Robust Reachable Set: Accounting for Uncertainties in Linear Dynamical Systems

EMSOFT 2019

Department of Computer Science

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Bineet Ghosh Parasara Sridhar Duggirala

Date: October 15, 2019

Motivation

EMSOFT 2019

• One of the most used techniques for safety verification.

Motivation

• One of the most used techniques for safety verification.

Modelling depends on constants like acceleration due to gravity, weight of the components *etc*.

• In reality the underlying dynamics have uncertainties like parameter variations or modelling uncertainties.

A safety critical event that occurs before (almost) all surgeries.

A safety critical event that occurs before (almost) all surgeries.

Determining its safety:

A safety critical event that occurs before (almost) all surgeries.

Determining its safety:

 Understanding of how it is metabolized

A safety critical event that occurs before (almost) all surgeries.

Determining its safety:

- Understanding of how it is metabolized
- Its affect on the depth of hypnosis

Obtain a dynamical model

$$\begin{bmatrix} c_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u^{\cdot} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_{1} \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_{d} & 0 & 0 & -k_{d} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} c_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u \end{bmatrix}$$

EMSOFT 2019

Perform analysis on this model Safe Provide Unsafe Provide

$$\begin{bmatrix} c_p \\ c_1 \\ c_2 \\ c_e \\ u^{\cdot} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_1 \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_d & 0 & 0 & -k_d & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} c_p \\ c_1 \\ c_2 \\ c_e \\ u \end{bmatrix}$$

This technique assumes the model is accurate!

$$\begin{bmatrix} c_p \\ c_1 \\ c_2 \\ c_e \\ u \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_1 \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_d & 0 & 0 & -k_d & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} c_p \\ c_1 \\ c_2 \\ c_e \\ u \end{bmatrix}$$

10

This technique assumes the model is accurate! *i.e. all the values in the matrix are accurate*

$$\begin{bmatrix} c_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u^{\cdot} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_{1} \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_{d} & 0 & 0 & -k_{d} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} c_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u \end{bmatrix}$$

What if we discover an error in the model now?

Would it still be safe?

Need to perform analysis again form scratch!

Contribution

- Class of uncertainties for which analyzing the system is efficient.
- Given a dynamical system, introduce such uncertainties and compute *Robust Reachable Set*

Outline

- Motivation
- Problems due to uncertainties in *verification*
- A class uncertain dynamics with limited effect of uncertainties in the system
- Introduction of *uncertainties* in a system
- Evaluation

Background

• Trajectories: Evolution of the linear discrete system in time.

$$\xi_A(x_0, 0) = x_0$$

$$\mathbf{x}_0$$

Evolution of system at time 0

EMSOFT 2019

• Trajectories: Evolution of the linear discrete system in time.

• Trajectories: Evolution of the linear discrete system in time.

Evolution of the system at time *m*-1

• Trajectories: Evolution of the linear discrete system in time.

Evolution of the system at time *m*

• Trajectories: Evolution of the linear discrete system in time.

Matrix Multiplication is a crucial operation in computing trajectories

What are Linear Uncertain Systems?

Definition (Uncertain Linear Systems and Reachable Set).

$$s^+ = \Lambda s$$

$$\begin{bmatrix} s_1^+ \\ s_2^+ \end{bmatrix} = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$
 System with uncertainties

Reachable Set of Uncertain Linear Systems

$$\begin{bmatrix} s_1^+ \\ s_2^+ \end{bmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \quad \text{Where A} = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}, x \in [2,3] \text{ and } y \in [4,5]$$

Reachable Set of Uncertain Linear Systems

$$\begin{bmatrix} s_1^+ \\ s_2^+ \end{bmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \quad \text{Where A} = \begin{bmatrix} \mathbf{x} & \mathbf{y} \\ 0 & 2 \end{bmatrix}, \ \mathbf{x} \in [2,3] \text{ and } \mathbf{y} \in [4,5]$$

At step t = 2, with Initial Set θ

$$A^{2} = \begin{bmatrix} x^{2} & xy + 2y \\ 0 & 4 \end{bmatrix}$$
$$s_{1}^{[2]} = x^{2}\theta_{1} + (xy + 2y)\theta_{2}, \qquad s_{2}^{[2]} = 4\theta_{2}$$

-

Reachable Set of Uncertain Linear Systems

$$\begin{bmatrix} s_1^+ \\ s_2^+ \end{bmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \quad \text{Where A} = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}, x \in [2,3] \text{ and } y \in [4,5]$$

At step t = 3, with Initial Set θ

$$A^{3} = \begin{bmatrix} x^{3} & x^{2}y + 2xy + 4y \\ 0 & 8 \end{bmatrix}$$
$$s_{1}^{[2]} = x^{2}\theta_{1} + (xy + 2y)\theta_{2}, \qquad s_{2}^{[2]} = 4\theta_{2}$$
$$s_{1}^{[3]} = x^{3}\theta_{1} + (x^{2}y + 2xy + 4y)\theta_{2}, \qquad s_{2}^{[3]} = 8\theta_{2}$$

26

Outline

- Motivation
- Problems due to uncertainties in *verification*
- A class uncertain dynamics with limited effect of uncertainties in the system
- Introduction of *uncertainties* in a system
- Evaluation

Outline

- Motivation
- Problems due to uncertainties in verification
- A class uncertain dynamics with limited effect of uncertainties in the system
- Introduction of *uncertainties* in a system
- Evaluation

