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Reachable set computation is one of the primary techniques for safety verification of linear dynamical

systems. In reality the underlying dynamics have uncertainties like parameter variations or modeling un-

certainties. Therefore, the reachable set computation must consider the uncertainties in the dynamics to be

useful i .e . the computed reachable set should be over or under approximation if not exact. This paper presents

a technique to compute reachable set of linear dynamical systems with uncertainties. First, we introduce a

construct called support of a matrix. Using this construct, we present a set of sufficient conditions for which

reachable set for uncertain linear system can be computed efficiently; and safety verification can be performed

using bi-linear programming. Finally, given a linear dynamical system, we compute robust reachable set, which

accounts for all possible uncertainties that can be handled by the sufficient conditions presented. Experimental

evaluation on benchmarks reveal that our algorithm is computationally very efficient.
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1 INTRODUCTION
Controllers deployed in safety critical scenarios such as autonomous vehicles, drones, or medical

devices, should always adhere to safety specification. One of the widely used techniques for

verification of safety specification for controllers is to compute the reachable set. Given a set of

initial configurations, the reachable set represents the set of states that are visited by any one of the

trajectories starting from the initial set. Typical techniques for reachable set computation assume

that the underlying dynamics is known exactly and does not have any parameter variations.

A closer look at the life cycle of control design process reveals a different picture. The system

model provided to the control engineer is obtained after performing system identification. Noisy

measurements during the system identification might result in a different dynamics. Additionally,

sometimes these models are derived from first principles and use constants such as gravity, weight
of a component, etc. The control engineer designs a state feedback control assuming that the model

obtained during system identification is correct. This closed loop system is then verified for safety

properties. If one discovers an error in the model, or change in value of one of the constants,

the computation performed for obtaining the reachable set are invalid and the designer needs to

re-compute the reachable set from scratch.

This paper addresses the following question: Are there a class of uncertainties, for which,

computing the reachable set while accounting for uncertainties is computationally inexpensive? If

so, how to characterize such uncertainties? Our answer to the above questions is an affirmative.

We present a class of uncertainties for which reachable set can be computed efficiently and safety

verification can be performed using bi-linear optimization. We present sufficient conditions for

which our algorithm is applicable.

Our approach uses generalized star [10] representation of the set of states encountered during

the process of computation. Our algorithm relies on the observation that matrix multiplication is

the key operation for computing reachable set using generalized stars (Lemma 2.7). In this paper,
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we identify a sub-class of linear systems with uncertainties for which matrix multiplication can be

performed using symbolic techniques. We illustrate this in Examples 1.1 and 1.2.

Example 1.1. Consider the discrete linear dynamical system x+ = Ax where A is


1 α

0 2

 and α
represents either the modeling uncertainty or a parameter. Observe that A2 =


1 3α

0 4

 and does

not contain any quadratic terms or higher order terms of α . Additionally, for all k , Ak
does not

contain any quadratic or higher order terms of α .

Example 1.2. Consider the linear dynamical system x+ = Ax where A is an n × n matrix given as

A =


Q R

0 T

 whereQ (∈ Rm×m ) is a block matrix of sizem×m (wherem < n), R is a block matrix of

sizem × (n −m), 0, is a block matrix of size (m −n) ×m containing only 0s, andT
(
∈ R(n−m)×(n−m)

)
is a block matrix of size (n −m) × (n −m). Observe that A2

is


Q ×Q Q × R + R ×T

0 T ×T

 . If all the
uncertainties are in block matrix R, then, similar to Example 1.1, A2

does not have any nonlinear

terms in Q × R + R ×T . Additionally, this property holds for all Ak
, k ≥ 2. Example 1.1 is a special

case of this structure.

The properties of matrices given in Example 1.1 and 1.2 are structural in nature. Consider

Example 1.2; irrespective of the values of elements in matricesQ (∈ Rm×m ) andT
(
∈ R(n−m)×(n−m)

)
,

the matrixAk
will not have any nonlinear terms. We demonstrate in Section 4 that, reachable set for

such systems can be represented using bi-linear constraints. Hence, checking for safety specification

can be performed using bi-linear programming. In this paper, we introduce a framework for checking

if the uncertainties satisfy such structural properties. We provide sufficient conditions under which

such structural properties hold and present an algorithm for safety verification using bi-linear

optimization.

Using these sufficient conditions, we construct an artifact called robust reachable set that ac-
counts for uncertainties. Given a dynamical system, we identify all the uncertainties for which

the sufficient condition is applicable and introduce uncertainties as suggested by the user. The

resulting reachable set also accounts for the effect of uncertainties over the reachable set. As a

result of the sufficient conditions, the robust reachable set can be computed symbolically and is not

an over-approximation. Experimental evaluation on several benchmarks demonstrates that our

approach is indeed computationally feasible.

The contributions of this paper are the following:

(1) Provide a framework for inferring structural properties of matrix products.

(2) Compute robust reachable set, that represents the effects of model uncertainties on the

reachable set, symbolically.

(3) Present an algorithm for verification of uncertain linear systems using bi-linear optimization.

2 NOTATIONS
Dynamical systems evolve in a state space. In this paper, our domain of state space is Rn . The
state of the system is denoted as x and vectors in Rn are denoted by v . Given a matrixM ∈ Rm×n ,



the (i, j)th element is denoted asM[i, j]. The domain of Boolean matrices of dimensionm × n are

denoted with Bm×n

Definition 2.1 (Discrete Linear Dynamical Systems). Given a matrix A ∈ Rn×n , a discrete linear
dynamical system is denoted as:

x+ = Ax (1)

Definition 2.2 (Trajectories). A trajectory of the discrete linear dynamical system, denoted as

ξA : Rn ×N→ Rn , describes the evolution of the system in time. Given an initial state x0 ∈ R
n
, the

trajectory is defined as

ξA(x0, 0) = x0. (2)

ξA(x0, t) = A × ξ (x0, t − 1). (3)

Therefore, ξA(x0, t) = Atx0 where A
t = A ×A × . . . ×A︸             ︷︷             ︸

t-times

.

We drop A from the subscript of ξ when it is clear from the context.

Definition 2.3 (Reachable Set). Given a linear dynamical system x+ = Ax , initial set of states Θ,
and a time step t ∈ N, the reachable set of states

RS(A,Θ, t) = { x | ∃x0 ∈ Θ,x = ξA(x0, t)} (4)

Definition 2.4 (Uncertain Linear Systems and Reachable Set). An uncertain linear dynamical system

is denoted as

x+ = Λx (5)

where Λ ⊆ Rn×n . Given an initial set Θ and time step t ∈ N, the reachable set of an uncertain linear

system is defined as:

RS(Λ,Θ, t) = { x | ∃x0 ∈ Θ,∃A ∈ Λ,x = ξA(x0, t)}. (6)

An alternative definition is:

RS(Λ,Θ, t) =
⋃
A∈Λ

RS(A,Θ, t). (7)

It is trivial to observe that Equations (6) and (7) represent the same set. Informally, the user does

not know the exact dynamics, however, can determine the range of uncertainty associated with the

dynamics.

Definition 2.5 (Safety Specification). An uncertain linear dynamical system x+ = Λx with initial

set Θ ∈ Rn and time bound Tb ∈ N is said to be safe with respect to an unsafe set U ⊆ Rn if and

only if

∀t ∈ N, 0 ≤ t ≤ Tb , RS(Λ,Θ, t) ∩U = ∅. (8)

One of the widely used techniques for proving that safety specification is satisfied is by computing

a symbolic representation of reachable set (or its over-approximation) and check if the representation

overlaps with the unsafe set. In this paper, we use the symbolic representation of generalized
stars [10].

Definition 2.6. A generalized star S is defined as a tuple ⟨c,V , P⟩ where c ∈ Rn is called the center,
V = {v1,v2, . . . ,vm} where ∀i, 1 ≤ i ≤ m,vi ∈ R

n
are called a set of basis vectors (that span Rn),



and P : Rm → {⊤,⊥} is called the predicate. The set of states represented by a generalized star is

defined as:

[[S]] = { x | ∃α1,α2, . . . ,αm such that

x = c + Σmi=1αivi and P(α1,α2, . . . ,αm) = ⊤} (9)

We abuse notation and use S to refer to both [[S]] and S .
Generalized star representation is very efficient for performing linear transformations on sets.

