes exponential in the number of discrete transitions. For this reason, most

reachable set computation tools implement some form of set aggregation for discrete transitions, such as,

performing a template-based overapproximation or convex hull aggregation. These aggregation methods,

however, in theory can lead to unbounded error, and in practice are often the root cause of why a safety

specification cannot be proven.

This paper proposes techniques for improving the accuracy of the aggregation operations performed

for reachable set computation. First, we present two aggregation strategies over generalized stars, namely

convex hull aggregation and template based aggregation. Second, we perform adaptive deaggregation using a

data structure called Aggregated Directed Acyclic Graph (AGGDAG). Our deaggregation strategy is driven

by counterexamples and hence has soundness and relative completeness guarantees. We demonstrate the

computational benefits of our approach through two case studies involving satellite rendezvous and gearbox

meshing.

Additional KeyWords and Phrases: Hybrid Systems, Reachable Set, Linear Differential Equations, Aggregations

for Reachable Set, Adaptive Deaggregation.

1 INTRODUCTION
Aeronautical systems such as air-traffic control protocols, auto-pilot software, and satellitemaneuver

protocols are safety critical in nature. Design errors in such systems, such as floating point bugs in

Ariane 5 spacecraft, might lead to unsafe behaviors causing loss of property and in some cases,

life. Testing such systems extensively under various scenarios might give confidence to the system

designer that the systems functions in a safe manner. However, such extensive testing is not always

possible. One of the widely used method for ensuring that the system does not encounter any unsafe

scenarios in such cases is model-based analysis. In this method, a high-fidelity model of the system

is created and extensive testing and verification is performed on the model. Hybrid automata is a

well suited framework for modeling such safety critical systems and formal verification approaches

for proving safety properties of several aeronautical systems modeled as a hybrid automata are

widely available in the literature [13, 19, 21, 23–25, 28, 29].

In this paper, we perform safety analysis of two case studies, satellite rendezvous mission and

gearbox meshing system modeled as a hybrid automata. We adopt a widely used technique for

establishing safety properties of hybrid systems: reachable set computation. Given a set of initial

configurations Θ (often uncountable), the reachable set is the set of all possible configurations

encountered by the system trajectories starting from Θ. Since the reachable set is also uncountable,

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on

Embedded Software (EMSOFT) 2019.

Authors’ addresses: Parasara Sridhar Duggirala, psd@cs.unc.edu, University of North Carolina at Chapel Hill; Stanley Bak,

stanleybak@gmail.com, Safe Sky Analytics LLC.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: September 2019.

we compute its symbolic representation. If the reachable set does not contain any unsafe configura-

tions, then one can prove that the safety specification is satisfied. Often, symbolic representations

of convex sets such as polytopes [14], zonotopes [17], support functions [16], etc. are used because

operations such as linear transformation, intersection, convex hull, and Minkowski sum can be

easily performed over these representations.

Such representations, however, are at a disadvantage while performing mode switches. Due to

the non-determinism of mode switching behavior, one has to compute an overapproximation of

all the states that can perform the mode switch in the chosen representation. This operation is

called aggregation. Often, this overapproximation is very conservative and as a consequence, the

reachable set computed might overlap with the unsafe set. Algorithmically selecting the sets for

performing aggregation to improve accuracy involves combinatorial search and is a challenging

task. However, if one does not perform aggregation, then one has to keep track of exponential

number of symbolic representation after a finite number of mode switches.

This paper exclusively focuses on aggregation and de-aggregation strategies in reachable set

computation. We present two aggregation strategies, first, template based, and second, convex

hull based. For efficient de-aggregation, we introduce a data structure called Aggregated Directed

Acyclic Graph (AGGDAG), and explain our de-aggregation strategy. We demonstrate that goal

driven aggregation mechanisms along with template based aggregation and deaggregation can

handle challenging case studies of satellite rendezvous and gerbox meshing involving challenging

discrete transitions.

In a rendezvous mission, the satellite can operate in one of the two modes: approach or abort.

In the approach mode, the trajectory of the satellite proceeds towards the rendezvous point. In

the abort mode, the decision to rendezvous is aborted and hence the satellite should maintain a

safe distance from the rendezvous point. The nondeterminism in the mode switch from approach

to abort makes the safety analysis very challenging. Gear meshing system models the behavior

of a sleeve switching gears. Depending on the angular position at which the sleeve arrives at the

next gear, the impact forces cause the sleeve to bounce off the gear and delay the meshing process.

The number of bounces the sleeve encounters increases the order of overapproximation due to

aggregation. The aggregation and de-aggregation techniques proposed in this paper are crucial for

combating the computational cost while improving the accuracy for performing safety analysis.

2 PRELIMINARIES
States and vectors, elements in Rn , are denoted as x and v . In this work, we use the following

mathematical notation of a linear hybrid automata.

Definition 1. A linear hybrid automaton is defined to be a tuple ⟨Loc,X , Flow, Inv,Trans,Guard,Reset⟩
where:

Loc is a finite set of locations (also called modes).

X ⊆ Rn is the state space of the behaviors.

Flow : Loc → AffineDeq(X) assigns an affine differential equation Ûx = Alx + Bl for location l
of the hybrid automaton.

Inv : Loc → 2
X
assigns an invariant set for each location of the hybrid automaton.

Trans ⊆ Loc × Loc is the set of discrete transitions.
Guard : Trans → 2

X
defines the set of states where a discrete transition is enabled.

Reset : Trans × X → X defines the reset function that determines the next state after the

discrete transition.

For a linear hybrid automaton, the invariants and guards are given as a conjunction of linear

constraints and the reset function is an affine function.

2

The set of initial states Θ ∆
= (loc0, S0) where loc0 ∈ Loc is called the initial location and S0 is given

as a conjunction of linear constraints. An initial state q0 is a pair (Loc0,x0), such that x0 ∈ X , and
(Loc0,x0) ∈ Θ. Unsafe statesU is also given as a conjunction of linear constraints.

Definition 2. Given a hybrid automaton and an initial set of states Θ, an execution of the hybrid

automaton is a sequence of trajectories and actions τ0a1τ1a2 . . . such that (i) the first state of τ0

denoted as q0 is in the initial set, i.e., q0 = (Loc0,x0) ∈ Θ, (ii) each τi is the solution of the differential

equation of the corresponding location Loci , (iii) all the states in the trajectory τi respect the
invariant of the location Loci , and (iv) the state of the trajectory before each action ai satisfies
Guard(ai).

The set of states encountered by all executions that conform to the above semantics is called

the reachable set. For linear systems, the closed form expression for the trajectories is given as

τi (t) = eAl tτ (0) +
∫ t

0
eAl (t−µ)Bldµ where Al and Bl define the affine dynamics of the mode. Instead

of computing the reachable set of states, we compute the set of states which can be reached by a

fixed simulation algorithm. We call this reachable set as simulation equivalent reachable set, defined
in [6]. We provide the details here for completeness.

Definition 3. A sequence ρH (q0,h) = q0,q1,q2, . . ., where each qi = (Loci ,xi), is a (q0,h)-
simulation of the hybrid automaton H with initial set Θ if and only if q0 ∈ Θ and each pair

(qi ,qi+1) corresponds to either: (i) a continuous trajectory in location Loci with Loci = Loci+1 such

that a trajectory starting from xi would reach xi+1 after exactly h time units with xi ∈ Inv(Loci),
or (ii) a discrete transition from Loci to Loci+1 (with Loci−1 = Loci) where ∃a ∈ Trans such that

xi = Reset(a,xi+1), xi ∈ Guard(a) and xi+1 ∈ Inv(Loci+1). Bounded-time variants of these simula-

tions, with time bound k × h, are called (q0,h,k)-simulations.