Uncertainty Polynomial grows with time

Uncertainties

$$A = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}$$

Uncertainty Polynomial grows with time

$$A = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}$$
 Higher powers of x and y
$$A^{2} = \begin{bmatrix} x^{2} & xy + 2y \\ 0 & 2 \end{bmatrix}$$
$$A^{3} = \begin{bmatrix} x^{3} & x^{2}y + 2xy + 4y \\ 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} s_1^+ \\ s_2^+ \end{bmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}, x \in [2,3], y \in [4,5]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

$$\begin{bmatrix} s_1^+ \\ s_2^+ \end{bmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}, x \in [2,3], y \in [4,5]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

Safety check at step 5

 $A^{5} = \begin{bmatrix} f_{1}(x, y) & f_{2}(x, y) \\ 0 & 32 \end{bmatrix} \qquad \text{Where, } f_{1}(x, y) = x^{5} \\ f_{2}(x, y) = x^{4} + 2x^{2}y + 4xy + 8y$

Check: $f_1(x, y)\theta_1 + f_2(x, y)\theta_2 \ge 100$

 θ_i are the constraints on s_i in the initial set

$$\begin{vmatrix} s_1^+ \\ s_2^+ \end{vmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}, x \in [2,3], y \in [4,5]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

Safety check at step 5

 $A^{5} = \begin{bmatrix} f_{1}(x, y) & f_{2}(x, y) \\ 0 & 32 \end{bmatrix} \qquad \text{Where, } f_{1}(x, y) = x^{5}$ $f_{2}(x, y) = x^{4} + 2x^{2}y + 4xy + 8y$

Check: $f_1(x, y)\theta_1 + f_2(x, y)\theta_2 \ge 100$

Check involving very high degree polynomials

$$\begin{vmatrix} s_1^+ \\ s_2^+ \end{vmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}, x \in [2,3], y \in [4,5]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

Safety check at step 5

 $A^{5} = \begin{bmatrix} f_{1}(x, y) & f_{2}(x, y) \\ 0 & 32 \end{bmatrix} \qquad \text{Where, } f_{1}(x, y) = x^{5}$ $f_{2}(x, y) = x^{4} + 2x^{2}y + 4xy + 8y$

Check: $f_1(x, y)\theta_1 + f_2(x, y)\theta_2 \ge 100$

As step size increases, checking becomes infeasible!

Outline

- Motivation
- Problems due to uncertainties in *verification*
- A class uncertain dynamics with limited effect of uncertainties in the system (*linearity of uncertain* variables)
- Introduction of *uncertainties* in a system
- Evaluation

A class of uncertainties for which the polynomial does not have higher order terms

$A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}$

$A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}$ $A^{2} = \begin{bmatrix} 1 & 3\alpha \\ 0 & 4 \end{bmatrix}$

$A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}$ $A^2 = \begin{bmatrix} 1 & 3\alpha \\ 0 & 4 \end{bmatrix}$

A^m does not contain any higher order term of α , for all m

$$\begin{vmatrix} s_1^+ \\ s_2^+ \end{vmatrix} = A \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}, \alpha \in [2,3]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

$$\begin{vmatrix} S_1^+ \\ S_2^+ \end{vmatrix} = A \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}, \alpha \in [2,3]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

Safety check at step 5

$$A^5 = \begin{bmatrix} 1 & 31\alpha \\ 0 & 32 \end{bmatrix}$$

Check: $\theta_1 + 31\alpha\theta_2 \ge 100$

 θ_i are the constraints on s_i in the initial set

$$\begin{vmatrix} S_1^+ \\ S_2^+ \end{vmatrix} = A \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}, \alpha \in [2,3]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

Safety check at step 5

$$A^{5} = \begin{bmatrix} 1 & 31\alpha \\ 0 & 32 \end{bmatrix}$$

Check: $\theta_{1} + 31\alpha\theta_{2} \ge 100$ Check involving **bi-linear** constraints

$$\begin{vmatrix} S_1^+ \\ S_2^+ \end{vmatrix} = A \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}, \alpha \in [2,3]$$

Safety Condition

The system is considered to be safe if at every step the value of $s_1 < 100$

Safety check at step 5

$$A^{5} = \begin{bmatrix} 1 & 31\alpha \\ 0 & 32 \end{bmatrix}$$

Check: $\theta_{1} + 31\alpha\theta_{2} \ge 100$ This is observed at all steps!

• How to characterize such uncertainties?

Linear Dynamics

Sufficient conditions based on the structure of the matrix, ensuring no higher order terms

Uncertain Systems Using Linear Matrix Expression (LME)

$$\begin{pmatrix} 1+x & y & 4 \\ 2x+y & 8 & 3 \\ 1 & y & x \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 8 & 3 \\ 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} x + \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} y$$

Represented using coefficient matrices

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \\ + \left(x \right) + \left(y \right) \\ + \left(x \right) + \left(y \right) \end{array} \right)$$

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \\ + \left(x \right) + \left(y \right) \\ + \left(x \right) + \left(y \right) \end{array} \right)$$

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \\ + \left(x \right) + \left(y \right) \\ + \left(x \right) + \left(y \right) \end{array} \right)$$

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \\ A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \\ + \left(x \right) + \left(y \right) \end{array} \right)$$
$$A \times A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{2} \right) + \cdots + \left(xy \right) \end{array} \right)$$