Naturally, they are suitable for computing the representations of reachable set for linear dynamical

systems.

Lemma 2.7 (Reachable Set Computation Using Generalized Stars). Given an initial set
Θ in a generalized star representation as ⟨c,V , P⟩, the reachable set, RS(A,Θ, t) = ⟨c ′,V ′, P⟩ where
c ′ = Atc and V ′ = {v ′

1
,v ′

2
, . . . ,v ′m} and ∀i, 1 ≤ i ≤ m, v ′i = Atvi .

Notice that, in the star representation of reachable set, the center and the basis vectors change and

the predicate is same as that of initial set. Hence, this representation has the advantage computing

representations of reachable set by performing only matrix-matrix multiplications and matrix-

vector multiplication operations. In this paper, we propose a method to compute robust reachable
set, the reachable set after inducing uncertainties into coefficients of a given linear system. Next we

present an algorithm for performing safety verification of such uncertain systems using bi-linear

optimization.

3 PRELIMINARIES
Definition 3.1 (Linear Matrix Expressions). Let, Vars = {y1,y2,
· · · ,yk } denote a set of variables and LE = {

∑k
i=1 βiyi , βi ∈ R} denote the set of all linear

expressions over variables in Vars . A matrix M is called a Linear Matrix Expression (LME) if

M ∈ {R ∪ LE}n×n .
An LME M over Vars = {y1,y2, . . . ,yk } can also be written as M = N0 + N1y1 + . . . + Nkyk

where ∀i, 0 ≤ i ≤ k,Ni ∈ R
n×n

and Ni represents the coefficients of the variable yi . We represent

the LMEM as the tuple ⟨N0,N1, . . . ,Nk ⟩.

If the perturbations are time varyingwe represent the variables asVarsT = {y1(t),y2(t), · · · ,yk (t)}.
yi (t + 1) denotes the valuation of (perturbation) variable yi at time t + 1.

Informally, the elements of the matrix M can be either real numbers or linear expressions of

variables in Vars .

Definition 3.2 (Uncertain Linear Systems). An uncertain linear system Λ is defined as a pair (M, Γ)
where M is a linear matrix expression over Vars and Γ : Rk → {⊤,⊥} is a predicate. The set of
matrices denoted by Λ are given as

Λ = { A | ∃γ1,γ2, . . . ,γk , such that Γ(γ1,γ2, . . . ,γk ) = ⊤

and A = N0 + N1γ1 + . . . + Nkγk︸                          ︷︷                          ︸
M

} (10)

Informally, Λ represents the set of matrices obtained by assigning different valuations to the

variables Vars that satisfy the predicate Γ. While in general, Γ can be any semi-algebraic set, in

this paper, we restrict Γ to represent polytopes. In this paper we restrict Γ to represent a bounded

polytope.

As seen in Section 2, matrix-matrix multiplications is an important operation for computing reach-

able set using generalized stars. To compute reachable set of uncertain linear systems represented

as LMEs, one need to compute products of two LMEs.



Definition 3.3. Given two LMEs A = ⟨N0,N1, . . . ,Nk ⟩ and B = ⟨M0,M1, . . . ,Mk ⟩ over the same

set of variables Vars = {y1,y2,
· · · ,yk }, the product of two LMEs (similar to product of two linear expressions) is defined as

A × B = (N0 + N1y1 + . . . + Nkyk ) × (11)

(M0 +M1y1 + . . . +Mkyk )

= N0M0 + N0M1y1 + . . . + N0Mkyk

+N1M0y1 + N1M1y
2

1
+ . . . + N1Mky1yk

+
...

+NkM0yk + NkM1y1yk + . . . + NkMky
2

k . (12)

Observe that product of two LMEs can have higher degree terms. However, in this paper, we

focus our attention on LMEs for which the product is closed i .e . does not have any non-linear

terms.

Definition 3.4. LMEs A = ⟨N0, . . . ,Nk ⟩ and B = ⟨M0, . . . ,Mk ⟩ are said to be closed under

multiplication if the following two conditions are satisfied:

(1) ∀1≤i≤k , Ni ×Mi = 0

(2) ∀1≤i, j≤k (Ni×Mj ) + (Nj×Mi ) = 0

Therefore, A × B = ⟨L0, . . . ,Lk ⟩ where,

(1) L0 = N0 ×M0.

(2) ∀i 1 ≤ i ≤ k , Li = (Ni ×M0) + (N0 ×Mi ).

If the uncertain linear system is represented as an LME, such that At−1
and A are both LME and

closed under multiplication, then the representation of the reachable set at time t using generalized
stars will have only second degree terms. Our goal in this paper is to identify a criterion over

LMEs such that their product is closed under multiplication. In this paper, we provide a sufficient

condition, and show that this sufficient condition is not necessary. We introduce a notion of support
of a matrix.

3.1 Matrix Support
Definition 3.5 (Matrix Support). Given a matrixM ∈ Rm×n , supp(M) = B where B ∈ Bm×n such

that for all i, 1 ≤ i ≤ m, 1 ≤ j ≤ n, B[i, j] = 0 if and only ifM[i, j] = 0.

Informally, the support of a matrix identifies the elements of a matrix that are zero and the

elements that are non-zero.

Definition 3.6 (Block Boolean Matrix). A matrix B ∈ Bn×n is said to be a block Boolean matrix,

denoted asblock((r1, c1), (r2, c2)) if and only if for all i, j where r1 ≤ i ≤ r2 and c1 ≤ j ≤ c2, B[i, j] = 1

and B[i, j] = 0 otherwise.

Figure 1 shows a pictorial representation of a Block Boolean Matrix.

Definition 3.7 (Addition and Multiplication of Boolean Matrices). Given Boolean matrices B1,B2 ∈

Bm×n , we define the addition operation on Boolean matrices as B1 ⊕ B2 = B3 where B3 ∈ B
m×n

and

∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,B3[i, j] = B1[i, j] ∨ B2[i, j].

Given Boolean matrices B1 ∈ B
m×k

and B2 ∈ B
k×n

, we define the multiplication operation on

Boolean matrices as B1 ⊗ B2 = B3 where B3 ∈ B
m×n

and



Fig. 1. Pictorial representation of a Block Boolean Matrix block((r1, c1), (r2, c2)). Light Blue represents 0, and
Dark Blue represents 1

∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,B3[i, j] =
k∨
l=1

B1[i, l] ∧ B2[l , j].

Informally, the addition and multiplication operations on

Boolean matrices are similar to that of matrices with real numbers. We also extend the matrix

difference operation as follows.

Definition 3.8. Given BooleanmatricesB andB1, [[B1]]B is the differencematrixwhere [[B1]]B[i, j] =
1 if and only if B[i, j] = 1 and B1[i, j] = 0.

Informally, in [[B1]]B, we remove all the 1s from B that are also 1s in B1. Given a set of matrices

B1,B2, . . . ,Bk , [[B1,B2, . . . ,Bk ]]B = [[B1 ⊕ . . . ⊕ Bk ]]B.

Definition 3.9 (Sub-Support and Super-Support). Given Boolean matrices B1,B2 ∈ B
m×n

, we say

that B1 is a sub-support of B2, denoted as B1 ≤ B2 if and only if for all i, j, if B1[i, j] = 1 then

B2[i, j] = 1. An equivalent formulation is for all i, j , if B2[i, j] = 0 then B1[i, j] = 0. We also say that

B2 is a super-support of B1.

Definition 3.10 (Intersection of Support Matrices). Given Boolean matrices B1,B2 ∈ B
m×n

, we

denote intersection B1 ∩ B2 = B, where B ∈ Bm×n and B[i, j] = B1[i, j] ∧ B2[i, j]

Properties of Supports: We now present various properties of supports of matrices.

Lemma 3.11. GivenM1,M2 ∈ R
m×n , supp(M1 +M2) ≤ supp(M1) ⊕ supp(M2).