Definition 4 (Simulation-Equivalent Reachable Set). Given a hybrid automaton H , initial set Θ,
bounded time T , and simulation step size h, the simulation equivalent reachable set RS is the set of

all states y such that there exists a simulation ρH (q0,h,k) with q0 ∈ Θ that visits y.

Definition 5 (Simulation-Equivalent Safety). A hybrid automaton H with initial set Θ, time bound

T , step size h, and unsafe set U is said to be Simulation-equivalent safe, if all the simulations

ρH (q0,h,k) with q0 from Θ do not visit the unsafe setU .

Remark 1 Note that simulation-equivalent safety does not ensure that all executions (Definition 2)

of the hybrid automaton are safe. The execution might encounter an unsafe state in between

the time instances for performing safety verification. To the authors’ knowledge, none of the

tools available can provide relative completeness guarantees for safety property of executions. We

stick to the notion of simulation equivalent safety because of two reasons. First, we can provide

soundness and relative completeness guarantees and second, for every unsafe system, our approach

can generate a counterexample simulation. These guarantees come at a cost: the user should select

the appropriate step size for analyzing the system under. In the case studies analyzed in this paper,

we highlight the different choices of this step size and present the results.

2.1 Symbolic Representation: Generalized Stars
We include the basic details of the symbolic representation called generalized stars [6, 12] with some

syntactic modifications. Operations such as linear transformation, intersection, and Minkowski sum

can be performed very efficiently over generalized stars, making them very suitable for reachable

set computation.

3

Definition 6. A generalized star (or simply star) Θ is a tuple ⟨a,G, P⟩ where a ∈ Rn is called the

anchor,G = {д1,д2, . . . ,дn} is a set of vectors in R
n
called the generators, and P : Rn → {⊤,⊥} is a

predicate. A generalized star Θ defines a subset of Rn as follows.

[[Θ]] = {x | ∃ᾱ = [α1, . . . ,αn]
T
such that x = a + Σni=1

αiдi and P(ᾱ) = ⊤}

Sometimes we will refer to both Θ and [[Θ]] as Θ.

The generalized stars that we encounter in our analysis have predicate P defined as a conjunction

of linear constraints.

Example 2.1. A unit square S in the cartesian plane with corners at (0, 0) and (1, 1) can be

represented as a star ⟨a,G, P⟩ where a = (0, 0),G = {i, j} where i and j are unit vectors along the x

and y axes respectively, and P
∆
= 0 ≤ α1 ≤ 1 ∧ 0 ≤ α2 ≤ 1.

A set can be represeted in multiple ways in generalized star representation. Changing the anchor

to a′ = (1, 1) results in the new predicate P ′
∆
= −1 ≤ α1 ≤ 0∧−1 ≤ α2 ≤ 0. Changing the generators

to G ′ = {i + j, i − j} would result in the predicate P ′′
∆
= −
√

2 ≤ α1 + α2 ≤ 0 ∧ −
√

2 ≤ α1 − α2 ≤ 0.

Observe that changing the anchor would correspond to translation and changing the generators

corresponds to a linear transformation over the predicate P .

Given two generalized stars Θ1

∆
= ⟨a,G, P1⟩ and Θ2

∆
= ⟨a,G, P2⟩, Θ1 ∩ Θ2

∆
= ⟨a,G, P1 ∧ P2⟩. Here,

the predicates P1 and P2 are defined over the same set of variables. If two stars do not share the

same anchor and generators, one has to perform translation and linear transformation to have the

same anchor and generators.

2.2 Reachable Set Computation of Linear Dynamical Systems Using Generalized Stars
In this section we will outline the reachable set computation of linear dynamical systems that uses

a symbolic representation called Generalized Stars. Generalized star representation leverages the

superposition property of the linear dynamical systems [12].

Input : Initial Set: Θ = ⟨a,G, P⟩, Dynamics: (A,B), Step: h, Bound: k
Output :Reach(Θ) = Reach0(Θ), . . . ,Reachk (Θ)

1 for each i from 0 to k do
2 ai ← ρ(a,h,k)[i];

3 for each дj ∈ V do
4 д′j ← ρ(a + дj ,h,k)[i] − ai ;

5 Gi ← {д
′
1
, . . . ,д′m};

6 Reachi (Θ) ← ⟨ai ,Gi , P⟩;

7 Append Reachi (Θ) to Reach(Θ);

8 return Reach(Θ);

Algorithm 1: Algorithm that computes the reachable set for a linear dynamical system at

time instances i · h from n + 1 simulations.

Given an initial set Θ
∆
= ⟨a,G, P⟩ with G = {д1,д2, . . . ,дn}, we compute the reachable set for

a linear dynamical system Ûx = Ax + B using simulations. We generate simulations starting from

a (denoted as ρ(a,h,k)), and a + дj for all 1 ≤ j ≤ n (denoted as ρ(a + дj ,h,k), respectively). For
a given time instance i · h, the reachable set denoted as Reachi (Θ) is defined as ⟨ai ,Gi , P⟩ where
ai = ρ(a,h,k)[i] and Gi = ⟨д

′
1
,д′

2
, . . . ,д′n⟩ where ∀1 ≤ j ≤ n,д′j = ρ(a + дj ,h,k)[i] − ρ(a,h,k)[i].

4

Readers can refer to [6] for the correctness of this algorithm. All the trajectories starting from Θ
satisfy the safety specification if Reach(Θ) does not overlap with the unsafe setU .

Remark 2 Notice that the predicate in the reachable set remains same as that of the initial set Θ.
Hence, if one changes the initial set by changing the predicate, one needs not generate additional

simulations for computing the reachable set. One can just change the predicate in line 6 and

compute the new reachable set. For checking the safety specification with the new initial set, we

still have to check perform the overlap of the new reachable set with the unsafe setU .

2.3 Reachable Set Computation of Linear Hybrid Systems Using Generalized Stars
The reachable set computation technique for hybrid automata has three subroutines. First, it

computes the reachable set of the dynamical system in the current mode of operation (line 6).

Second, it computes the overlap of the reachable set in the current mode with the mode invariant

(line 7). Third, it computes the overlap of the reachable sets with the guards of discrete transitions

that cause a change in mode (line 9). When a discrete transition is performed, the reachable set in

the new mode is computed by invoking the Algorithm 1 subroutine. Algorithm 2 is a pseudocode

description of the algorithm. This reachable set computed is simulation equivalent reachable set,

i.e., a state is in the reachable set if and only if there exists at least one simulation that visits the

state.

Input : Initial set Θ, Hybrid system H , Step: h, Bound: k .
Output :ReachSet as the set of reachable states.

1 queueStars← ∅;
2 append (Θ, loc0, 0) to queueStars;
3 ReachSet ← ∅;
4 while queueStars is not empty do
5 S ← dequeue(queueStars);
6 R ← ReachSetDynSys(S, S .loc,h,k − S .time);

7 R′← InvariantOverlap(R,R.Inv);
8 ReachSet ← ReachSet ∪ R′;
9 nextRegions← discreteTrans(R′,H .Trans);

10 append nextRegions to queueStars;

11 return ReachSet;

Algorithm 2: Algorithm that computes bounded time simulation equivalent reachable set.

We want to highlight that the reachable set is only computed at discrete instances of time.

However, the advantage of our approach is that we can provide a counterexample when the safety

specification is violated. Algorithm 2 terminates because of two reasons. First, the simulations

considered in this paper spend at least one step in its current mode of operation. Second, we compute

the reachable set for only a bounded number of steps k . Hence, the set of states in queueStars is
finite.