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \right)$$

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{2} \right) + \cdots + \left(xy \right) \right)$$

$$A \times A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{2} \right) + \cdots + \left(xy \right) \right)$$

$$A \times A^{2} = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{3} \right) + \cdots + \left(xy \right) \right)$$

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \\ A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \right) \\ A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{2} \right) + \cdots + \left(xy \right) \\ A \times A^{2} = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{3} \right) + \cdots + \left(xy \right) \\ \end{array} \right) \\ A \times A^{m-1} = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{m} \right) + \cdots + \left(xy \right) \\ \end{array} \right)$$

$$A = \left(\begin{array}{c} + \left(\begin{array}{c} x \end{array}\right) + \left(\begin{array}{c} y \end{array}\right) \\ A = \left(\begin{array}{c} + \left(\begin{array}{c} x \end{array}\right) + \left(\begin{array}{c} x \end{array}\right) + \left(\begin{array}{c} y \end{array}\right) \\ + \left(\begin{array}{c} x \end{array}\right) + \left(\begin{array}{c} y \end{array}\right) + \left(\begin{array}{c} z \end{array}\right) + \left(\begin{array}{c} x^2 \end{array}\right) + \cdots + \left(\begin{array}{c} xy \end{array}\right) \end{array}\right)$$

Aⁱ will have i-th order terms of the uncertain variables

$$A \times A^{m-1} = \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left(\end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left(\end{array} \right) + \left(\left(\end{array} \right) + \left(\end{array} + \left(\end{array} \right) + \left($$

$$A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) \right)$$
$$A = \left(\begin{array}{c} + \left(x \right) + \left(x \right) + \left(y \right) \right)$$
$$A \times A = \left(\begin{array}{c} + \left(x \right) + \left(y \right) + \left(z \right) + \left(x^{2} \right) + \cdots + \left(xy \right) \right)$$

How do we ensure Linear Matrix Expression (LME) at all steps?

$$A \times A^{m-1} = \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left(\end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left(\end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) + \left(\end{array} \right) + \left($$

When are Linear Matrix Expressions (LME) closed under multiplication?

Interaction of *x* with itself and others

Produces higher order terms

When are Linear Matrix Expressions (LME) closed under multiplication?

Interaction of *y* with itself and others

Produces higher order terms

When are Linear Matrix Expressions (LME) closed under multiplication?

If these interactions are 0 then the product is closed

$$A = \left(\begin{array}{c} \\ \\ \end{array} \right) + \left(\begin{array}{c} \\ \\ \end{array} \right) + \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$
 Assume: A × A is closed

What about A³

59

Need to ensure that the product is an LME at every step!!

61

Outline

- Motivation
- Problems due to uncertainties in *verification*
- A class uncertain dynamics with limited effect of uncertainties in the system (*linearity of uncertain* variables)
- Introduction of *uncertainties* in a system
- Evaluation

To represent the structure of a matrix

Matrix Support

To represent the structure of a matrix

Matrix Support

Boolean Abstraction of matrix, that distinguishes between zero and non-zero elements

To represent the structure of a matrix

Boolean Abstraction of matrix, that distinguishes between zero and non-zero elements

We perform the operations on Matrix Supports instead of performing them on actual matrices

The conditions will be imposed on Matrix Supports and not actual matrices

Matrix Support

$$supp\left(\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{2} & -\mathbf{2} & 0 \\ 0 & -\mathbf{3} & \mathbf{4} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & \mathbf{1} & 0 \\ 0 & \mathbf{1} & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Matrix Support

$$supp\left(\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{2} & -\mathbf{2} & 0 \\ 0 & -\mathbf{3} & \mathbf{4} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & \mathbf{1} & 0 \\ 0 & \mathbf{1} & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

If the support have a nice form as above:

Pictorially: Light blue: 0 Dark Blue: 1

Matrix Support

$$supp\left(\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & -3 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

If the support have a nice form as above:

Pictorially: Light blue: 0 Dark Blue: 1

Sub Support and Super Support

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \le \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$B_{1} \leq B_{2}$$

if $B_2[i, j] = 0$ *then* $B_1[i, j] = 0$

Addition of Supports

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Same as matrix addition
- Logical OR instead of +

 $B_3[i,j] = B_1[i,j] \vee B_2[i,j]$

Addition of Supports

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Same as matrix addition
- Logical OR instead of +

 $B_3[i,j] = B_1[i,j] \vee B_2[i,j]$

Multiplication of Supports

Same as matrix multiplication

- Logical OR instead of +
- Logical AND instead of ×

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (1 \land 0) \lor (0 \land 0) & (1 \land 0) \lor (0 \land 1) \\ (0 \land 0) \lor (1 \land 0) & (0 \land 0) \lor (1 \land 1) \end{bmatrix}$$
$$B_3[i,j] = \bigvee_{l=1}^k B_1[i,l] \land B_2[l,j]$$

Properties of Support

$$\sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right) \le \sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \right) \bigoplus \sup \left(\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right)$$

Properties of Support

$$\sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right) \leq \sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \right) \bigoplus \sup \left(\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right)$$
$$\sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right) \leq \sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \right) \bigotimes \sup \left(\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right)$$

Given matrices M_1 and M_2 , if supp $(M_1) \otimes supp(M_2) = 0$, then $M_1 \times M_2 = 0$