Proof. Let us denote supp(M1 + M2) as B1 and supp(M1) ⊕ supp(M2) as B2. Consider an i, j
such that B2[i, j] = 0. From Definition 3.7, it follows that supp(M1)[i, j] = 0 and supp(M2)[i, j] = 0.

Therefore, M1[i, j] = 0 and M2[i, j] = 0. Therefore (M1 + M2)[i, j] = 0. Therefore supp(M1 +

M2)[i, j] = 0. Therefore, for all i, j if B2[i, j] = 0 then B1[i, j] = 0. Therefore B1 ≤ B2. □

Lemma 3.12. GivenM1 ∈ R
m×n andM2 ∈ R

n×l , supp(M1 ×M2) ≤ supp(M1) ⊗ supp(M2).

Proof. Let us denote supp(M1 × M2) as B1 and supp(M1) ⊗ supp(M2) as B2. Consider an i, j
such that B2[i, j] = 0. From Definition 3.7, it follows that for all k , either supp(M1)[i,k] = 0 or

supp(M2)[k, j] = 0 or both. Hence, for all k , eitherM1[i,k] = 0 orM2[k, j] = 0 or both. Therefore

(M1 ×M2)[i, j] = 0. Therefore supp(M1 ×M2)[i, j] = 0, that is, B1[i, j] = 0. Therefore B1 ≤ B2. □

Corollary 3.13. Given matricesM1 andM2, if supp(M1) ⊗ supp(M2) = 0, thenM1 ×M2 = 0



Fig. 2. If all the cells contained in the grey zone of B2 contain 0 then B1 × B2 = 0. Light Blue represents 0,
and Dark Blue represents 1

.

Given two Block Boolean Matrices B1,B2 ∈ B
n×n

, we can check if B1 × B2 = 0 in O(1). Let,
B1 = block((r

1

1
, c1

1
), (r 1

2
, c1

2
)) and B2 = block((r

2

1
, c2

1
), (r 2

2
, c2

2
)). If {c1

1
, c1

1
+ 1, · · · c1

2
} ∩ {r 2

1
, r 2

1
+ 1, · · · r 2

2
}

= ∅, then B1 × B2 = 0. Checking this interval intersection operation can be performed in O(1) time.

The condition that elements in B2 from rows [c1
1
, c1

2
] are zeros is illustrated in Figure 2. Since matrix

multiplication is not commutative, Corollary 3.13 does not a guarantee thatM2 ×M1 = 0.

Lemma 3.14. Given B1,B2 ∈ B
m×n and B3 ∈ B

n×l . If B1 ≤ B2, then B1 ⊗ B3 ≤ B2 ⊗ B3.

Proof. Consider an i, j such that (B2⊗B3)[i, j] = 0, then for allk , either B2[i,k] = 0 or B3[k, j] = 0

or both. From Definition 3.7, it follows that, for all k , either B1[i,k] = 0 or B3[k, j] = 0 or both.

Therefore (B1 ⊗ B3)[i, j] = 0. Hence, B1 ⊗ B3 ≤ B2 ⊗ B3. □

Corollary 3.15. Given B1,B2 ∈ B
n×m and B3 ∈ B

l×n . If B1 ≤ B2, then B3 ⊗ B1 ≤ B3 ⊗ B2.

4 SUFFICIENT CONDITIONS FOR REPRESENTING REACHABLE SET OF UNCERTAIN
LINEAR SYSTEMS USING BI-LINEAR INEQUALITIES

In this section, we present sufficient conditions for product of LMEs to be closed under product

(Definition 3.4). This allows us to compute the symbolic representation of the reachable set of

uncertain linear systems using bi-linear inequalities.

Lemma 4.1. Given LMEs A = ⟨N0,N1, . . . ,Nk ⟩ and B = ⟨M0,M1, . . . ,Mk ⟩ over the same set of
variables Vars . If ∀i, j, 1 ≤ i ≤ k and 1 ≤ j ≤ k , supp(Ni ) ⊗ supp(Mj ) = 0, then A × B results in an
LME.

Proof. From Corollary 3.13, if for all i, j, supp(Ni ) ⊗ supp(Mj ) = 0, then for all i , Ni ×Mi = 0
and for all i, j, with i , j, Ni ×Mj = 0 and Nj ×Mi = 0. Therefore Ni ×Mj + Nj ×Mi = 0.

Therefore, both the conditions specified in Definition 3.4 for closure of products over LMEs are

satisfied. Hence A × B results in an LME. □

Lemma 4.1 provides a sufficient condition for product of two LMEs to result in an LME. We now

present sufficient conditions for Ak
to be an LME.



Theorem 4.2. Given an LME A = ⟨N0,N1, . . . ,Nk ⟩ if

∀i, j, 1 ≤ i, j ≤ k, supp(Ni ) ⊗ supp(Nj ) = 0 (13)

∀i, 0 ≤ i ≤ k, supp(N0) ⊗ supp(Ni ) ≤ supp(Ni ),

and supp(Ni ) ⊗ supp(N0) ≤ supp(Ni ). (14)

then for allm ≥ 2, Am is an LME.

Proof. The proof is by induction. We strengthen the inductive hypothesis to prove the above

property.

Inductive Hypothesis: Given an LME A that satisfies Equations (13) and (14), for allm ≥ 2, Am
is

an LME ⟨Lm
0
,Lm

1
, . . . ,Lmk ⟩, and additionally, for all i, 0 ≤ i ≤ k , supp(Lmi ) ≤ supp(Ni ).

Base Case (m = 2): Given Equations 13 and 14, using Lemma 4.1, we know that A2
is an LME. Let

us denote A2 = ⟨L2
0
,L2

1
, . . . ,L2k ⟩.

Consider L2i where i > 0. From Definition 3.4, we know that L2i = N0 × Ni + Ni × N0. Therefore

supp(L2i ) = supp(N0 × Ni + Ni × N0)

≤ supp(N0 × Ni ) ⊕ supp(Ni × N0)

(from Lemma 3.11)

≤
(
supp(N0) ⊗ supp(Ni )

)
⊕
(
supp(Ni ) ⊗ supp(N0)

)
(from Lemma 3.12)

≤ supp(Ni ) ⊕ supp(Ni ) (from Condition 14)

≤ supp(Ni )

Hence, ∀i > 0 supp(L2i ) ≤ supp(Ni ).

The reasoning for supp(L2
0
) ≤ supp(N0) follows similarly.

Induction Step: Suppose that for anm > 2 the induction hypothesis is satisfied. We now prove

that the inductive hypothesis holds form + 1.
Let us denote Am

as ⟨Lm
0
,Lm

1
, . . . ,Lmk ⟩. From inductive hypothesis, we know that, for all i ,

0 ≤ i ≤ k , supp(Lmi ) ≤ supp(Ni ). Therefore, from Equation (13) and Corollary 3.13, we know that

∀i, j i > 0, j > 0, Nj × L
m
i = 0. Therefore, from Definition 3.4, A × Am

results in an LME. Let us

denote Am+1 = ⟨Lm+1
0
,Lm+1

1
, . . . ,Lm+1k ⟩.

To prove the inductive hypothesis, consider Lm+1i where i > 0. From Definition 3.4, we know

that Lm+1i = N0 × L
m
i + Ni × L

m
0
. Therefore

supp(Lm+1
1
) = supp(N0 × L

m
i + Ni × L

m
0
)

≤ supp(N0 × L
m
i ) ⊕ supp(Ni × L

m
0
)

(from Lemma 3.11)

≤
(
supp(N0) ⊗ supp(Lmi )

)
⊕(

supp(Ni ) ⊗ supp(Lm
0
)
)
(from Lemma 3.12)

≤
(
supp(N0) ⊗ supp(Ni )

)
⊕(

supp(Ni ) ⊗ supp(N0)
)
(from Induction)

≤ supp(Ni ) ⊕ supp(Ni ) from Condition 14.