One of the primary drawbacks of Algorithm 2 is in handling the discrete transitions. Suppose that

in a given location, the number of stars that overlap with the guard of a discrete transition (line 9

in Algorithm 2) ism. As a result, the number of stars in the queueStars will become O(m2) after

2 discrete transitions. After η number of discrete transitions, the number of states in queueStars

5

grows to O(mη). To avoid the exponential blow up of the number of sets in queueStars , reachable
set computation tools often use aggregation.

Remark 3 While Algorithm 2 might compute exponential number of stars, we do not generate

exponential number of simulations for each mode in the hybrid automata. For each mode, we

decide on an anchor amode and generators Gmode and pre-compute the n + 1 simulations required

for reachable set computation for that mode. For computing the reachable set of a star in a new

mode (line 6), we change the anchor and the generators of the star to amode andGmode respectively

and use the observation in Remark 2.

While this helps us cut down the number of simulations, we still have to check for overlap of

unsafe set with exponential number of stars. Aggregation is crucial step to decrease the number of

such checks.

3 AGGREGATION AND DEAGGREGATION
In aggregation, the set of all stars in queueStars that are making a discrete transition to the same

mode are collected together. Say, these are S1, S2, . . . , Sm . Then, an overapproximation of these S ′

is computed such that S1 ∪ S2 ∪ S3 . . . ∪ Sm ⊆ Sover . Instead of computing the reachable set for

each of S1, S2, . . . , Sm , the reachable set of Sover is computed in the future modes.

There are twomain drawbacks of this aggregationmechanism. First, the union of sets S1, S2, . . . , Sm
is often a non-convex set. Whereas the representation used for computing reachable set is used for

representing convex sets. Therefore, this overapproximation of a non-convex set by a convex set

is very conservative. More worryingly, the reachable set of Sover will trigger additional discrete
transitions that would not happen while computing the reachable sets using S1, S2, . . . , Sm . Such
discrete transitions are artifacts of the conservative overapproximation during the aggregation

process.

Fig. 1. The deaggregation process is shown for a
two-mode system. Upon reaching an error mode
(red dotted region), the fully aggregated set of
states (gray large region), is split in half (two black
regions), which no longer contain error states.
A video of the complete computation is avail-
able online at https://www.youtube.com/watch?

v=SDzGKDBq5tM.

To overcome the two main challenges, we make

the following modifications to the reachable set com-

putation algorithm. First, while handling discrete

transitions, we perform aggregation for all the sets in

the queueStars that go to the same mode. The resul-

tant star is tagged as an aggregate and the reachable
set computation continues where the sets are tagged

as aggregate. This way of computing the reachable

set will result in a conservative overapproximation.

If one of the sets in the computation overlaps with

the unsafe setU , we check if the set is tagged as ag-
gregate. If so, then we go to the initial set in the loca-

tion and perform deaggregation and recompute the

reachable set. Hence, we perform counterexample

guided deaggregation. Our algorithm (Algorithm 3)

terminates after we find either a counterexample for

safety specification or prove that the overapproxi-

mation of the reachable set does not overlap with

unsafe set.

A working example of the aggregation and deag-

gregation is provided in Figure 1. In Algorithm 3,

the main loop (from lines 4- 24) continues until

queueStars is empty. We first dequeue a star from

6

https://www.youtube.com/watch?v=SDzGKDBq5tM
https://www.youtube.com/watch?v=SDzGKDBq5tM

Input : Initial set Θ, Hybrid automaton H , Step h, Bound k , Unsafe setU .

Output : If there exists a trajectory from Θ visitsU .

1 queueStars← ∅;
2 append (Θ, loc0, 0) to queueStars;
3 ReachSet ← ∅;
4 while queueStars is not empty do
5 S1 ← deque(queueStars);

6 if S1.taд = unaggregated then
7 Snxt ← S1;

8 else
9 listAдд← stars in queueStars with mode S1.loc;

10 Snxt ← Aggregate(listAдд);
11 Snxt .taд← aggregated;
12 dequeue listAдд from queueStars;

13 R ← ReachSetDynSys(Snxt , Snxt .loc,h,k − Snxt .time);

14 R′← InvariantOverlap(R,R.loc);
15 if R′ ∩U , ∅ and R′.taд = aggregated then
16 Saдд ← first aggregated star in path from Snxt to Θ;

17 newStars ← deaддreдate(Saдд);

18 newStars .taд← unaggregated;
19 Enqueue newStars into queueStars;

20 if R′ ∩U , ∅ and R′.taд , aggregate then
21 return There exists a trajectory from Θ visitingU ;

22 ReachSet ← ReachSet ∪ R′;
23 nextRegions← discreteTrans(R′,H .Trans);
24 append nextRegions to queueStars;

25 return All trajectories are safe;

Algorithm 3: Algorithm that performs aggregation and deaggregation for checking safety

of the trajectories originating from Θ.

this queue and based on the tag, perform aggrega-

tion operation with all the stars for the same mode.

We then compute the reachable set of the aggregated star in this mode. If one of the stars in the

reachable set overlaps with the unsafe set, we check if the reachable set is tagged as aддreдated . If
so, we pick the first aggregated star in the path from the current star to the root Θ and perform

deaggregation of the selected star.

These deaggregated stars are added to queueStars , tagged as unaддreдated , and the reachable

set computation continues. If the reachable set of an unaддreдated star overlaps with the unsafe

set, then the algorithm returns that the safety specification is violated.

Lemma 3.1. Algorithm 3 will return safe if and only if all the simulations starting from Θ for
bounded time k are safe.

Proof. This proof is a consequence of simulation equivalent reachability of Algorithm 2. We

first prove that the Algorithm 3 is sound, that is, if the algorithm returns safe, then all simulations

7

are indeed safe and if the algorithm returns unsafe, then it is indeed unsafe. If the condition in

line 20 of Algorithm 3 is satisfied, then the reachable set R′ is equivalent to the one computed

without any aggregation and hence is simulation equivalent. Therefore the system is indeed unsafe.

Hence, whenever the algorithm returns unsafe, the system is indeed unsafe. If the algorithm returns

safe, then the reachable set computed using aggregation, which is clearly an overapproximation of

the reachable set, does not overlap with unsafe set. Hence, the system is safe.

It now remains to prove that the loop in lines 4- 24 terminates. This is easy to infer as there

are only finitely many reachable sets that we compute. Hence, we perform only finitely many

aggregations. Since we strictly do not aggregate the stars that were deaggregated before, the

condition in line 15 will only be encountered finite number of times. Hence the loop terminates

and the algorithm either returns safe or unsafe. □

Remark 4 In Algorithm 3, by default, we perform aggregation of all the stars making a discrete

transition to the same mode. Also, upon visiting unsafe set, we deaggregate the first aggregated

star in the path from unsafe set to the root and do not perform any future aggregations in reachable

set computation.

The algorithm we implement is different from Algorithm 3 in two ways. First, we take into

account the sequence of modes visited by the star for performing aggregation. That is, if two stars

have encountered a different sequence of mode switches, they might be aggregated into different

stars. Second, the deaggregation need not be performed at the first aggregated star in the path from

leaf to root. We perform the deaggregation of one of the aggregated stars in the path. However, we

ensure that we do not re-aggregate the children of deaggregated star. As a result, the line 21 would

be invoked only if all the stars in the path from unsafe set to the initial set were unaggregated.