EMSOFT 2019

Properties of Support

•
$$\sup\left(\begin{bmatrix}2 & 0\\3 & -1\end{bmatrix} + \begin{bmatrix}1 & 0\\2 & 1\end{bmatrix}\right) \leq \sup\left(\begin{bmatrix}2 & 0\\3 & -1\end{bmatrix}\right) \oplus \sup\left(\begin{bmatrix}1 & 0\\2 & 1\end{bmatrix}\right)$$

• $\sup\left(\begin{bmatrix}2 & 0\\3 & -1\end{bmatrix} \times \begin{bmatrix}1 & 0\\2 & 1\end{bmatrix}\right) \leq \sup\left(\begin{bmatrix}2 & 0\\3 & -1\end{bmatrix}\right) \otimes \sup\left(\begin{bmatrix}1 & 0\\2 & 1\end{bmatrix}\right)$
Given matrices M_1 and M_2 , if $\operatorname{supp}(M_1) \otimes \operatorname{supp}(M_2) = \mathbf{0}$, then $M_1 \times M_2 = \mathbf{0}$

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \leq \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{bmatrix}$$

Properties of Support

$$\sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right) \leq \sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \right) \bigoplus \sup \left(\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right)$$
$$\sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right) \leq \sup \left(\begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \right) \bigotimes \sup \left(\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right)$$

Given matrices M_1 and M_2 , if supp $(M_1) \otimes supp(M_2) = 0$, then $M_1 \times M_2 = 0$

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \otimes \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} \leq \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} \otimes \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{bmatrix}$$

If $\forall i, j, 1 \leq i \leq k$ and $1 \leq j \leq k$, $supp(N_i) \otimes supp(M_j) = 0$, then $A \times B$ results in an LME.

$$\left(\begin{array}{c}N_{0}\\\\M_{0}\end{array}\right) + \left(\begin{array}{c}N_{1}\\\\M_{1}\end{array}\right) x + \left(\begin{array}{c}N_{2}\\\\M_{2}\end{array}\right) y$$

EMSOFT 2019

If $\forall i, j, 1 \leq i \leq k$ and $1 \leq j \leq k$, $supp(N_i) \otimes supp(M_j) = 0$, then $A \times B$ results in an LME.

EMSOFT 2019

If $\forall i, j, 1 \leq i \leq k$ and $1 \leq j \leq k$, $supp(N_i) \otimes supp(M_j) = 0$, then $A \times B$ results in an LME.

If $\forall i, j, 1 \leq i \leq k$ and $1 \leq j \leq k$, $supp(N_i) \otimes supp(M_j) = 0$, then $A \times B$ results in an LME.

EMSOFT 2019

Recap - LME Exponents

$$A = \left(\begin{array}{c} + \left(\begin{array}{c} x \\ \end{array}\right) + \left(\begin{array}{c} x \\ \end{array}\right) + \left(\begin{array}{c} y \\ \end{array}\right) \qquad Assume: A \times A \text{ is closed} \\ \hline \\ This assumption is \\ not enough \\ \hline \\ Not guaranteed to \\ be an LME \\ A^{3} = \left(\begin{array}{c} + \left(\begin{array}{c} x \\ \end{array}\right) + \left(\begin{array}{c} x \\ \end{array}\right) + \left(\begin{array}{c} y \\ \end{array}\right) + \left(\begin{array}{c} x^{2} \\ \end{array}\right) + \left(\begin{array}{c} x^{2} \\ \end{array}\right) + \left(\begin{array}{c} xy \\ \end{array}\right) \right)$$

Recap - LME Exponents

Need to ensure that the product is an LME at every step!!

if

$$\forall i, j, 1 \le i, j \le k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = 0$$

 $\forall i, 0 \le i \le k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \le \operatorname{supp}(N_i),$
 $and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \le \operatorname{supp}(N_i).$ Cond. 2

then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)

$$\left(\begin{array}{c}N_{0}\end{array}\right)+\left(\begin{array}{c}N_{1}\end{array}\right)x+\left(\begin{array}{c}N_{2}\end{array}\right)y$$

Product of their Supports be 0

Product of their Supports be 0

84

then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)

Product of their supports should be a sub-support of $supp(N_1)$

then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)

$$\begin{array}{l} \textit{if} \\ \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ & and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$$

then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)

· · · ·	A =	N ₀	N_1	N_2	•••	N_k
---------	-----	----------------	-------	-------	-----	-------

 $\forall i, 0 \le i \le k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \le \operatorname{supp}(N_i),$ and $\operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \le \operatorname{supp}(N_i).$ Ensures A^2 will be an LME

then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)

A =	N ₀	<i>N</i> ₁	<i>N</i> ₂	•••	N_k
$A^2 =$	$N_{0}^{[2]}$	$N_{1}^{[2]}$	$N_{2}^{[2]}$	••••	$N_{k}^{[2]}$

88

if

$$\begin{array}{l} \textit{if} \\ \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ \textit{and} \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$$

then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)

$$A = supp(N_0) \quad supp(N_1) \quad supp(N_2) \quad \cdots \quad supp(N_k)$$
$$A^2 = supp(N_0^{[2]}) \quad supp(N_1^{[2]}) \quad supp(N_2^{[2]}) \quad \cdots \quad supp(N_k^{[2]})$$

Sub-support $A^{2} = supp(N_{0}^{[2]}) \qquad supp(N_{1}^{[2]}) \qquad supp(N_{2}^{[2]}) \qquad \cdots \qquad supp(N_{k}^{[2]})$