≤ supp(Ni )

Hence, ∀i > 0 supp(Lm+1i ) ≤ supp(Ni ). The reasoning for supp(Lm+1
0
) ≤ supp(N0) follows

similarly. □



Discussion: Theorem 4.2 provides a sufficient condition for Ak
to be an LME for all k ≥ 2 using

the notion of supports. In our opinion, support is an abstract domain over matrices. This abstract

domain is very useful for inferring properties of LMEs, such as closure under multiplication. In

future, we would like to explore similar abstract domains and explore more properties of LMEs.

Theorem 4.3. Let Λ = (A, Γ) be an uncertain system where A = ⟨N0,N1, . . . ,Nk ⟩ is an LME
satisfying Equations (13) and (14), and Γ : Rk → {⊤,⊥}. Since A satisfies Equations (13) and (14),
from Theorem 4.2, it follows that, given t , At is also an LME, represented as ⟨L0,L1, . . . ,Lk ⟩. Given an
initial set Θ = ⟨c,V , P⟩; the reachable set is given as:

RS(Λ,Θ, t) = { x | ∃y1, . . . ,∃yk ,∃α1, . . . ,∃αm , (15)

x = c ′ + Σmi=1αiv
′
i (16)

c ′ = (L0 + L1y1 + . . . Lkyk ) × c,

∀i, 1 ≤ i ≤ m,v ′i = (L0 + L1y1 + . . . Lkyk )vi ,

and Γ(y1, . . . ,yk ) = ⊤ ∧ P(α1, . . . ,αm) = ⊤}

Proof. Consider an M ∈ Λ, therefore, M = N0 + N1γ1 + . . . + Nkγk where Γ(γ1, . . . ,γk ) = ⊤.
Since At

is also an LME, we haveMt = L0 + L1γ1 + . . . + Lkγk . Hence, RS(M,Θ, t) is given as

RS(M,Θ, t) = { x | ∃α1, . . . ,∃αm ,x = c ′ + Σmi=1αiv
′
i (17)

c ′ = (L0 + L1γ1 + . . . + Lkγk ) × c,

∀1 ≤ i ≤ m,v ′i = (L0 + L1γ1 + . . . + Lkγk )vi ,

and P(α1, . . . ,αm) = ⊤}

Since RS(Λ,Θ,k) =
⋃

M ∈Λ RS(M,Θ, t). Hence, adding existential quantifiers for Equation (17) will

yield Equation (16). □

Observe that RS(Λ,Θ, t) can be formulated as a semi-algebraic set with bi-linear constraints. The

safety verification algorithm for uncertain linear systems first checks if Conditions 13 and 14 are

satisfied by the uncertain linear system. If the conditions are satisfied, then Ak
is computed as an

LME. For checking RS(Λ,Θ, t) ∩U where the unsafe set U is given as a polyhedral or quadratic

constraints, one can employ quadratically constrained quadratic programming tools [13, 16].

Algorithm 1 for performing safety verification of uncertain linear systems relies on Theorem 4.3.

Lines 1-2 in the algorithm checks if the condition 13 and 14 are satisfied. At line 3, At
is calculated.

From Theorem 4.2 we know that At
is also an LME as it satisfies conditions condition 13 and 14. At

line 4 the reachable set is computed. Finally, lines 5-7 checks if the reachable set intersects with the

unsafe set. This check can be formulated as a bi-linear programming. An example of an uncertain

linear system and formulation of bi-liniear inequalities is given in Section 5.1

There are several advantages of computing the reachable set of an uncertain linear system in this

manner. First, this representation is exact and is not an over-approximation. Second, computing

this symbolic representation requires only matrix-matrix multiplications. Standard libraries that

perform these computations are very efficient. Third, one need not recompute the reachable set for

changing the uncertainty. One can simply change the set of constraints Γ and re-use the results

of reachable set computation. Finally, this technique can provide counterexamples. That is, if the

safety property is violated, one can diagnose the problem and provide the values corresponding

to the uncertainty that lead to the safety violation. This ability to generate counterexamples is

generally not possible while computing over-approximations.



input :Uncertain linear system Λ = (A, Γ) where A = ⟨N0,N1, . . . ,Nk ⟩; Initial set

Θ = ⟨c,V , P⟩; Time step t ; Unsafe SetU
output :Safe or Unsafe or Invalid

1 if Condition 13 or 14 is not satisfied by A then
2 return Invalid;
3 Compute At

as ⟨L0,L1, . . . ,Lk ⟩;

4 Compute RS(Λ,Θ, t) according to Equation (16);

5 if RS(Λ,Θ, t) ∩U , ∅ then
6 return Unsafe;
7 else
8 return Safe;

Algorithm 1: Algorithm for performing safety verification of uncertain linear system when A
satisfies Conditions 13 and 14.

Example 4.4. Conditions in Equations (13) and (14) are only sufficient conditions over an LME A
such that Ak

is also an LME. We provide an example to demonstrate that these conditions are not

necessary.

Consider A =


1 + x x

−x 1 − x

 . That is, A = N0 + N1x where N0 =


1 0

0 1

 and N1 =


1 1

−1 −1

 .
It is easy to infer that not only A2

is also an LME but for all t > 2,At
is an LME. Furthermore,

supp(N1) ⊗ supp(N1) , 0 and hence Condition 13 is not satisfied.

Observe that At = N0 + tN1x . Hence, even small perturbations over the model can grow over

time and significantly change the reachable set.

Note, if a given linear dynamics is already known to satisfy conditions 13 and 14, one need not

check for the conditions (lines 1-2, Algorithm 1). Computing the power (line 3, Algorithm 1) will

automatically preserve the required structural properties (i .e . we can execute lines 3-8 by skipping

1-2 of Algorithm 1). This paper have introduced the notion of structures for two reasons. First,

to understand the general principle behind the empirical observations, and second, to determine

the instances to introduce uncertainties while ensuring that the robust reachable set can still be

represented using quadratic constraints.

4.1 Generalizing Sufficient Conditions for Closure of LME products
Conditions 13 and 14 are restrictive and require

supp(N0) ⊗ supp(N0) ≤ supp(N0). We present a less restrictive conditions where given an LME A,
Ak

is also an LME.

Lemma 4.5. Given LME A = ⟨N0,N1, . . . ,Nk ⟩, if ∃E0,∃E1, . . . ,∃Ek where, for all i,Ei ∈ Bn×n

such that

∀i, supp(Ni ) ≤ Ei . (18)

∀i, j, 1 ≤ i, j ≤ k,Ei ⊗ Ej = 0. (19)

∀i, 0 ≤ i ≤ k,E0 ⊗ Ei ≤ Ei and Ei ⊗ E0 ≤ Ei . (20)

Then for all n ≥ 2, An is also an LME.



Proof. This proof, similar to the proof of Theorem 4.2, is a proof by induction where inductive

hypothesis is strengthened.

Inductive Hypothesis: Given an LME A that satisfies Equations (18), (19) and (20), for allm ≥ 2,

Am
is an LME ⟨Lm

0
,Lm

1
, . . . ,Lmk ⟩, and additionally, for all i, 0 ≤ i ≤ k , supp(Lmi ) ≤ supp(Ei ).

The proof for the base case and the inductive step are very similar to that of proof of Theorem 4.2.

The proof is given as a part of Appendix. □

Conditions 19 and 20 are less restrictive versions of conditions 13 and 14 respectively, because

of condition 18. Informally, any support matrix Ui , which is a super support of Ni and satisfies

conditions 19 and 20 will also satisfy conditions 13 and 14.

According to Lemma 4.5, if conditions 18, 19 and 20 are satisfied, then 13 can be generalized

to condition 19 and condition 14 can be generalized to ∀i, 0 ≤ i ≤ k, if supp(N0) ⊗ supp(Ni ) ≤

supp(Ui ), and supp(Ni ) ⊗ supp(N0) ≤ supp(Ui )

4.2 Sufficient Conditions for Time-Varying Perturbations
In this section, we extend the sufficient conditions to time-varying uncertainties. Let, the given

dynamics be represented by the LME A = ⟨N0,N1, . . . ,Nk ⟩ and the time-varying uncertainties

are denoted as VarsT = {y1(t),y2(t), · · · ,yk (t)}. That is, at time t = 1, the LME is given as

N0 + N1y1(1) + · · · + Nkyk (1). At t = 2, the LME is given as N0 + N1y1(2) + · · · + Nkyk (2).