One of the advantages of generalized stars is that it allows for easy and efficient aggregation and

deaggregation. Additionally, we avoid computing the entire reachable set, but only compute the

specific sections of the reachable set that are important for safety verification. More specifically,

we recompute the reachable set only at times where discrete transitions are enabled or the unsafe set
is reached. This targeted recomputation is the main difference between this work and [26], where

HyPro [27] is invoked with increasingly accurate configuration parameters to reduce the error in

reachable set computation on a per-mode basis in the search tree. To keep track of the aggregation,

deaggregation, and time instants for selective recomputation, we maintain a data structure called

Aggregated Directed Acyclic Graph (AGGDAG).

3.1 Aggregation of Generalized Stars
In this section, we present two techniques for performing aggregation of generalized stars. The first

is template based aggregation and deaggregation and the second is aggregation using convex hulls.

3.1.1 Template Based Aggregation: In this paper, since all the stars we encounter have predicates

that are conjunctions of linear constraints, our overapproximation is also a predicate which is a

conjunction of linear constraints. In contrast to the template-based counterexample refinement

work in [7], this paper can handle hybrid automata with affine differential equations.

Lemma 3.2. Consider stars S1

∆
= ⟨a,G, P1⟩, S2

∆
= ⟨a,G, P2⟩, . . ., Sm

∆
= ⟨a,G, Pm⟩ where the anchor

and generators for all the stars is the same. A star S ′ ∆
= ⟨a,G, P ′⟩ is an overapproximation of the union,

i.e., S1 ∪ S2 ∪ . . . ∪ Sm ⊆ S ′, if and only if (P1 ∨ P2 ∨ . . . ∨ Pk) ⇒ P ′.

For computing the predicate P ′, we use a template based method. For each location, a set of

template directions cT
1
, cT

2
, . . . , cTl are provided by the user and the predicate P ′ is determined by

8

selecting the appropriate values of d1,d2, . . . ,dl such that the condition (P1 ∨ P2 ∨ . . . ∨ Pk) ⇒ P ′

is satisfied where P ′
∆
= (cT

1
α ≤ d1) ∧ (c

T
2
α ≤ d2) ∧ . . . ∧ (c

T
l α ≤ dl).

For computing dj , 1 ≤ j ≤ l , we solvem linear programming problems. dij is the maximum value

of cTj α in Pi . That is, d
1

j = max cTj α given P1(α) = ⊤. Similarly, d2

j = max cTj α given P2(α) = ⊤. We

also compute d3

j , . . . ,d
l
j . The value of dj = max{d1

j ,d
2

j , . . . ,d
l
j }.

Input :Predicates P1, P2, . . . , Pm , Template directions cT
1
, cT

2
, . . . , cTl .

Output :Predicate P ′ such that (P1 ∨ . . . ∨ Pm) ⇒ P ′.
1 for each template direction cTj do
2 for each star Si do
3 dij ← max cTj α given Pi (α) = ⊤;

4 dj ← max {d1

j , . . . ,d
m
j };

5 return P ′
∆
= (cT

1
α ≤ d1) ∧ (c

T
2
α ≤ d2) ∧ . . . ∧ (c

T
l α ≤ dl);

Algorithm 4: Algorithm that performs template based aggregate of stars.

Lemma 3.3. The predicate P ′ returned by Algorithm 4 is such that (P1 ∨ . . . ∨ Pl) ⇒ P ′.

Observe that we only consider aggregation of stars with the same anchor and generators. This is

because of two reasons. First, the stars that we desire to aggregate correspond to the same mode.

Second, as suggested in Remark 3, in order to decrease the number of simulations, we change the

anchor and generators of the star to the anchor and generators of the corresponding mode for

computing the reachable set. Hence, we perform this aggregation after the transformation of the

predicate.

It is also inexpensive to perform deaggregation of the stars aggregated using template directions.

Suppose that the aggregation of the stars S1, S2, . . . , Sl results in too conservative overapproximation.

It is then desirable to perform two separate aggregations, the first aggregation is of the first half of

the stars S1, . . . , Sl/2 and the the second aggregation corresponding to remaining half of the stars

Sl/2+1, . . . , Sl . For this deaggregation, one can reuse the results of the linear programs computed in

Algorithm 4.

One might worry that template based aggregation might require solving a lot of linear programs.

However, by using warm start optimization, the cost of solving several linear programs on the

same polytopes becomes amortized. In warm start optimization, the seed for the next iteration of

simplex is obtained from the solution of a previous linear program. Hence, the simplex algorithm

skips the step of finding the feasible solution and computation is only used for finding the optimal

solution for the new cost function. Without such cost reduction, template based overapproximation

becomes very expensive.

One of the disadvantages associated with the template based overapproximation is that the order

of overapproximation is dependent on the template directions that are selected. In addition to the

axis directions, we pick the template directions dependent upon the dynamics of the location. The

most appropriate template directions for improving the accuracy of overapproximation is a future

area of investigation.

3.1.2 Convex Hull Aggregation: Given stars S1, S2, . . . , Sm , one way to perform aggregation is to

compute convex hull. A widely implemented technique in Multi Parametric Toolbox (MPT) [22]

for computing convex hulls of polytopes requires transforming the representation from face

representation to vertex representation and vice versa. This conversion among representations can

9

possibly takes exponential time. We avoid these exponential time operations by using the symbolic

orthogonal projections [18]. We include the basic details of this convex hull operation for the sake

of completeness.

Definition 7. A symbolic orthogonal projection O is given as a pair of matrices A ∈ Rm×n and

L ∈ Rm×k and a is a column vector in Rm , represented as (A,L, a) prepresents the set

O = { x ∈ Rn | ∃z ∈ Rk ,Ax + Lz ≤ a}

If a polytope is represented as a generalized star, there are no existentially quantified free variables

in it. Hence, generalized stars that represent polytopes are special cases of symbolic orthogonal

projections. The convex hull of two symbolic orthogonal projections, which can be computed by

merely transforming the structural representations is presented below (taken from [18]).

Definition 8. Given two symbolic orthogonal projections O1

∆
= (A1,L1, a1) and O2

∆
= (A2,L2, a2),

the convex hull of O1 and O2 is given as a symbolic orthogonal projection O3

∆
= (A3,L3, a3) where

A3 =

[
A1

0

]
,L3 =

[
A1 L1 0 a1
−A2 0 L2 −a2

]
, a3 =

[
a1
0

]
Where 0 represents the zero matrix of the appropriate dimension.

The advantage of symbolic orthogonal projection over other representations is that convex hull

can be computed purely syntactically. However, observe that if O1 and O2 had n + k variables

and m constraints, then the number of constraints in O3 is 2m and the number of variables is

2n + 2k + 1. If one desires to perform convex hull of r symbolic orthogonal projections, then

the number of constraints increases by r fold and the number of variables also increases r fold
(it is not exponential). Hence, the number of constraints and variables required to specify the

polytope exponentially increases with the number of discrete transitions. This increases the cost

associated with checking the safety property of all the stars in the reachable set. Additionally, the

deaggregation operation cannot reuse the computations performed during aggregation.

3.2 Aggregated Directed Acyclic Graph - AGGDAG
In Remark 3, we observed that we need not generate exponential number of simulations for each

mode. Rather, we convert the anchor and generator of a star to amode and Gmode . We reuse the

same simulations for computing reachable set of modes after deaggreation. To further reduce the

computation after deaggregation, we use Aggregated Directed Acyclic Graph (AGGDAG).

Observe that after deaggregation, there are only two instances where recomputing the reachable

set contributes to the accuracy for safety verification. First, one needs to check if the reachable set

of deaggregated stars overlaps with the unsafe set. Second, recompute the overlap of reachable

set and the guards for discrete transitions. For time instances that do not overlap with any guard

or with the unsafe set, one need not recomputate the reachable set. AGGDAG is a bookkeeping

mechanism for keeping track of time steps for discrete transitions and time steps for overlap with

the unsafe set.

Fig. 2. Example of an AGGDAG.

The nodes in AGGDAG correspond

to the modes visited during the reach-

able set computation. Each mode is

tagged with the maximum time a star

remains in that mode. Each transition

inAGGDAG corresponds to a discrete

transition from one mode to another.

10

The transition is also labelled with

the time steps when the reachable set

has overlap with the guard condition for the transition. Finally, if stars that experience different

sequence of mode switches are aggregated, the corresponding node in AGGDAG has two incoming

edges from different nodes. Each of these discrete transitions would be labelled by the time interval

for the corresponding discrete transition.

Definition 9. An AGGDAG is a directed graph (G,E) where, the set of nodes G corresponds to

the modes visited during the reachable set computation that encounter the discrete transitions or

overlap with the unsafe set, and the set of edges E represents the successor relationship among

these modes.

Example 3.4. Figure 2 is an example of AGGDAG where the hybrid automata has 3 modes of

operation, namely, Far, Approaching, and Abort. The initial set starting from the Far mode takes

the discrete transitions to Abort in the time duration [1, 56] and [57, 112], it also takes a discrete

transition to Approaching mode in [109, 112] steps. Notice that Far mode is tagged with 112, which

means that after 112 steps, all of the stars leave the Far mode.

Notice that the two Abort(199) nodes do not have any outgoing edges. This implies that the

reachable states in these abort modes does not take any further discrete transitions. On the other

hand, the Approaching node has an outoing edge to Abort and the edge is labelled with time

interval [1, 91]. Hence, the reachable set in Approaching mode take a discrete transition to Abort

mode in time interval [1, 91]. Similarly, the Abort node (more specifically Abort(90)) mode has one

outoing edge to the Error node and the edge is labelled with interval [16, 86].

To check if the safety property is violated, we first inspect the AGGDAG in Figure 2 to see if any

Error node is present in it. Since reachable set in Abort mode overlap with unsafe set, we need to

inspect whether this overlap is caused due to overapproximation induced in the aggregation of the

reachable set in the path from the root node (Far node) to the Abort node or if it corresponds to an

real behavior for safety violation.

The overapproximation of reachable set can be at two instances, first, the aggregation of stars in

the Approaching mode in the interval [109, 112] or second, in the Abort mode in the interval [1, 91].

If both these reachable set do not have any aggregation, then we have proof that the overlap with

the unsafe set is indeed a safety violation. If one of the discrete transitions has an aggregation, we

perform deaggregation and compute the new reachable set. The AGGDAG in Figure 2 is a result

of one such deaggregation. In the previous iteration, the AGGDAG had only one transition to

Abort(199) mode. The resulting reachable set of the aggregation had overlap with the Error state.

After deaggregation, we updated the AGGDAG to represent two Abort(199) nodes with different

time intervals for discrete transition, corresponding to the different sets that were aggregated. State

of the art reachable set computation tools either perform full aggregation or no aggregation at

all. In the case studies we show that this goal driven deaggregation along with template based

aggregation can handle challenging hybrid automata with multiple discrete transitions.

The AGGDAG is useful only in bookkeeping the modes encountered during reachable set and

the time intervals for the discrete transitions. The strategy for deaggregation is still decided by the

user. In our tool, we have implemented two deaggregation strategies, first, from the leaf to root

and second, from root to leaf. In the case of leaf to root, we first deaggregate the reachable sets

that are closest to the safety violation and continue the deaggregation to the top. In Figure 2, in

the leaf to root strategy, we would first deaggregate the states taking the discrete transition from

Approaching to Abort. In the root to leaf strategy, the deaggregation is performed at the node

closest to the root node in the path leading to the unsafe overlap. In Figure 2, under the root to leaf

strategy, one would deaggregate the stars in the discrete transition from Far to Approaching. The

11

best deaggregation strategy for proving safety or discovering the counterexample is still an area to

be investigated and is a part of future research.

4 CASE STUDIES
We evaluate our proposed method on two case studies, a spacecraft rendezvous benchmark and a

gearbox meshing benchmark.

4.1 Spacecraft Rendezvous Passive Safety
The spacecraft rendezvous system consists of a primary chaser spacecraft moving towards a

secondary, free-flying object (such as a satellite) and performing close-proximity maneuvers. The

maneuver is analyzed in relative coordinates, as shown in Figure 3. The verification goal is to

ensure passive safety: at any time in the maneuver, a system failure may occur and the resulting

propulsion-free trajectory must avoid colliding with the target satellite. This requirement comes

from real-world failures. In 2005, NASA’s DART spacecraft was intended to rendezvous with the

MUBLCOM satellite, but due to depleted propellant instead collided with the target satellite (a loss

of a $110 million project) [11].

Fig. 3. Collisions are checked between
spacecraft in orbit in relative coordi-
nates (image from [8]).

Our model is based on a published spacecraft rendezvous

benchmark [8, 20]. The system is modeled as a hybrid automa-

ton with different discrete modes depending on the sensors

being used for navigation, and an LQR controller is designed

to meet physical and geometric safety constraints. The rela-

tive dynamics are linearized using the Clohessy-Wiltshire-Hill

(CWH) equations [10], which is often used in close proximity

operations, and generally considered valid when spacecraft

are within a few kilometers. The hybrid automaton consists

of three modes, two for different navigation strategies, and

one for the passive dynamics, shown in Figure 4. This sys-

tem is a six-dimensional linear system, with nondeterministic

transitions to the passive mode. In our analysis, we check for

passive safety from t1 = 0 to t2 = 140. The dynamics and controller in each mode are as described in

the benchmark paper [8]. We also use the same initial set of states, the box where x ∈ [−925,−875],

y ∈ [−425,−375] and the velocities are zero. We focus on the collision-free safety requirement, and

strive to verify that the spacecraft remain separated by at least 5 meters in the infinity norm (the

unsafe set is a 10 × 10 box centered at the origin).

Although several tools have successfully analyzed a version of this model in the ARCH hybrid

systems tools competition in 2018 [1], a critical simplification was made: the competition model

did not actually check the passive safety requirement. In particular, the competition model used a

fixed time to transition to the passive mode. This is an unrealistic simplification, since the time of

failure cannot be known in advance.

The analysis done in the original work [8] is slightly better, in that it checks for passive safety

for a known 5 minute failure interval. In [8], the authors comment that, if larger time intervals

are used, “the initial set of states under the Passive mode is large, making it very difficult to prove

safety.” The suggestion is then to create subintervals that cover the full time range of transitions to

the passive mode, and then successively analyze each interval as a standalone verification problem.

Presumably, a manual guess-and-check approach should be used to create these subintervals. This

was done with CORA in the 2019 tools competition [2], where a larger passivity interval was

analyzed through a manual process of selecting the aggregation subintervals.

12

Fig. 4. Hybrid automaton model for our case study (image from [8], which also include the dynamics matrices). We check
for passive safety from time t1 = 70 − r to t2 = 70 + r , where r is a model parameter.

We consider a parameterized version of the problem, where a single parameter r controls

the amount of nondeterminism in the switch to the passive mode. A simulation-based analysis

revealed that entering the passive mode up to around time 140 will not violate the collision safety

specification. We thus consider enable the switch to the passive mode from time 70 − r to time

70 + r . In this way, r = 0 corresponds to the easy case where the switch occurs at exactly time 70,

and r = 70 corresponds to the difficult case where the switch can occur at any time between 0 and

140. In the automaton in Figure 4, we set t1 = 70 − r and t2 = 70 + r .
All the experiments are performed on a system with an Intel i5-5300U CPU running at 2.30GHz

and 16GB RAM running Ubuntu Linux 18.04. Since we needed to script and measure many execu-

tions of the tools, we make use of the hypy [4] library distributed as part of the Hyst tool [3].

As a comparison, we also run the benchmark on the SpaceEx [16] verification tool. Our proposed

aggregation and deaggregation enhancements are implemented as modifications to the publicly

available Hylaa tool [5]
1
.

Note that SpaceEx analyzes the system using continuous time, whereas our approach builds

off Hylaa, a discrete time (simulation equivalent) tool. Although SpaceEx needs extra operations

to enable continuous-time analysis, this also allows it to use larger time steps where accuracy

permits, as it will be known that the state will not jump through the unsafe region between steps

(tunneling). Tunneling is possible with discrete-time analysis methods, so the choice of time step is

an important parameter (we will analyze this with the Hylaa results). Another difference is that

discrete-time methods permit the generation of counter-examples when specification violations

occur, but continuous-time methods like SpaceEx do not generate these, as the detected violation

may be due to overapproximation needed to handle continuous time. We expect the reach set

to be qualitatively the same when comparing discrete-time analysis with small time steps and

continuous-time analysis with sufficient accuracy. This is indeed the case, as shown in the plot of

the reach set output from SpaceEx and our implementation in Figure 5.

4.1.1 SpaceEx. We use the latest space-time clustering (STC) reachability method implemented in

SpaceEx [15] version v0.9.8f. Two aggregation methods are available, convex hull aggregation

(chull) and error-guided partial aggregation (none2). We tune accuracy of the reachable set with

the flowpipe-tolerance parameter as well as the number of support function directions to use,

1
Our changes are in the public Hylaa repository at https://github.com/stanleybak/hylaa/releases/tag/EMSOFT2019-version.

2
This was confirmed through discussions with the SpaceEx developers. The name is confusing.

13

https://github.com/stanleybak/hylaa/releases/tag/EMSOFT2019-version

(a) SpaceEx (continuous time)

(b) Our implementation (discrete time)

Fig. 5. The reachability plots using SpaceEx (top)
in continuous time and our implementation based
off Hylaa (bottom) in discrete time are qualitatively
similar. The initial states are in the lower left of the
plots, the unsafe states are near the origin. In this
plot, the switch to the passive mode occurs at exactly
time 140.

 0.1

 1

 10

 0 10 20 30 40 50 60 70

Timeout (One Minute)

R
u
n
ti

m
e
 (

se
co

n
d
s)

Passive Switch Time Radius (r)

SpaceEx STC with Convex Hull Aggregation

 box (fp-tol=0.2)
 box (fp-tol=0.01)
 oct (fp-tol=0.2)
 oct (fp-tol=0.01)

(a) SpaceEx with convex hull aggregation can analyze
the system up to around r = 30.

 0.1

 1

 10

 0 10 20 30 40 50 60 70

Timeout (One Minute)

R
u
n
ti

m
e
 (

se
co

n
d
s)

Passive Switch Time Radius (r)

SpaceEx STC with Error-Guided Partial Aggregation

 box (fp-tol=0.2)
 box (fp-tol=0.02)
 oct (fp-tol=0.5)
 oct (fp-tol=0.2)

(b) SpaceEx with error-guided partial aggregation
can analyze the system up to around r = 55.

Fig. 6. Reachability analysis of satellite rendezvous
using SpaceEx.

for which we consider both box and oct. By fixing the parameters, we can analyze the system as

the passive-mode switch time parameter r is increased from 0 to 70. Since several options which

trade off accuracy for computation time are available to the user, a fair comparison is difficult. We

thus consider many permutations of these parameters, to try to find the best ones for each value of

r . In the experiments we had a one minute timeout to run the verification task.

With convex hull aggregation (Figure 6a), the system can be analyzed successfully up to around

r = 25. Some of the lines end before exceeding the timeout; these are the cases where increasing

r by 1 would prevent successful analysis with those settings (safety could not be proven due

to overapproximation). Different accuracy settings can slightly go beyond this, with r = 30

being possible in about one minute with oct directions and flowpipe-tolerance=0.01. This
demonstrates the inherent overapproximation due to aggregation, where even modest uncertainty

in the switch to the passive mode prevents verification.

With error-guided partial aggregation (Figure 6b), SpaceEx can analyze the system up to around

r = 55. It can still not do full uncertainty (up to r = 70) since there is still some overapproximation

from aggregation, the choice of flowpipe-tolerance and the choice of support function directions.

We did not find parameter values where we could analyze for much larger values of r , although
analysis should theoretically be possible by sufficiently increasing the accuracy settings and waiting

long enough.

One final note is that parameter selection is difficult for SpaceEx, and it would be unreasonable

to perform an exhaustive search for every model that needs analysis. Although we have presented

14

(a) Step Size 1.0

(b) Step Size 0.5

(c) Step Size 0.25

(d) Deaggregation with Step Size 1.0

Fig. 7. Plots of the discrete-time reach set near the unsafe
state are shown with aggregation disabled (top three plots).
While a step size of 1.0 is unlikely to tunnel through the
unsafe states (red box), using 0.25 provides a continuous
set of reachable states. Our aggdag approach produces the
bottom plot (step size 1.0), showing improved accuracy near
the unsafe states using deaggregation.

 0.1

 1

 10

 0 10 20 30 40 50 60 70

Timeout (One Minute)

R
u
n
ti

m
e
 (

se
co

n
d

s)

Passive Switch Time Radius (r)

Proposed AGGDAG Deaggregation Method

 step=1
 step=0.5
 step=0.25

(a) The proposed AGGDAG approach can analyze up
to the full r = 70, even for the smallest time step.

(b) The reachable set for the spacecraft rendezvous
system at three different zoom levels is shown. Reach-
able states near the unsafe set (red square near ori-
gin) are deaggregated using the proposed approach
until no unsafe states are reachable. A video of the
computation is online at https://www.youtube.com/

watch?v=iXJlJnsxeN0.

Fig. 8. Reachability analysis of satellite rendezvous
using our method.

several reasonable options (and experimented with many others that were not presented), we have

no guarantee that the combinations of options we tried were the fastest or most accurate. Further,

there are other parameters we could have explored, such as the lgg reachability mode instead of

stc, where a clustering parameter is available to more finely control the aggregation process.

The SpaceEx help lists about 50 parameters, not all linked to method accuracy, that can affect the

15

https://www.youtube.com/watch?v=iXJlJnsxeN0
https://www.youtube.com/watch?v=iXJlJnsxeN0

(a) System Overview (b) Hybrid Automaton (c) Meshing Simulation

Fig. 9. Gearbox benchmark overview (images from [9]).

results of the computation, and it can be difficult to select the correct ones to explore, even for

people familiar with the verification algorithms.

4.1.2 Proposed AGGDAG Approach. Since the proposed aggdag method was implemented on top

of the discrete-time Hylaa tool, care must be taken to ensure that a proper time step is chosen. If the

time step is too small, too many steps will be necessary and the analysis time can become excessive.

On the other hand, if the time step is too large, the unsafe states may be missed if they are reached

between time steps (this is called tunneling in collision detection methods). We examine the reach

set with switching time 140, which goes close to the unsafe states.

The analysis is shown in Figure 7. This is zoomed-in plot of the system shown before from

Figure 5b near the unsafe states. For the plot, it is clear that using a step size of 1.0 is unlikely to

tunnel through the unsafe states, although the smaller step size 0.25 may be preferred as the reach

set is a continuous set of state (the sets overlap between time steps).

We measure the performance of our method using all three step sizes. The result is shown in

Figure 8a. Since all three step sizes will deaggregate if an unsafe set is reached, the analysis is

exact with respect to the specification. This means that all the step sizes can successfully verify the

system, even with maximum uncertainty in the switching time to the passive mode (r = 70). The

only difference is the performance of the methods. In this case, all three step sizes verify the system

before the one minute timeout. Furthermore, parameter tuning with our approach is a bit more

straightforward, as the main parameter is just the step size, and initial analysis using simulations

can be used to guide selecting a value for this.

A plot of the reachable state for the r = 70 case is shown in Figure 8b. Prior to our analysis, we

were unaware of any tool which could successfully analyzed this model in the complete passivity

settings (r = 70).

4.2 Gearbox Meshing
The gearboxmeshing system [9] analyses the impact force andmeshing time in amotor-transmission

drive system, where a shift actuator is used to switch a sleeve between gears. Depending on the

angular position with which the sleeve arrives at the next gear, impacts may occur which can

delay the meshing process. The sleeve may bounce off the gears several times before meshing

succeeds. The hybrid automaton model of this system consists of a free mode and a meshed mode,

where the system can take circular discrete transitions in the free mode corresponding to the

sleeve bouncing off the sides of the gear, as well as a final transition from the free mode to the

meshed mode when meshing succeeds. Resets along discrete transitions are used compute the

accumulated impact impulse, which changes instantaneously whenever a transition is taken. The

system has five variables: two for the sleeve position and two for the sleeve velocity, and a one

16

Table 1. Gearbox Parameter Evaluation

Parameter Runtime (s) Deaggregation Steps

Deagg Leaves First 17.6 52

Deagg Root First 11.2 35

Deagg Most States 16.1 49

Box Agg 10.2 38

Convex Hull Agg timeout -

No Deaggregation timeout -

SpaceEx timeout -

further variable to track the accumulated impact impulse. The analysis goal is to find the worst-case

accumulated impact impulse, as well as the longest meshing time. An overview of the system is

shown in Figure 9, where Figure 9a shows the sleeve moving between two gears, Figure 9b shows

the hybrid automaton model of the system, and Figure 9c shows a simulation where the sleeve

bounces off the gear three times before meshing.

This model was also used as part of the ARCH hybrid systems verification tools competition [2].

In order to make analysis tractable, a critical simplification was made: a small set of initial states was

analyzed. The initial set of states used for competition was so small, in fact, that all reachable states

go through the same exact sequence of discrete transitions as the simulation shown in Figure 9c,

with no branching possible in system executions. The reason for this is that aggregation error can

quickly accumulate over multiple discrete jumps, so that existing aggregation strategies easily lead

to more and more error. The additional error can then make it appear that the sleeve can bounce

off the gear indefinitely, without meshing.

We analyze this system using the proposed AGGDAG and deaggregation approach with a

significantly larger set of initial states. While the competition benchmark used the initial set of

positions x0 ∈ [−0.0168,−0.0166], y0 ∈ [0.0029, 0.0031], we analyze the larger initial set x0 ∈

[−0.017,−0.016], y0 ∈ [−0.005, 0.005]. We use a step size of 0.001 and analyze up to a time bound of

0.35, which is sufficient for all executions to reach the meshed mode, as we will demonstrate with

reachability analysis. One hundred simulations from random initial states are shown in Figure 10,

which show that many different sequences of discrete transitions are possible. Some executions

immediately mesh, while others bounce several times before meshing.

Since we do not have an unsafe set of states in this system, we instead drive the deaggregation

process based on splits in the discrete state transition graph. That is, if a single aggregated star

can reach multiple guards when computing the reach set of the dynamical system in a single

mode, then we will perform deaggregation. This is done by modifying line 15 in Algorithm 3. This

use of deaggregation ensures that error from aggregation cannot introduce any spurious discrete

transition sequences.

The reachable set computed by the approach is shown in Figure 11. The worst-case meshing

time is computed to be around 0.31 seconds, with a worst-case impact impulse of about 35 Nm.

The red line on the figure shows a witness simulation that bounces seven times before completing

the meshing process. Notice this worst case was not observed during the random simulations

performed in Figure 10.

We perform a preliminary exploration of the effects of various parameters available with our

approach. The results are shown in Table 1.

17

Fig. 10. One hundred random simulations are shown
for the gearbox system on the x/y plane (top), as
well as the total impact impulse over time (bottom).
Notice the worst-case accumulated impact impulse,
shown in Figure 11, was not observed in this simula-
tion batch, demonstrating that simulations can miss
important system behaviors. A video of the simula-
tions is online at https://youtu.be/IBwKe2g4Rb0.

Initial States

Worst-Case Witness

Fig. 11. The reachable set for the gearbox system is
shown on the x/y plane (top), as well as the total im-
pact impulse over time (bottom). Green states are in
the free mode while orange states are meshed. The
red line shows a worst-case witness which bounces
seven times and reaches the maximum impact before
meshing. A video of the reachability computation
is online at https://youtu.be/trE0qjMTQmo, and a
video of the worst-case witness simulation available
at https://youtu.be/_C0YpEmCwKI.

For the deaggregation order exploration, we use template-based aggregation based on the mode

dynamics. In this case, root-first deaggregation is more efficient, both in terms of runtime and the

number of deaggregation operations needed. We suspect this is because overapproximation error

early on in the computation leads to error later on, so even if deeaggregation is performed first on

the leaves, eventually the states closer to the root will need to be deaggregated as well.

For evaluating the aggregation method, we used root-first deaggregation. There were two

interesting observations. First, box aggregation takes slightly less time than the default template-

based aggregation, even though there are more deaggregation steps needed. We attribute this

speedup to the simpler star sets with the box method being easier to optimize over using an LP

solver. Observing the output of the reachable set, we noticed that the box method did have more

error during the continuous post operation (states to the left of the initial sets were reached when

using box aggregation), although deaggregation ensured the sequences of discrete transitions

was the same as with the more accurate template-based approach. Essentially, in this case the

box method was faster, but had more error. Second, using the convex hull aggregation approach

exceeded our one minute timeout. This was because although the method from Section 3.1.2 provide

the exact convex hull, the number of variables and constraints in result of aggregating two stars is

proportional to the sums of variables and constraints in the component stars. This makes the LPs

18

https://youtu.be/IBwKe2g4Rb0
https://youtu.be/trE0qjMTQmo
https://youtu.be/_C0YpEmCwKI

grow larger in size, thus slowing the method down. In this case, the result will be more accurate,

but the method is slower.

Finally, we compared with existing approaches. Using no deaggregation (complete aggregation),

the method reached the timeout. Observing the visualization we could see the suspected effect

that aggregation error was growing across each jump, and the additional error caused the sleeve

to appear to be able to bounce off the gear indefinitely, without meshing. With SpaceEx, we used

the same settings as was used in the ARCH hybrid systems tools competition [2], changing only

the initial set of states. By limiting the maximum number of discrete transitions and observing

the output, we could observe the same effect; the reachable states was growing as more and more

discrete transition were processed, which gave the appearance it was possible for the sleeve to

bounce indefinitely without meshing. Aggregation error led to spurious discrete transitions being

taken, which led to additional aggregation error and further spurious discrete transitions, and this

cycle repeated indefinitely.

5 CONCLUSIONS
In this paper we have focused on computing accurate reachable set computation of hybrid au-

tomata where there is high nondeterminism in the discrete transitions. We presented two common

techniques used for aggregation and highlighted the relative merits and demerits of each technique.

We also presented AGGDAG data structure and outlined the deaggregation strategies that were

implemented. Using the techniques we were able to handle the challenging case studies of satellite

rendezvous mission and gearbox meshing.

Handling discrete transitions is still a major hurdle in scalable and accurate computation of

reachable set for linear hybrid systems. As a part of future work, we intend to explore intelligent

aggregation and deaggregation strategies that adapt based on the dynamics to provide an accurate

reachable set.

ACKNOWLEDGEMENTS
The work done in this paper is based upon work supported by the National Science Foundation

(NSF) under grant numbers CNS 1739936, 1935724. Any opinions, findings, and conclusions or

recommendations expressed in this publication are those of the authors and do not necessarily

reflect the views of NSF. Effort sponsored in whole or in part by the Air Force Research Laboratory,

USAF, under Memorandum of Understanding/Partnership Intermediary Agreement No. FA8650-18-

3-9325 and prime contract FA8650-15-D-2516. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any copyright notation thereon. The

views and conclusions contained herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or implied, of the

Air Force Research Laboratory.

REFERENCES
[1] Matthias Althoff, Stanley Bak, Xin Chen, Chuchu Fan, Marcelo Forets, Goran Frehse, Niklas Kochdumper, Yangge Li,

Sayan Mitra, Rajarshi Ray, Christian Schilling, and Stefan Schupp. 2018. ARCH-COMP18 Category Report: Continuous

and Hybrid Systems with Linear Continuous Dynamics. In ARCH18. 5th International Workshop on Applied Verification
of Continuous and Hybrid Systems, Vol. 54. 23–52.

[2] Matthias Althoff, Stanley Bak, Marcelo Forets, Goran Frehse, Niklas Kochdumper, Rajarshi Ray, Christian Schilling,

and Stefan Schupp. 2019. ARCH-COMP19 Category Report: Continuous and Hybrid Systems with Linear Continuous

Dynamics. In ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. 14–40.
[3] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. 2015. HyST: A Source Transformation and Translation Tool for

Hybrid Automaton Models. In 18th International Conference on Hybrid Systems: Computation and Control. ACM.

[4] Stanley Bak, Sergiy Bogomolov, and Christian Schilling. 2016. High-level Hybrid Systems Analysis with Hypy. In

ARCHâĂŹ16: Proc. of the 3rd Workshop on Applied Verification for Continuous and Hybrid Systems.

19

[5] Stanley Bak and Parasara Sridhar Duggirala. 2017. Hylaa: A tool for computing simulation-equivalent reachability for

linear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. ACM.

[6] Stanley Bak and Parasara Sridhar Duggirala. 2017. Rigorous simulation-based analysis of linear hybrid systems. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer.
[7] Sergiy Bogomolov, Goran Frehse, Mirco Giacobbe, and Thomas A Henzinger. 2017. Counterexample-guided refinement

of template polyhedra. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
589–606.

[8] Nicole Chan and Sayan Mitra. 2017. Verifying safety of an autonomous spacecraft rendezvous mission. In ARCH17. 4th
International Workshop on Applied Verification of Continuous and Hybrid Systems. EasyChair.

[9] Hongxu Chen, Sayan Mitra, and Guangyu Tian. 2014. Motor-Transmission Drive System: a Benchmark Example for

Safety Verification.. In ARCH@ CPSWeek. 9–18.
[10] WH Clohessy. 1960. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences 27, 9 (1960),

653–658.

[11] S Croomes. 2006. Overview of the DART mishap investigation results. NASA Report (2006), 1–10.
[12] Parasara Sridhar Duggirala and Mahesh Viswanathan. 2016. Parsimonious, simulation based verification of linear

systems. In International Conference on Computer Aided Verification. Springer, 477–494.
[13] Parasara Sridhar Duggirala, LeWang, SayanMitra, Mahesh Viswanathan, and César Muñoz. 2014. Temporal precedence

checking for switched models and its application to a parallel landing protocol. In International Symposium on Formal
Methods. 215–229.

[14] Goran Frehse. 2005. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In HSCC. 258–273.
[15] Goran Frehse, Rajat Kateja, and Colas Le Guernic. 2013. Flowpipe approximation and clustering in space-time. In

Proceedings of the 16th international conference on Hybrid systems: computation and control. ACM, 203–212.

[16] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine

Girard, Thao Dang, and Oded Maler. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In International Conference
on Computer Aided Verification. Springer.

[17] Antoine Girard, Colas Le Guernic, and OdedMaler. 2006. Efficient computation of reachable sets of linear time-invariant

systems with inputs. In International Workshop on Hybrid Systems: Computation and Control. Springer, 257–271.
[18] WillemHagemann. 2014. Reachability analysis of hybrid systems using symbolic orthogonal projections. In International

Conference on Computer Aided Verification. Springer, 407–423.
[19] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan Gardner, Aurora Schmidt, Erik Zawadzki, and André

Platzer. 2015. A formally verified hybrid system for the next-generation airborne collision avoidance system. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 21–36.
[20] Christopher Jewison and R Scott Erwin. 2016. A spacecraft benchmark problem for hybrid control and estimation. In

Decision and Control (CDC), 2016 IEEE 55th Conference on. 3300–3305.
[21] Taylor T Johnson, Jeremy Green, Sayan Mitra, Rachel Dudley, and Richard Scott Erwin. 2012. Satellite rendezvous and

conjunction avoidance: Case studies in verification of nonlinear hybrid systems. In International Symposium on Formal
Methods. 252–266.

[22] Michal Kvasnica, Pascal Grieder, Mato Baotić, and Manfred Morari. 2004. Multi-parametric toolbox (MPT). In Interna-
tional Workshop on Hybrid Systems: Computation and Control. Springer, 448–462.

[23] César Munoz, Anthony Narkawicz, and James Chamberlain. 2013. A TCAS-II resolution advisory detection algorithm.

In AIAA Guidance, Navigation, and Control (GNC) Conference. 4622.
[24] Lucia Pallottino, Eric M Feron, and Antonio Bicchi. 2002. Conflict resolution problems for air traffic management

systems solved with mixed integer programming. IEEE transactions on intelligent transportation systems 3, 1 (2002),
3–11.

[25] Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Viswanathan, and Geir E Dullerud. 2009. Verifying tolerant

systems using polynomial approximations. In Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE. IEEE, 181–190.
[26] Stefan Schupp and Erika Ábrahám. 2018. Efficient dynamic error reduction for hybrid systems reachability analysis. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 287–302.
[27] Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf, and Stefan Kowalewski. 2017. HyPro: A C++ library of state

set representations for hybrid systems reachability analysis. In NASA Formal Methods Symposium. Springer, 288–294.

[28] Claire Tomlin, George J Pappas, and Shankar Sastry. 1998. Conflict resolution for air traffic management: A study in

multiagent hybrid systems. IEEE Transactions on automatic control 43, 4 (1998), 509–521.
[29] Yang Zhao and Kristin Yvonne Rozier. 2014. Formal specification and verification of a coordination protocol for an

automated air traffic control system. Science of Computer Programming 96 (2014), 337–353.

20

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Symbolic Representation: Generalized Stars
	2.2 Reachable Set Computation of Linear Dynamical Systems Using Generalized Stars
	2.3 Reachable Set Computation of Linear Hybrid Systems Using Generalized Stars

	3 Aggregation and Deaggregation
	3.1 Aggregation of Generalized Stars
	3.2 Aggregated Directed Acyclic Graph - AGGDAG

	4 Case Studies
	4.1 Spacecraft Rendezvous Passive Safety
	4.2 Gearbox Meshing

	5 Conclusions
	References