EMSOFT 2019

if

$$\begin{array}{l} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$$
Ensures subsupport behavior
then for all $m \geq 2$, A^m is a Linear Matrix Expression (LME)

$$A = \operatorname{supp}(N_0) \quad \operatorname{supp}(N_1) \quad \operatorname{supp}(N_2) \quad \cdots \quad \operatorname{supp}(N_k)$$

$$A^{2} = supp(N_{0}^{[2]}) \qquad supp(N_{1}^{[2]}) \qquad supp(N_{2}^{[2]}) \qquad \cdots \qquad supp(N_{k}^{[2]})$$

$$if \\ \forall i, j, 1 \le i, j \le k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0} \\ \forall i, 0 \le i \le k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \le \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \le \operatorname{supp}(N_i). \end{cases}$$

$$Insures sub-support behavior then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)$$

$$A = supp(N_0) \qquad supp(N_1) \qquad supp(N_2) \qquad \cdots \qquad supp(N_k)$$

$$A^2 = supp(N_0^{[2]}) \qquad supp(N_1^{[2]}) \qquad supp(N_2^{[2]}) \qquad \cdots \qquad supp(N_k^{[2]})$$

if

$$\forall i, j, 1 \le i, j \le k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0}$$

 $\forall i, 0 \le i \le k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \le \operatorname{supp}(N_i),$
and $\operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \le \operatorname{supp}(N_i).$

By Induction

then for all $m \ge 2$, A^m is a Linear Matrix Expression (LME)

EMSOFT 2019

 $\forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0}$

 $\forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i),$

and $\operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i)$.

then for all $m \ge 2$, A^m is an LME

Using this, we can sufficiently conclude that there will be no higher order terms of uncertain variables!

if

 $\forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0}$

 $\forall i, 0 \le i \le k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \le \operatorname{supp}(N_i),$

and $\operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i)$.

then for all $m \ge 2$, A^m is an LME

We just need to check these conditions once.

And for all m, A^m will be an LME

if

Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

Output:

EMSOFT 2019

```
Safe, Un-safe, Invalid
```

```
if Cond. 1 and Cond. 2 are satisfied:
   Compute A^i = \langle L_0, L_1, \cdots, L_k \rangle
   Compute Reachable Set RS
   if RS \cap U = \emptyset
      return Safe
   else
      return Unsafe
else
   return Invalid
```


Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

Output:

Safe, Un-safe, Invalid

```
if Cond. 1 and Cond. 2 are satisfied:
Compute A^i = \langle L_0, L_1, \cdots, L_k \rangle
Compute Reachable Set RS
if RS \cap U = \emptyset
return Safe
else
return Unsafe
else
return Invalid
```

Ensures A^i will be an LME for all i

Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

```
Safe, Un-safe, Invalid
```

```
if Cond. 1 and Cond. 2 are satisfied:
    Compute A^i = \langle L_0, L_1, \cdots, L_k \rangle Compute A^i
    Compute Reachable Set RS
    if RS \cap U = \emptyset
       return Safe
    else
       return Unsafe
else
    return Invalid
```

Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

Output:

Safe, Un-safe, Invalid

```
if Cond. 1 and Cond. 2 are satisfied:
    Compute A^i = \langle L_0, L_1, \cdots, L_k \rangle
    Compute Reachable Set RS \leftarrow Compute Reachable Set based on
    if RS \cap U = \emptyset
       return Safe
    else
       return Unsafe
else
    return Invalid
```


Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

Output:

```
Safe, Un-safe, Invalid
```

```
if Cond. 1 and Cond. 2 are satisfied:
    Compute A^i = \langle L_0, L_1, \cdots, L_k \rangle
    Compute Reachable Set RS
    if RS \cap U = \emptyset Intersection checking is formulated as bi-linear
        return Safe program and solved using Gurobi
    else
        return Unsafe
else
    return Invalid
```


102

Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

```
Safe, Un-safe, Invalid
```

```
if Cond. 1 and Cond. 2 are satisfied:
    Compute A^i = \langle L_0, L_1, \cdots, L_k \rangle
    Compute Reachable Set RS
    if RS \cap U = \emptyset
       return Safe \leftarrow No intersection with unsafe set
    else
       return Unsafe
else
    return Invalid
```


Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

```
Safe, Un-safe, Invalid
```

```
if Cond. 1 and Cond. 2 are satisfied:
   Compute A^i = \langle L_0, L_1, \cdots, L_k \rangle
   Compute Reachable Set RS
   if RS \cap U = \emptyset
      return Safe
   else
      return Unsafe  Intersection with unsafe set
else
   return Invalid
```


Input:

Uncertain Linear System $A = \langle N_0, N_1, \dots, N_k \rangle$ Initial Set: Θ Unsafe Set: *U*

```
Safe, Un-safe, Invalid
```

```
if Cond. 1 and Cond. 2 are satisfied:
    Compute A<sup>i</sup> = ⟨L<sub>0</sub>, L<sub>1</sub>, ..., L<sub>k</sub>⟩
    Compute Reachable Set RS
    if RS ∩ U = Ø
       return Safe
    else
       return Unsafe
else
    return Invalid
```


Outline

- Motivation
- Problems due to uncertainties in *verification*
- A class uncertain dynamics with limited effect of uncertainties in the system
- Introduction of *uncertainties* in a system
- Evaluation

Introducing Perturbations in the Linear Dynamics

Cond. 1 and Cond. 2 are fairly restrictive!