Theorem 4.6. Given an LME A = ⟨N0,N1, . . . ,Nk ⟩ over time-varying variables
VarsT = {y1(t),y2(t), · · · ,yk (t)}, if

∀i, j, 1 ≤ i, j ≤ k, supp(Ni ) ⊗ supp(Nj ) = 0 (21)

∀i, 0 ≤ i ≤ k, supp(N0) ⊗ supp(Ni ) ≤ supp(Ni ),

and supp(Ni ) ⊗ supp(N0) ≤ supp(Ni ). (22)

then for allm ≥ 2, Am is an LME.

Proof. The proof is by induction. We prove a stronger inductive property of the LMEs.

Base Case (m = 2):Due to conditions 21 and 22,A2
will also be an LME (Similar proof as lemma 4.1).

And the corresponding LME is: N 2

0
+

(
N0N1y1(2) + N1N0y1(1)

)
+

(
N0N2y2(2) + N2N0y2(1)

)
+ · · · +(

N0Nkyk (2) + NkN0yk (1)
)
.

Rearranging the terms we get:N 2

0
+

(
M1

1
y1(1)+M

1

2
y1(2)

)
+

(
M2

1
y2(1)+M

2

2
y2(2)

)
+ · · · +

(
Mk

1
yk (1)+

Mk
2
yk (2)

)
. From Equation 22, it follows that ∀1 ≤ i ≤ k,∀1 ≤ j ≤ 2, supp(M i

j ) ≤ supp(Ni ).

Inductive Hypothesis: Let, the LME representation be as follows: Nm
0

+

(
O1

1
y1(1)+O

1

2
y1(2)+ · · ·+

O1

my1(m)
)
+

(
O2

1
y2(1)+O

2

2
y2(2)+ · · ·+O

2

my2(m)
)
+ · · · +

(
Ok
1
yk (1)+O

k
2
yk (2)+ · · ·+O

k
myk (m)

)
. From

stronger inductive hypothesis, we also have, ∀i, 1 ≤ i ≤ k,∀j, 1 ≤ j ≤ m, supp(O i
j ) ≤ supp(Ni ) and

supp(Nm
0
) ≤ supp(N0)).

Induction Step: Atm + 1 step, we will have the following representation: Nm+1
0

+ N0

(
O1

1
y1(1) +

O1

2
y1(2) + · · · + O1

my1(m)
)
+ N1N

m
0
y1(m + 1) + N0

(
O2

1
y2(1)+O

2

2
y2(2) + · · · + O2

my2(m)
)
+ · · · +

N0

(
Ok
1
yk (1)+O

k
2
yk (2)+· · ·+O

k
myk (m)

)
+NkN

m
0
yk (m+1)Therefore, this is also anLME. Additionally,

∀i, i ≤ i ≤ k∀j, 1 ≤ j ≤ m supp(N0 × O
i
j ) ≤ supp(Ni ) [supp(O i

j ) ≤ supp(Ni )]; and, ∀i, 1 ≤ i ≤

k supp(NiN
m
0
) ≤ supp(Ni ). □

4.3 Comparing with Interval Arithmetic
In this section, we provide an example where calculating reachable set using naive interval arith-

metic results in an over approximation, whereas symbolic reachable set is exact. It should also be

noted, in case of interval arithmetic, if the uncertainty changes (even for a single variable), the



reachable set needs to be recomputed from scratch, whereas in case of symbolic reachable set

computation no re-computation is required.

Following example illustrates the over-approximation caused by interval arithmetic in reachable

set computation.

Example 4.7. Consider the matrix A =


2 4α

0 −1

 , where α ∈ [2, 4] corresponds to a perturbation.

The uncertain matrix after performing matrix multiplication using interval arithmetic will be

A2 =


2 4[2, 4]

0 −1

×

2 4[2, 4]

0 −1

 =

4 [0, 24]

0 1

 Using symbolic computation, it will beA2 =


4 4α

0 1


It is easy to verify that example 4.7 satisfies the sufficient conditions 13 and 14.

5 ROBUST REACHABLE SET: INTRODUCING PERTURBATIONS IN THE LINEAR
DYNAMICS

In Section 4, we presented a set of sufficient conditions for which the reachable set of uncertain

system can be represented using bi-linear inequalities. In this section, we will apply these sufficient

conditions to compute the robust reachable set. Our procedure is as follows: Given a linear dynamical

system x+ = Ax , we identify the set Ψ of all indices [i, j] such that, the LME obtained after replacing

the indices in Ψ with a variable, satisfies the conditions presented in Section 4.

Once the set of indices Ψ is identified, we construct the uncertain linear system by introducing

perturbations in the numerical values in the matrix A at indices in Ψ by a value determined by the

user. That is, the user would be interested to check whether the safety property is satisfied after

changing the numerical value at index i, j by ±5% or ±10%.

To discover the setΨ, we search for all Block BooleanmatricesH ∈ Bn×n such that the generalized
sufficient conditions are satisfied. Given H , we first construct a matrixUH such that, for all matrices

G where supp(G) ≤ UH , we have
(
supp(G) ⊗ H

)
⊕
(
H ⊗ supp(G)

)
≤ H .

Lemma 5.1. Given a block matrix N = block((r1, c1), (r2, c2)), the corresponding UN ∈ B
n×n is

given as

UN [i, j] =


0 if ((i < r1 ∨ i > r2) ∧ (r1 ≤ j ≤ r2))

or ((j < c1 ∨ j > c2) ∧ (c1 ≤ i ≤ c2))

1 otherwise.

Proof. This proof has two parts. First, for the aboveUN , we prove that (UN ⊗N )⊕ (N ⊗UN ) ≤ N .

Second, for anyU ′N such thatUN ≤ U ′N andUN , U
′
N , we show that (U ′N ⊗ N ) ⊕ (N ⊗ U ′N ) ≰ N .

Part 1: Given the aboveUN , we first prove thatUN ⊗N ≤ N . The proof for N ⊗UN ≤ N follows

similarly. To prove that UN ⊗ N ≤ N , it suffices to prove the two parts. First, ∀j, j < c1 or j > c2,
(UN ⊗ N )[i, j] = 0. Second, when c1 ≤ j ≤ c2, and i < r1 or i > r2, (UN ⊗ N )[i, j] = 0. Consider the

element at [i, j] ofUN ⊗ N .

(UN ⊗ N )[i, j] =
n∨

k=1

UN [i,k] ∧ N [k, j].

1) Since N is a block matrix with corners (r1, c1) and (r2, c2), all the elements in columns less

than c1 and greater than c2 in N are zeros. Hence, for all j < c1 or j > c2, (UN ⊗ N )[i, j] = 0.

2) Consider c1 ≤ j ≤ c2 and i < r1 or i > r2. If k < r1 or k > r2 then N [k, j] = 0 and if r1 ≤ k ≤ r2,
UN [i,k] = 0. Therefore, the disjunction

∨n
k=1UN [i,k] ∧N [k, j] will result in 0. That is, when i < r1

or i > r2 and c1 ≤ j ≤ c2, (UN ⊗ N )[i, j] = 0.



Fig. 3. Pictorial representation of a block matrix N and its corresponding UN . Light Blue represents 0, and
Dark Blue represents 1

Therefore,UN ⊗ N ≤ N .

The proof for N ⊗ UN ≤ N follows similarly.

Part 2: Consider U ′N (different from UN ) such that UN ≤ U ′N , then there exists at least one i, j
such thatU ′N [i, j] = 1 andUN [i, j] = 0. Let us consider the case where (j < c1∨j > c2)∧(c1 ≤ i ≤ c2).
For such an i, j , we have that (U ′N ⊗ N )[i, j] =

∨n
k=1U

′
N [i,k] ∧ N [k, j]. By definition, it follows that

(U ′N ⊗ N )[i, j] = 1. However N [i, j] = 0. Therefore U ′N ⊗ N ≰ N . The proof for the case where

(i < r1 ∨ i > r2) ∧ (r1 ≤ j ≤ r2) follows similarly. □

Figure 3 shows a pictorial view ofUN , given N .