Introducing Perturbations in the Linear Dynamics

Cond. 1 and Cond. 2 are fairly restrictive!

Not all positions of uncertainties can satisfy these condition

Does **NOT** Satisfy *Cond* (1) and (2)

Satisfies Cond (1) and (2)

Cond. 1 and Cond. 2 are fairly restrictive!

Given a linear dynamics, we introduce uncertainties such that it satisfies *conditions 1 and 2*.

• Look for all Block matrices that satisfy *Cond.* 1 $\forall i, j, 1 \le i, j \le k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0}$

• Look for all Block matrices that satisfy Cond. 1

 $\forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0}$

• Look for all Block matrices that satisfy *Cond.* 1 $\forall i, j, 1 \le i, j \le k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0}$

• How to ensure the *Cond.* 2?

 $\begin{aligned} \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{aligned}$

EMSOFT 2019

 $\begin{aligned} \forall i, 0 \leq i \leq k, \ \ if \ \text{supp}(N_0) \times \text{supp}(N_i) \leq \text{supp}(N_i), \\ and \ \text{supp}(N_i) \times \text{supp}(N_0) \leq \text{supp}(N_i). \end{aligned}$

Initialize with 1

U

 $\begin{aligned} \forall i, 0 \leq i \leq k, ~~ \textit{if} ~ \text{supp}(N_0) \times \text{supp}(N_i) \leq \text{supp}(N_i), \\ &~ \textit{and} ~ \text{supp}(N_i) \times \text{supp}(N_0) \leq \text{supp}(N_i). \end{aligned}$

Put 0s in rows c_1 to c_2 except cols c_1 and c_2

EMSOFT 2019

 $\begin{aligned} \forall i, 0 \leq i \leq k, ~~ \textit{if} ~ \text{supp}(N_0) \times \text{supp}(N_i) \leq \text{supp}(N_i), \\ &~ \textit{and} ~ \text{supp}(N_i) \times \text{supp}(N_0) \leq \text{supp}(N_i). \end{aligned}$

Put 0s in cols r_1 to r_2 except rows r_1 and r_2

116

117

EMSOFT 2019

- 1. $K \leftarrow Look$ for set of all blocks that satisfy conditions (1) and (2)
- 2. Ψ ←Largest subset of K that satisfy conditions (1) and (2)
- 3. Λ ←Induce Faults in Ψ

Step 1: Given a Matrix

$$\begin{bmatrix} 3 & 2.9 & 3.9 & 2 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 2: Look for largest subset of blocks that satisfy Cond (1) and (2)

$$\begin{bmatrix} 3 & 2.9 & 3.9 & 2 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 3: User Inputs the amount of variance for the uncertainties

Step 4: Introduce uncertain variables

3	2.9 <mark>x</mark>	3.9 y	2
0	7	0	0
0	0	2	0
0	0	0	1

Step 5: Compute Reachable Set of the Uncertain System

3	2.9 <mark>x</mark>	3.9 y	2
0	7	0	0
0	0	2	0
0	0	0	1

Safety Condition:

The system is considered to be safe if at every step the value of $x_1 < 100$

EMSOFT 2019

• Check:

126

• Check: $supp(N_1) \otimes supp(N_1) = 0$

 $\forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0}$

 $\forall i, 0 \le i \le k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \le \operatorname{supp}(N_i),$ and $\operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \le \operatorname{supp}(N_i).$

• Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$

• Check:

 $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$

 $\forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0}$

 $\forall i, 0 \le i \le k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \le \operatorname{supp}(N_i),$ and $\operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \le \operatorname{supp}(N_i).$

• Check:

 $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$
 - $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute
 - U_{N_1}

3	0	0	2		0	2.9	0	0		0	0	3.9	0		
0	7	0	0		0	0	0	0		0	0	0	0		
0	0	2	0	+	0	0	0	0	<i>y</i> +	0	0	0	0	z	
0	0	0	1		0	0	0	0		0	0	0	0		
Ľ		_										~		-	
	N_0					N_1					N_2				

 $\begin{array}{l} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute
 - U_{N_1}

 $\frac{\text{Check:}}{supp(N_0)} \le U_{N_1}$

٠

[_	0	0	~	1	٦]	0.0	0	_]		٦.	0	0.0		
3	0	0	2		0	2.9	0	0		0	0	3.9	0	
0	7	0	0	+	0	0	0	0	11 +	0	0	0	0	7
0	0	2	0	Ľ	0	0	0	0	<i>y</i> '	0	0	0	0	~
0	0	0	1		0	0	0	0		0	0	0	0	
	~	In			NL					N				

 $\begin{array}{l} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute
 - U_{N_2}

Check: $supp(N_0) \le U_{N_1}$ $supp(N_0) \le U_{N_2}$

٠

3	0	0	2		0	2.9	0	0		0	0	3.9	0	
0	7	0	0		0	0	0	0		0	0	0	0	
0	0	2	0	+	0	0	0	0	<i>y</i> +	0	0	0	0	z
0	0	0	1		0	0	0	0		0	0	0	0	
_	N		_		_	N ₁		_				N_2	_	-

 $\begin{array}{l} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute

$$U = U_{N_1} \cap U_{N_2}$$

Check: $supp(N_0) \le U_{N_1}$ $supp(N_0) \le U_{N_2}$ $U \times U \le U$

•

	Ν									N2				
0	0	0	1		0	0	0	0		0	0	0	0	
0	0	2	0		0	0	0	0	y +	0	0	0	0	2
0	7	0	0		0	0	0	0	11 -	0	0	0	0	~
3	0	0	2		0	2.9	0	0		0	0	3.9	0	
г			-	1	г			1		г			-	

 $\begin{aligned} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) &= \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{aligned}$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute

$$U = U_{N_1} \cap U_{N_2}$$

Check:

$$supp(N_0) \le U_{N_1}$$

 $supp(N_0) \le U_{N_2}$
 $U \times U \le U$

Can be replaced

	Ν									N2				
0	0	0	1		0	0	0	0		0	0	0	0	
0	0	2	0		0	0	0	0	y +	0	0	0	0	2
0	7	0	0		0	0	0	0	11 -	0	0	0	0	~
3	0	0	2		0	2.9	0	0		0	0	3.9	0	
г			-	1	г			1		г			-	

 $\begin{aligned} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) &= \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{aligned}$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute

$$U = U_{N_1} \cap U_{N_2}$$

• Check:

$$supp(N_0) \le U$$
 Can be replaced
 $U \times U \le U$

[_	0	0	~	1	[]	0.0	0	_]		٦.	0	0.0		
3	0	0	2		0	2.9	0	0		0	0	3.9	0	
0	7	0	0	+	0	0	0	0	11 +	0	0	0	0	7
0	0	2	0	Ľ	0	0	0	0	<i>y</i> '	0	0	0	0	~
0	0	0	1		0	0	0	0		0	0	0	0	
	~	In			NL					N				

 $\begin{array}{l} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute

$$U = U_{N_1} \cap U_{N_2}$$

Check: $supp(N_0) \le U$ $U \times U \le U$

٠

137

 $\forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \mathbf{0}$ and $\operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i)$.

 $\begin{array}{l} \forall i, j, 1 \leq i, j \leq k, \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_j) = \boldsymbol{0} \\ \forall i, 0 \leq i \leq k, \operatorname{supp}(N_0) \otimes \operatorname{supp}(N_i) \leq \operatorname{supp}(N_i), \\ and \operatorname{supp}(N_i) \otimes \operatorname{supp}(N_0) \leq \operatorname{supp}(N_i). \end{array}$

- Check: $supp(N_1) \otimes supp(N_1) = 0$ $supp(N_1) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_2) = 0$ $supp(N_2) \otimes supp(N_1) = 0$
- Compute

$$U = U_{N_1} \cap U_{N_2}$$

Check: $supp(N_0) \le U$ $U \times U \le U$

Conditions hold!

Therefore, from the Theorem we know that for all m, A^m is an LME

139

For checking the safety property $x_1 < 100$, we formulate the intersection checking problem as a **bi-linear programming** and use **Gurobi** to solve it

140

For checking the safety property $x_1 < 100$, we formulate the intersection checking problem as a **bi-linear programming** and use **Gurobi** to solve it

Summary – Robust Reachable Set

• Take the Matrix as Input

3	2.9	3.9	2]	
0	7	0	0	
0	0	2	0	
0	0	0	1	

EMSOFT 2019

Summary – Robust Reachable Set

- Take the Matrix as Input
- Search for the set of blocks satisfying Cond. (1) and (2)

Summary – Robust Reachable Set

- Take the Matrix as Input
- Search for the set of blocks satisfying Cond. (1) and (2)
- Take the Perturbation as Input

Summary – Robust Reachable Set

- Take the Matrix as Input
- Search for the set of blocks satisfying Cond. (1) and (2)
- Take the Perturbation as Input
- Introduce the Uncertain Variables

3	2.9 x	3.9 y	2]
0	7	0	0
0	0	2	0
0	0	0	1

Summary – Robust Reachable Set

- Take the Matrix as Input
- Search for the set of blocks satisfying Cond. (1) and (2)
- Take the Perturbation as Input
- Introduce the Uncertain Variables
- Perform Reachability Analysis

Outline

- Motivation
- Problems due uncertainties in *verification*
- Sufficient conditions to ensure limited effect of uncertainties in the system
- Introduction of *uncertainties* in a system
- Evaluation

$$\frac{1}{V_1} = 8.72 \times 10^{-7}$$

$$\begin{bmatrix} c_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u^{\cdot} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_{1} \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_{d} & 0 & 0 & -k_{d} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} c_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u \end{bmatrix}$$

$$\begin{bmatrix} C_{p} \\ C_{1} \\ C_{2} \\ C_{e} \\ u^{\cdot} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_{1} \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_{d} & 0 & 0 & -k_{d} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} C_{p} \\ C_{1} \\ C_{2} \\ C_{e} \\ u \end{bmatrix} \qquad \frac{1}{V_{1}} = 8.72 \times 10^{-7}$$

Condition

At every step the value of $c_p \leq 0$

<u>Analysis</u>

Initial Set $\Theta = [1,6] \times [0,10] \times [0,10] \times [1,8] \times [1,1]$

$$\begin{bmatrix} C_{p} \\ C_{1} \\ C_{2} \\ C_{e} \\ u^{\cdot} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_{1} \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_{d} & 0 & 0 & -k_{d} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} C_{p} \\ C_{1} \\ C_{2} \\ C_{e} \\ u \end{bmatrix} \qquad \frac{1}{V_{1}} = 8.72 \times 10^{-7}$$