Given a Boolean matrix N that represents the support of the system dynamics and a set of Block

Boolean matrices {N1,N2, · · · ,Nk } representing the support of uncertainties, we construct [[Ni ]]N
and check if [[Ni ]]N ≤ UNi . If not, we can infer that introducing uncertainties at Ni might not

preserve the closure under multiplication of the resulting LMEs.

Theorem 5.2. Let, N1,N2, · · · ,Nk be a set of Block Boolean Matrices, representing uncertainties in
a given dynamics. If ∃1≤i≤kNi , such that, it violates either of the following conditions:

Ni ⊗ Nj = 0 (23)

[[Ni ]]N0 ⊗ Ni ≤ Ni ,

and Ni ⊗ [[Ni ]]N0 ≤ Ni . (24)

then [[N1,N2, · · · ,Nk ]]N0 with the uncertainties N1, · · · ,Nk violates either Condition 13 or 14, or both.

Proof. Case 1: ∃1≤p,r ≤k Np × Nr , 0. Trivial.

Case 2: Let Ni = block((r1, c1), (r2, c2)). and it violates Condition 24 with [[Ni ]]N0. It implies columns

r1 to r2 excluding the rows r1 to r2 has a 1 in [[Ni ]]N0, at-least in one cell; OR rows c1 to c2 excluding
columns c1 to c2 has 1 in [[Ni ]]N0, at-least in one cell (from Lemma 5.1).

Let us assume [[N1,N2, · · · ,Nk ]]N0 along with the set of uncertainties N1,N2, · · · ,Ni , · · · ,Nk
satisfies Conditions 13 and 14.

To satisfy Condition 14, the 1 in columns r1 to r2 excluding the rows r1 to r2 OR rows c1 to c2
excluding columns c1 to c2 must not be present in [[N1,N2, · · · ,Nk ]]N0. The only way to achieve

that is, if ∃j,i 1 ≤ j ≤ k Nj intersects with columns r1 to r2 excluding the rows r1 to r2 OR rows c1 to
c2 excluding columns c1 to c2 where there is a 1 in [[N1,N2, · · · ,Nk ]]N0; in such a case Ni × Nj , 0,

violating condition 13.



Therefore, [[N1,N2, · · · ,Nk ]]N0 along with the set of uncertainties N1,N2, · · · ,Ni , · · · ,Nk does not

satisfy Conditions 13 or 14 □

Corollary 5.3. If [[N1,N2, · · · ,Nk ]]N0 along with the set of uncertainties N1,N2, · · · ,Nk satisfy
Conditions 13 and 14 then ∀1≤i≤kNi will satisfy Conditions 23 and 24 with [[Ni ]]N0

It is easy to observe that converse of Theorem 5.2 does not hold true i .e . if N1,N2, · · · ,Nk are a

set of Block Boolean Matrix, representing uncertainties in a given dynamics and ∀i Ni satisfies

Conditions 23 and 24 with [[Ni ]]N0 then it does not imply [[N1,N2, · · · ,Nk ]]N0 along with the set

of uncertainties N1,N2,
· · · ,Nk will satisfy Conditions 13 and 14.

We leverage Theorem 5.2 to search for block uncertainties in a given dynamics, such that

Conditions 13 and 14 are satisfied. Given a block size of p × r , we look for all block uncertainties

Ni of size p × r such that they satisfy Conditions 23 and 24 with [[Ni ]]N0 and put it in a set κ. The
maximal subset of κ is the maximum number of uncertain blocks of size p × r that can be induced

in A so that conditions 13 and 14 are satisfied. From Theorem 5.2 we know if a block Ni of size

m × n is not in κ, it can never be in any of the sets of block uncertainties that satisfies condition 13

and 14.

We use Lemma 5.1 and Theorem 5.2 for introducing uncertainties in the given linear dynamics

x+ = Ax such that it satisfies the sufficient conditions in Lemma 4.5. We search for all block

matricesM such that N × N = 0. Let, [[N ]]N0 be a matrix representing the constants coefficients

after excluding all the block matrices N . Then we check if supp([[N ]]N0) ≤ UN and add them to a

set κ. We consider all possible subsets of κ and check if the sufficient conditions in Lemma 4.5 are

satisfied. We collect the subset with the maximum number of uncertainties that can be introduced

and return the corresponding LME. The algorithm is formally given in Algorithm 2.

Description of Algorithm 2: Lines 4-6, searches for all the blocks N in the given dynamics A
such that it satisfies Conditions 23 and 24 with [[N ]]N0.

Lines 7-8: If there are no blocks found in the previous step (Lines 4-6) that satisfies Conditions 23

and 24 then, no fault introduction is possible which satisfies Conditions 13 and 14; this follows

from Theorem 5.2.

Lines 9-16: We look for the largest subset of κ that satisfies Conditions 13 and 14. From Theorem 5.2

this set is guaranteed to be the largest set which satisfies Conditions 13 and 14. The conditions

checked in line 13 if satisfied implies the conditions mentioned in Lemma 4.5. Therefore, the subset

S satisfies all the sufficient conditions.

Line 17: Returns the maximal subset {N1,N2, · · · ,Nk } that satisfies the Conditions 13 and 14.

For a particular subset S : line 12, has a run time of O(n2 · k), where A is of size n × n; the check in

line 13 takes O(k2), as checking Hi × Hj O(1), and there are O(k2) of them; checks in line 14 takes

O(n2).
This shows that if the uncertain blocks are given by the user i .e . uncertain blocks are already

known, we can check if they satisfy Conditions 13 and 14 very efficiently. Moreover this check

needs to be performed only once at the start. And then the safety verification can be performed

using bi-linear optimization as discussed.

Observations: Notice that the Algorithm 2 searches through all possible block matrices (poten-

tially n4) to search for matrices that satisfy sufficient conditions and then searches for all possible

subsets of the set κ (potentially 2
n4

). For each subset s = {N1,N2, · · · ,Nk }, we check if supp(N0) ≤

U0. Where N0 is the coefficient matrix, excluding all Ni ;U0 =

⋂
UNi andUNi are obtained according

to Lemma 5.1. However, due to the restriction that N ×N = 0 and the condition that supp(N0) ≤ U0,

we observe that, in practice, the set κ often contains the subsets of the orderO(n). Hence, we found
that our approach to be useful in several benchmarks with dimensions ranging from 5 to 20.



input :Linear dynamical system x+ = Ax
output :Linear Matrix Expression A′ = ⟨N0,N1, . . . ,Nk ⟩ that satisfies conditions in

Lemma 4.5.

1 κ ← ∅;

2 maxPerturbations← 0;

3 maxS← ∅;
4 N0 ← supp(A);

5 for all blocks N = block((r1, c1), (r2, c2)) of size less than n × n in the matrix A do
6 if supp([[N ]]N0) ≤ UN and N × N = 0 andUN ×UN ≤ UN then
7 κ ← κ ∪ {N };

8 if κ = ∅ then
9 return Cannot introduce uncertainties;

10 for all subsets S of κ do
11 S = {N1,N2, . . . ,Nk };

12 U0 =
⋂
UNi ;

13 if ∀i, j, 1 ≤ i, j ≤ k,Hi × Hj = 0 then
14 if U0 ×U0 ≤ U0, ∧ supp(N0) ≤ U0 then
15 if size(S) > maxPerturbations then
16 maxPerturbations← size(S);
17 maxS← S ;

18 return ⟨A,N1, . . . ,Nk ⟩ where maxS = {N1,N2, . . . ,Nk }.

Algorithm2:Algorithm that searches for all possible LMEs that satisfy the sufficient conditions

in Lemma 4.5 and returns the LME with maximum number of uncertainties.

5.1 Illustration
In this section we show how the experiments were performed with the help of a toy example. In

the rest of the section we evaluate the applicability of our approach on several benchmarks. In each

benchmark we provide all the set of inputs required to test the applicability of our approach. Let us

consider the following example:


x+
1

x+
2

x+
3

x+
4


=


3 2.9 3.9 2

0 7 0 0

0 0 2 0

0 0 0 1




x1

x2

x3

x4


In the above example, the values in magenta (2.9) and brown (3.9) are uncertain. The different colors

symbolize that these uncertainties are independent. Let, the initial setΘ
∆
= [1, 2]×[2, 2]×[3, 3]×[1, 1].

Suppose that the uncertainty associated with the value in magenta be ±10% and the value in brown

be ±20%. The system is considered to be safe if at every step the value of x1 < 100. For performing

safety verification of the uncertain linear system, the following steps are performed.



• A is represented as the following LME; the variables y and z correspond to the uncertainties.
3 0 0 2

0 7 0 0

0 0 2 0

0 0 0 1

︸            ︷︷            ︸
N0

+


0 2.9 0 0

0 0 0 0

0 0 0 0

0 0 0 0

︸              ︷︷              ︸
N1

y +


0 0 3.9 0

0 0 0 0

0 0 0 0

0 0 0 0

︸              ︷︷              ︸
N2

z

• We now check the sufficient conditions in Equations (13) and (14). That is, the following

conditions are checked:

– Check supp(N1) × supp(N2) = 0, supp(N2) × supp(N1) = 0, supp(N1) × supp(N1) = 0, and

supp(N2) × supp(N2) = 0.

– Compute UN = UN1
∩ UN2

. UN1
and UN2

are obtained based on Lemma 5.1. Check if

supp(N0) ≤ UN andUN ×UN ≤ UN
All the above conditions are satisfied for this example. Hence, from Theorem 4.2, we know

that for all t , At
is an LME.

• We now compute A2
as

9 0 0 8

0 49 0 0

0 0 4 0

0 0 0 1


+


0 29 0 0

0 0 0 0

0 0 0 0

0 0 0 0


y +


0 0 19.5 0

0 0 0 0

0 0 0 0

0 0 0 0


z

• For checking the safety property of x1 < 100, we give the following constraints from the

reachable set to Gurobi.

x1 − (9α1 + 29yα2 + 19.5zα3 + 8α4) = 0

x1 ≥ 100

1 ≤ α1 ≤ 2, 2 ≤ α2 ≤ 2, 3 ≤ α3 ≤ 3, 1 ≤ α4 ≤ 1

0.9 ≤ y ≤ 1.1, 0.8 ≤ z ≤ 1.2

where αi represents the constraints on xi in the initial set and y and z represents the uncer-
tainties.

• If Gurobi returns that the above set of equations are feasible, then we report that the system

is unsafe. Else, the system is safe. Since most of these conditions are linear and contain only a

few quadratic constraints (that too only product of variable terms), Gurobi can quickly solve

such instances.

6 EVALUATION
To evaluate the applicability of our approach, we have implemented the algorithm in a python

based tool that uses numpy and scipy for matrix multiplications and Gurobi engine for solving

bi-linear inequalities. The implementation along with the documentation is in a public GitHub

repository
1
. All the experiments were performed on a Lenovo ThinkPad Mobile Workstation with

i7-8750H CPU with 2.20 GHz and 32GiB memory on Ubuntu 18.04 operating system (64 bit).

Let us consider the following toy example:

1
https://github.com/bineet-coderep/Robust_Reach_Set_Computation

https://github.com/bineet-coderep/Robust_Reach_Set_Computation
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To evaluate the applicability of our approach, we have implemented the algorithm in a python

based tool that uses numpy and scipy for matrix multiplications and Gurobi
2
engine for solving bi-

linear inequalities. All the experiments were performed on a Lenovo ThinkPad Mobile Workstation

with i7-8750H CPU with 2.20 GHz and 32GiB memory on Ubuntu 18.04 operating system (64 bit).

We collected a set of linear dynamics benchmarks from the proceedings of ARCH workshop
3

and introduced uncertainties in the linear dynamical system and checked if the safety property is

satisfied after introducing the uncertainties. Table 1 provides the time taken by our algorithm to

introduce uncertainties, compute the symbolic representation of the reachable set, and check for

violation of safety specification.

Flight Envelope Protection in Autonomous Quadrotors: In [18], the authors presented a

linear approximation of the dynamics of a quadcopter and an open loop controller that preserves

safety property. This model assumes the value of gravity to be 9.8m/sec2. The dynamics was dis-

cretized with a parameterh = 0.01. We inferred that theblock((0, 6), (6, 16)) satisfies our generalized
conditions. Note that this block contains д. We discovered that introducing an uncertainty of ±13%,

caused a violation of the safety property earlier than usual. However, introducing an uncertainty

of ±5% did not cause violation any earlier. Without any perturbation Ûx ≤ −15 is violated at step

108, taking 0.69 seconds. When the perturbation was introduced, the condition was violated at

step 99, taking 1.35 seconds. The initial set chosen for this experiment was [3, 4] × [3, 4] × [3, 4] ×
[3, 4] × [3, 4] × [3, 5] × [−0.5, 0.5] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1].
With the same block , h and initial set, the same safety condition was checked with time-varying

faults. Instead of a constant perturbation, the perturbation varied after every 6 steps. The range of

perturbation was kept same as the time-invariant case. With these setup, the same safety condition

was violated at step same step, 99, taking 2.15 s

Network Cooperative Platoon of Vehicles for Testing
Methods and Verification Tools: In [23] the authors presented a model of vehicle platoon for-

mation. The dynamics was discretized with a parameter of 0.01. We discovered that introducing

uncertainty in block((0, 9), (9, 10)) had effect on the safety of the system. Without any perturba-

tion e1 ≤ 1 is not violated up-to time 20, taking 7.8 seconds. But changing values from 0.01 to

[0.001,0.019] caused it to violate the condition at step 231, taking 1.76 seconds. But no violation

was seen at ±20%, showing high robustness of the system. This experiment was performed with an

initial set of [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1] × [1, 1]. We checked

the same safety condition with time-varying perturbation as well. All the other parameters like

initial set, faulty block, discretization parameters were kept same. The perturbation varied after

every 20 steps. At each step, the perturbation range was same as the time invariant case. The safety

condition was violated at step 231 (same step number as the time-invariant case), taking 1.91 s

PK/PD Model for Anesthesia Delivery: In [14], the authors presented continuous linear dy-

namics model of the anesthesia delivery for a child of weight 25kg. We discretize the model with

time step 0.01 and run our algorithm that automatically generates the LMEs and introduces pertur-

bations in the dynamics. The maximum number of uncertainties that we could introduce using our

method was 4. In our experiments we discovered that introducing uncertainty in block((0, 4), (4, 5))
had effect in the safety of the system. We took initial set as [1, 6] × [0, 10] × [0, 10] × [1, 8] × [1, 1].
We verified cp ≤ 0 is not violated up-to time 20 without any fault, taking time 3.48 seconds. But

perturbing the value 8.72 × 10−7 to [−8.72 × 10−4, 8.72 × 10−4] violated the condition at step 623,

taking time 2.78 seconds. No violation was observed at perturbations [−8.72 × 10−5, 8.72 × 10−5].
This signifies that the safety property is robust.

2
http://www.gurobi.com/

3
https://cps-vo.org/group/ARCH

http://www.gurobi.com/
https://cps-vo.org/group/ARCH


Similarly, we checked the same safety condition, keeping all other parameters same with time

varying perturbation as well. The perturbation varied after every 30 steps. The factor of variation

at each step was same as the time varying one. The safety condition was violated at step 623, taking

5.02 s

Motor-Transmission Drive System: The model of transmission system presented by authors

in [4] used several constants as a part of their model. The model was discretized with a time step

of 0.01 and [0, 0] × [−0.08, 0.08] × [−0.0165,−0.0165] × [−0.01, 0.01] [0, 0] × [70, 70] × [1, 1] was
taken as the initial set. Fault was introduced at block((0, 4), (4, 7)), and the condition px ≤ −0.02
was checked. Without any fault, this condition was not violated up-to time 20, taking time 5.04

seconds. When a perturbation of -110% to 0% was introduced, the condition violated after 19 steps

taking time 0.08 seconds.

Keeping all the parameters like initial set, discretization parameter, faulty blocks, the same safety

condition was checked against time-varying perturbation. The perturbation varied every 2 steps.

At each step the range of perturbation was same as the time-varying case. The safety condition

was violated at 19-th step taking 0.10 s.

During the experiments, we observed that by increasing the uncertainty, the given safety condi-

tionwas violating at earlier steps. For some benchmarks we saw that introducing small perturbations

in the model had no effect on the given safety condition. We gradually increased the uncertainty

until it violates. Benchmarks which tolerated high uncertainty are considered robust. We reported

verification result with both fault and without fault. When there is no uncertainty in the system,

safety verification was done using linear programming, so the time taken is less. But, when un-

certainties are introduced, to perform safety verification we need to solve bi-linear optimization

at every step. We have reported the safety condition, the initial set, cells where uncertainty was

induced, and amount of uncertainty induced. We used Algorithm 2 to find out the blocks which

satisfies Conditions 13 and 14, and induced fault in those blocks.

As it can be observed from Table 1, the time taken for solving a couple of thousand bi-linear

inequalities is in the order of seconds, this demonstrates that our approach is promising and can

potentially scale to higher dimensions.

7 RELATEDWORK
Reachable set computation of linear systems has been a well studied problemwhere several symbolic

representation are used [6, 10–12, 15, 21]. However, most of these techniques cannot be extended

easily to uncertain linear systems.

Control of linear systems with uncertainties (often called robust control) has had several distin-

guishing results [17, 19, 27]. However, most of these works focus on stability of the control design

and not safety. One of the first works that investigated reachable set computation of uncertain

systems was [2]. In this paper, the uncertainties in the continuous linear dynamics are converted

into a discrete linear dynamics using taylor expansion. The reachable set for this discrete time

uncertain system is computed using interval arithmetic. In [3], the same approach is extended

to nonlinear systems. These nonlinear systems locally linearized and the difference between the

nonlinear and local linear dynamics is accounted using Lagrange remainders.

In [7] computation of an outer approximation of the finite-time reachable sets related to a set

(or family) of discrete time linear dynamical systems is discussed. A particular class of polytopes,

zonotopes, is used to implicitly represent the computed sets. It extends existing algorithm based on

zonotopes so that it can efficiently propagate structured parametric uncertainties.

Two other works that explicitly considered uncertain linear dynamics were [1, 22]. In [1], the

uncertainties are accounted using interval matrices [20, 25] and reachable set computation is

performed using zonotopes. In [22], a piecewise bilinear function approximation of the reachable



set is computed by constructing reachable sets of several linear dynamics sampled from the uncertain

linear system.

There are several differences between the approaches presented in our paper and [1–3, 22]. First,

our paper considers discrete dynamics systems whereas they consider continuous dynamics. Second,

our paper presents a sufficient condition under which reachable set for uncertain linear systems can

be represented using bilinear inequalities. This condition enables us to explore the space of uncertain

systems for which reachable set can be computed without spending too much of computation

resources. Third, the approach presented in this paper is the exact symbolic representation of

reachable set and does not contain any over-approximation. Finally, since the predicate Γ in the

uncertain linear system does not change, one need not recompute the reachable set representation.

Instead, if the user decides to change the uncertain dynamics, she can add a new set of constraints

Γ′. We have also shown that interval arithmetic that is used in [2] results in a strictly conservative

over-approximation.

While one can compute the over-approximation of an uncertain or parametric linear system

by formulating it as a nonlinear dynamical system and use a nonlinear dynamics reachability

tool [5, 8, 9], the result would be an over approximation of the reachable set. Additionally, if the

uncertainty needs to be changed, one has to recompute the reachable set. Given that it is an over-

approximation, the user is still unsure whether the safety violation is because of over-approximation

by the symbolic representation used in the tool or because of the uncertainty.

Some relevant recent results include [24, 26]. In both of these approaches, the reachable set of

the nominal dynamics is computed using reachable set computation techniques. Then, the effect of

the uncertainties on the reachable set is computed. In [24], the effect of uncertainties is computed

using the Jacobian and in [26], this is computed using Lipschitz constant of the perturbed dynamics.

Naturally, these techniques rely on numerical computations and interval arithmetic. The techniques

in [24, 26] are complementary to the techniques discussed in this paper. We believe that merging

these numerical techniques with the symbolic techniques presented in this paper would yield in

more accurate reachable set computation for uncertain systems.

8 CONCLUSION AND FUTUREWORK
In this paper, we presented a notion of uncertain linear dynamics represented using linear matrix

expressions and presented sufficient conditions under which the reachable set of uncertain system

can be expressed using bi-linear inequalities. We then introduced a notion of robust reachable set

and presented an algorithm for computing the robust reachable set. We also demonstrated our

algorithm on several benchmarks where robust reachable set can be computed within seconds and

the user can gain insights about the robustness properties of some of the constants in the model.

As a part of future work, we would like to extend this work to continuous dynamics and

remove the restrictions presented in Lemma 4.5. Removing these restrictions poses interesting

theoretical questions in terms of computability (is robust reachable set computable?) and complexity

(complexity of safety verification). The authors’ eventual goal is to develop a technique that when

given as input a linear dynamical system x+ = Ax and an unsafe set U , computes a robustness

matrix R corresponding to the uncertainties that can be introduced without violating the safety

property.
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A PROOF OF LEMMA 4.5
Proof. Base Case (m = 2): Given Equations 19, Lemma 3.12, Corollary 3.13, and Lemma 4.1,

we know that A2
is an LME. Let us denote A2 = ⟨L2

0
,L2

1
, . . . ,L2k ⟩.

Consider L2i where i > 0. From Definition 3.3, we know that L2i = (N0×Ni )+ (Ni ×N0). Therefore

supp(L2i ) = supp(N0 × Ni + Ni × N0)

≤
(
supp(N0) ⊗ supp(Ni )

)
⊕
(
supp(Ni ) ⊗ supp(N0)

)
(from Lemmas 3.11 and 3.12).

≤
(
supp(E0) ⊗ supp(Ei )

)
⊕
(
supp(Ei ) ⊗ supp(E0)

)
(from Condition 18).

≤ supp(Ei ) ⊕ supp(Ei ) (from Condition 20).

≤ supp(Ei )

Hence, ∀i > 0 supp(L2i ) ≤ supp(Ei ).
The reasoning for supp(L2

0
) ≤ supp(E0) follows similarly.

Induction Step: Suppose that for anm > 2 the induction hypothesis is satisfied. We now prove

that the inductive hypothesis holds form + 1.
Let us denote Am

as ⟨Lm
0
,Lm

1
, . . . ,Lmk ⟩. From inductive hypothesis, we know that, for all i ,

0 ≤ i ≤ k , supp(Lmi ) ≤ supp(Ei ). Therefore, from Equation 18, 19, and Corollary 3.13, we know

that ∀i, j i > 0, j > 0, Nj × L
m
i = 0. Therefore, from Definition 3.4, A×Am

results in an LME. Let us

denote Am+1 = ⟨Lm+1
0
,Lm+1

1
, . . . ,Lm+1k ⟩.

To prove the inductive hypothesis, consider Lm+1i where i > 0. From Definition 3.3, we know

that Lm+1i = N0 × L
m
i + Ni × L

m
0
. Therefore

supp(Lm+1i ) = supp(N0 × L
m
i + Ni × L

m
0
)

≤
(
supp(N0) ⊗ supp(Lmi )

)
⊕(

supp(Ni ) ⊗ supp(Lm
0
)
)

(from Lemmas 3.12 and 3.11).

≤
(
supp(E0) ⊗ supp(Ei )

)
⊕(

supp(Ei ) ⊗ supp(E0)
)
(from Induction).

≤ supp(Ei ) ⊕ supp(Ei ) (from Condition 20).

≤ supp(Ei )

Hence, ∀i > 0 supp(Lm+1i ) ≤ supp(Ei ).
The reasoning for supp(Lm+1

0
) ≤ supp(E0) follows similarly.

□
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