Condition

At every step the value of $c_p \leq 0$

<u>Analysis</u>

Initial Set $\Theta = [1,6] \times [0,10] \times [0,10] \times [1,8] \times [1,1]$

No violation till 2000 steps! Time taken: 3.48 s

EMSOFT 2019

$$\begin{bmatrix} C_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u^{\cdot} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_{1} \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} C_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u \end{bmatrix}$$
$$\frac{1}{V_{1}} \in [-8.72 \times 10^{-4}, 2 \times 8.72 \times 10^{-4}]$$

Introduce Perturbation!

$$\begin{bmatrix} C_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u^{*} \end{bmatrix} = \begin{pmatrix} -(k_{10} + k_{12} + k_{13}) & k_{12} & k_{13} & 0 & 1/V_{1} \\ k_{21} & -k_{21} & 0 & 0 & 0 \\ k_{31} & 0 & -k_{31} & 0 & 0 \\ k_{d} & 0 & 0 & -k_{d} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} c_{p} \\ c_{1} \\ c_{2} \\ c_{e} \\ u \end{bmatrix} \qquad \frac{1}{V_{1}} = 8.72 \times 10^{-7}$$
Condition
$$\frac{1}{V_{1}} \in [-8.72 \times 10^{-4}, 2 \times 8.72 \times 10^{-4}]$$

At every step the value of $c_p \leq 0$ (Same as before)

<u>Analysis</u>

Initial Set $\Theta = [1,6] \times [0,10] \times [0,10] \times [1,8] \times [1,1]$ (Same as before)

Violation at 623rd step! Time taken: 2.78 s

EMSOFT 2019

Evaluation

Red: Violation Green: No-Violation (up-to 2000 steps) w/o: Without Uncertainties

Benchmark	Dim	Fault Search Time	#Uncertainties	Time
Quadcopter (w/o)	16			0.69s
Quadcopter	16	8.87s	60	1.35s
Platoon (w/o)	10			7.8s
Platoon	10	0.49s	9	1.76s
Anesthesia (w/o)	5			3.48s
Anesthesia	5	0.01s	4	2.78s
Motor (w/o)	7			5.04s
Motor	7	0.01s	12	0.08s

	Dimension o matrix A is r	of the n × n	
Dim	Fault Search Time	#Uncertainties	Time
16			0.69s
16	8.87s	60	1.35s
10			7.8s
10	0.49s	9	1.76s
5			3.48s
5	0.01s	4	2.78s
7			5.04s
7	0.01s	12	0.08s
	Dim 16 16 10 10 5 5 5 7 7 7	Dimension of matrix A is rDimFault Search Time168.87s168.87s100.49s50.01s70.01s	Dimension of the matrix A is n × nDimFault Search Time#Uncertainties16Search 010168.87s60100.49s950.01s470.01s12

154

Time taken to search for all possible places where uncertainty can be introduced in the matrix A

Benchmark	Dim	Fault Search Time	#Uncertainties	Time
Quadcopter (w/o)	16			0.69s
Quadcopter	16	8.87s	60	1.35s
Platoon (w/o)	10			7.8s
Platoon	10	0.49s	9	1.76s
Anesthesia (w/o)	5			3.48s
Anesthesia	5	0.01s	4	2.78s
Motor (w/o)	7			5.04s
Motor	7	0.01s	12	0.08s

EMSOFT 2019

Evaluation

Evaluation		Numbe	r of uncertainties introduced	
Benchmark	Dim	Fault Search Time	#Uncertainties	Time
Quadcopter (w/o)	16			0.69s
Quadcopter	16	8.87s	60	1.35s
Platoon (w/o)	10			7.8s
Platoon	10	0.49s	9	1.76s
Anesthesia (w/o)	5			3.48s
Anesthesia	5	0.01s	4	2.78s
Motor (w/o)	7			5.04s
Motor	7	0.01s	12	0.08s

156

	Time taken to
Evaluation	perform the safety
	check

Benchmark	Dim	Fault Search Time	#Uncertainties	Time
Quadcopter (w/o)	16			0.69s
Quadcopter	16	8.87s	60	1.35s
Platoon (w/o)	10			7.8s
Platoon	10	0.49s	9	1.76s
Anesthesia (w/o)	5			3.48s
Anesthesia	5	0.01s	4	2.78s
Motor (w/o)	7			5.04s
Motor	7	0.01s	12	0.08s

Evaluation

Benchmark	Dim	Fault Search Time	#Uncertainties	Time
Quadcopter (w/o)	16			0.69s
Quadcopter	16	8.87s	60	1.35s
Platoon (w/o)	10			7.8s
Platoon	10	0.49s	9	1.76s
Anesthesia (w/o)	5			3.48s
Anesthesia	5	0.01s	4	2.78s
Motor (w/o)	7			5.04s
Motor	7	0.01s	12	0.08s

Evaluation

bineet@cs.unc.edu

Benchmark	Dim	Fault Search Time	#Uncertainties	Time
Quadcopter (w/o)	16			0.69s
Quadcopter	16	8.87s	60	1.35s
Platoon (w/o)	10			7.8s
Platoon	10	0.49s	9	1.76s
Anesthesia (w/o)	5			3.48s
Anesthesia	5	0.01s	4	2.78s
Motor (w/o)	7			5.04s
Motor	7	0.01s	12	0.08s

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL