Incremental Minimization of Symbolic Automata

Jonathan Homburg' and Parasara Sridhar Duggirala?

! Department of Computer Science and Engineering,
University of Connecticut, USA.
jonhom1996@gmail.com
2 Department of Computer Science,
University of North Carolina Chapel Hill, USA.
psd@cs.unc.edu

Abstract. Symbolic automata are generalizations of finite automata
that have symbolic predicates over the alphabet as transitions instead of
symbols. Recently, traditional automata minimization techniques have
been generalized to symbolic automata. In this paper, we generalize the
incremental minimization algorithm to symbolic automata such that the
algorithm can be halted at any point for obtaining a partially minimized
automaton. Instead of computing the sets of equivalence classes, the
incremental algorithm checks for equivalence between pairs of states and
if they are equivalent, merges them into a single state. We evaluate our
algorithm on SFAs corresponding to Unicode regular expressions and
compare them to the state-of-the-art symbolic automata minimization
implementations.

1 Introduction

As opposed to classical automata where the alphabet is given as a finite set,
symbolic automata have an alphabet given by a Boolean algebra that may have
an infinite domain. The transitions between states in symbolic automata are
labeled with predicates in a Boolean algebra. Symbolic automata are used in
regular expressions over large alphabets such as Unicode, program analysis, and
satisfiability modulo theories. In [5], the notion of minimality of a symbolic
automaton has been studied and extensions of classical automata minimization
algorithms to symbolic setting were presented.

In this paper, we investigate a new class of minimization algorithms called
incremental minimization. An incremental minimization algorithm can be in-
terrupted at any point of time to obtain a partially minimized automaton that
recognizes the same language as the input automaton. The algorithm can later
be resumed with the partially minimized automaton. Upon termination, the algo-
rithm returns the automaton with minimal number of states recognizing the same
language. Hence, such an algorithm is suitable for deployment in web-services,
such as spam-detection, and pattern matching in DNA sequences where server
downtime for minimization is not acceptable.

This paper generalizes the incremental minimization algorithm for DFAs
presented in [3] to the symbolic setting. Unlike the traditional minimization

2 Jonathan Homburg and Parasara Sridhar Duggirala

algorithms [12,13,11], which compute equivalence classes over states by repeated
partitioning, the algorithm in [3] merges equivalent states to create a partially
minimized automata. For checking equivalence between pairs of states, the
algorithm makes recursive calls and maintains a set of dependencies that need to
be resolved. The primary principle in checking equivalence of two states is:

States p and g are not distinguishable if and only if for all states p’
and ¢’ such that p % p’ and ¢ = ¢/, p’ and ¢’ are not distinguishable.

The corresponding statement for symbolic automata is:

States p and ¢ are not distinguishable if and only if for all states

p’ and ¢ such that such that p LA p' and ¢ % q" where ¢ A is
satisfiable, p’ and ¢’ are not distinguishable.

The primary difference between the above statements and their counterpart
in [5] is that the former are useful in iteratively building equivalence classes
whereas the latter are useful in partitioning a set of states to arrive at equivalence
classes.

In this paper, we present an incremental minimization algorithm for symbolic
automata which takes advantage of the symbolic representation of the transitions.
Similar to [5], our generalization of algorithm in [3] relies on the observation that
a relevant set of predicates can be computed locally rather than computing all
the minterms of an automaton’s predicate set.

Instead of checking equivalence for every pair of states, we use a heuristic to
decrease the number of checks. We observe that two states cannot be equivalent
if they have different minimum distance to an accepting state. Therefore, we
initialize the non-equivalence relation between states with all pairs of states that
have different minimum distance to accepting states.

This paper is organized as follows. The preliminaries are presented in Section 2.
We present the incremental minimization algorithm in Section 3. The evaluation
of our algorithm and its comparison with other symbolic automata minimization
techniques in presented in Section 4. We discuss related work in Section 5 and
present our conclusions and future work in Section 6.

2 Preliminaries

Symbolic automata have the domain of a Boolean algebra as input alphabet.
An effective Boolean algebra A has components (D, ¥, [_], L, T,V,A,=). D is a
recursively enumerable (r.e.) set of domain elements. ¥ is an r.e. set of predicates
closed under Boolean operations and L, T € ¥. [] is a denotation function
(which is recursively enumerable) [] : ¥ — 27 is such that [L] =0, [T] = D,
for all ¢, € @, [V ¢] = [6] UTY], [6 Av] = [6] N [¢], and [~6] = D\ [¢].
For ¢ € ¥, we say IsSat(¢) if and only if [¢] # 0 and say that ¢ is satisfiable. A
is said to be decidable if IsSat is decidable.

In our experiments, we only deal with Boolean algebra whose domain is a bit
vector of length k (k = 16). Each bit vector corresponds to a unique symbol in

Incremental Minimization of Symbolic Automata 3

the unicode alphabet. Predicates over this domain can be represented as BDDs
(or boolean formulas) with the boolean operations corresponding to operations
on BDDs (or calls to a SAT solver). Another Boolean algebra discussed in [5]
is a theory over some domain ¢ with the various operations implemented using
calls to an SMT solver.

A symbolic automaton, informally, is a finite automaton where the transitions
are labeled with predicates over the domain of a Boolean algebra instead of
symbols in the domain. We require these predicates originate from a Boolean
algebra to ensure closure under set operations such as complement, intersection,
union, etc.

Definition 1. A symbolic finite automaton (SFA) M is a tuple (A, Q, qo, F, A)
where A is an effective Boolean algebra, called the alphabet, Q is a finite set of
states, gy € @ is the initial state, F' C @ is the set of accepting states or final
states, and A C Q X ¥4 X Q is a finite set of transitions.

Elements of D4 are called symbols or characters and finite sequence of
characters are called strings (elements in D%). € denotes the empty string. A

transition p = (¢, ¢, q') € A is also denoted as ¢ LA ¢’ (when M is clear from the
context). p is said to be feasible if ¢ is satisfiable. Given a character a € D4, an

a-transition is ¢ A ¢’ such that a € [¢], also denoted as ¢ % ¢'.

Definition 2. A string w = aiaz...a, € DY, is accepted at state g of M =
(A, Q,qo, F, A), denoted as w € Lys(q), if there exist states q1,qa, - .., qk+1, such
that n = q, V1 <i<k,q 3 Gi+1, and qr+1 € F'. The language recognized by M
is L(M) = L (qo)-

We adopt the terminology used in [5] for symbolic automata M and present
the definitions for completeness.

— M is deterministic if for all p R q, p % q € A, if IsSat(¢p A1) then g = ¢'.

— A state ¢ of M is said to be partial if there exists a symbol a such that there
is no a-transition for the state q. M is said to be complete if it has no partial
states.

— M is clean if for all p LA q € A, p is reachable from ¢o and IsSat(¢).

— M is normalized if for all ¢, ¢’ € Q, there is at most one transition from ¢ to
/

q.
— Given a deterministic, complete, clean, and normalized M, it is said to be
minimal if for all ¢,¢' € Q, ¢ = ¢ if Las(q) = Ly ().

For a deterministic and complete symbolic automaton, we denote the transition
function as da; : Q@ x D4 — Q such that for all a € D4 and q € Q, dr(q,a) = ¢,
where ¢ = ¢/. We drop the subscript when the automaton is clear from the
context. In the rest of the paper, we assume that all the automata that we
consider are deterministic, complete, clean, and normalized. Steps for obtaining
such an automaton have been discussed in [5].

4 Jonathan Homburg and Parasara Sridhar Duggirala

Definition 3. Given M and q € Q, we define the distance of the state from the
accepting set of states as dist(q) = min{ |w||w € Ly (q)} #f La(q) # 0 and |w|
represents the length of string w. dist(q) = oo otherwise.

We now present an equivalence relation on states of an automaton M and
define the minimal automaton using the equivalence relation described in [5].

Definition 4. Given SFA M, two states q and q' are said to be equivalent,
q=wm q if and only if Lpr(q) = Ly (q).

A couple of trivial observations about =j;:

1. =, is an equivalence relation.
2. g and ¢’ are not equivalent if dist(q) # dist(q’).

Given any equivalence relation = over the states @, for any ¢ € @, ¢= is
the equivalence class containing ¢, for X C @, X= = {¢=| ¢ € X}, and the
corresponding SFA is M- = (A, Q=,qo=, F=, A=) where

A-2{=, \/ ¢dD)lad €@ (q¢,q) € A}

(¢,9,9")EA

Theorem 1 (Theorem 2 from [5]). Given a clean, complete, normal, and
deterministic SFA M, M=,, is minimal and L(M) = L(Mz=,,).

3 Incremental Minimization of Symbolic Automata

Typical algorithms for automata minimization attempt to construct the largest
possible equivalences classes of states and iteratively refine them. These algorithms
initially partition the states into one of two classes, first is the set of accepting
states, and second is the set of non-accepting states. Each of these classes are
partitioned further if the states in one partition can be differentiated from the
states in the other. This partitioning continues until no two states in the same class
can be differentiated and hence are equivalent. Halting the algorithm abruptly
would not yield any partially minimized automaton.

In contrast, incremental minimization attempts to merge states that are prov-
ably equivalent and construct new equivalence classes. Checking the equivalence
of states p and g would require proving the equivalence of all pairs of states p’
and ¢’ that are reached after every a-transition from p and q respectively. If the
equivalence of p and ¢ is established, then these two states are merged to form a
new equivalent state. Hence, as only equivalent states are merged, halting the
algorithm abruptly would yield a partially minimized automaton that accepts
the same language as the input automaton.

Informally, the algorithm proceeds as follows. First, a pair of states u and
v are chosen from the set of states. Then, for a given input symbol a (chosen
from the alphabet), the states reached after a-transition v’ and v’ are identified.
Next, the algorithm performs a recursive call to prove the equivalence of u’ and

Incremental Minimization of Symbolic Automata 5

v’. In addition, it keeps a set path of all the pairs of states that are waiting to be
proved equivalent. If the recursive calls returns true, then a different symbol a’
is chosen from the alphabet and the equivalence of next states on a’-transition
is checked by another recursive call. In a symbolic automata, the number of
symbols can possibly be infinite, and hence, we decrease the number of recursive
calls by leveraging the symbolic predicates.

1 Function IncrementalMinimize(M = (A, Q, qo, F, A)):
2 for ¢ € Q do
3 L Make(q)
4 neq = {Normalize(p,q) | p € Q,q € Q,Dist(p) # Dist(q)};
5 for p e Q do
6 forge{zeQ|z>p}do
7 if (p,q) € neq then
8 L continue;
9 if Find(p) = Find(q) then
10 L continue;
11 equiv, path = &
12 if Equiv-p (p,q) then
13 for ((p',q') € equiv) do
14 L Union(p’,q’);
15 else
16 for (p',q') € path do
17 | neq = neq U LG, &)}
18 | return JoinStates(M)

Algorithm 1: Algorithm for incremental minimization of symbolic au-
tomata.

The incremental minimization algorithm for a complete, deterministic, clean,
normalized SFA is provided in Algorithm 1. This algorithm makes a call to a
recursive procedure Equiv-p() that is given in Algorithm 2.

We first define a few data structures that are used in the minimization
algorithm. A disjoint set data structure will be used to represent equivalence

classes of states. Specifically, for n disjoint sets, the following operations will be
defined:

1. Make (i), a set containing only ¢ will be created

2. Find (%), returns a (consistent) identifying element for .S;, the set containing
i.

3. Union(s, j), creates a new set Sy such that Sy, = S; US; and sets S;, S; are
destroyed

6 Jonathan Homburg and Parasara Sridhar Duggirala

1 Function Equiv-p(p,q):
2 if (p,q) € neq then
3 L return False
4 if (p,q) € path then
5 L return True
6 | path=pathU{(p,q)}
7 | Outp={pe¥a|I (pop)eA}
8 | Outy={¢€Wa |3, (q,9,q) € A}
9 while Out, U Out, # @ do
10 Let a € [[(cheoutp 90) A (VUJEOutq 11))]]
(p',q') = Normalize(Find(d(p, a)),Find(d(q,a)))
11 if p’ # ¢ and (p',q’) € equiv then
12 equiv = equiv U {(p’,q')}
13 if not Equiv-p(p’,q’) then
14 ‘ return False
15 else
16 | path = path \ {(¢',q")}
17 Let ¢ € Out, with a € [¢]
18 Let ¢ € Outq with a € [¢]
19 Outp = Outp \ {¢} U {p A =1}
20 Outq = Outy \ {¥} U {¢ A ~¢}
21 equiv = equiv U {(p, q) }
22 return True

Algorithm 2: Algorithm that checks equivalence of states p and q.

This algorithm for SFA minimization was adapted from [3]. There are two
primary modifications. First, the neq relation is initialized to contain all pairs
of states that have different minimal distance from accepting states, instead of
just the pairs of states that contain one accepting and one non-accepting state.
Second, the Equiv-p function (which returns true on (p, ¢) if and only if p, g are
equivalent) given in Algorithm 2 leverages the symbolic nature of the predicates
over the transitions. The usage of data structures equiv and path — equiv tracking
the pairs of equivalent states discovered and path tracking the path through the
sets of pairs of states — is similar to the algorithm presented in [3].

Note that we assume there exists an ordering on @ (i.e. p < ¢ makes sense
for all p,q € Q). This can be done easily by labeling each state with a unique
positive integer. Normalize takes a pair (p, ¢) as input and reorders it so that the
first element is less than the second. JoinStates merges the states that share
the same equivalence class (i.e. share the same disjoint set). Dist measures the
minimum distance from a given state to an accepting state.

We will now prove the correctness of the above incremental algorithm for
symbolic automata minimization.

Lemma 1. Equiv-p terminates.

Incremental Minimization of Symbolic Automata 7

Proof. First, note that there are a finite number of recursive calls to Equiv-p.
This is because there are a finite number of pairs of states that Equiv-p can be
called on and Equiv-p immediately returns if it recognizes that it has already
been called on a given pair of states. So, to prove Equiv-p terminates, it needs
only be shown that the loop over Out, U Out, begininning on line 9 is finite.

During each iteration over Out, UQut,, we find some ¢ € Out, and ¢ € Out,
such that there exists an a € Dy with a € [A ¢]. Later, during the same
iteration, we replace ¢ in Out, with ¢ A =) and ¢ in Out, with ¢ A =p. These
new predicates denote strictly smaller subsets of D4 (because a does not satisfy
either predicate). If D 4 is finite, this is enough to ensure the loop terminates.
Otherwise, if D4 is infinite, it needs to be proven that for all ¢ € Out,, there
exist some finite set S C Outy such that [A ~(V,,c59)] = @. Because Out,, is
always finite, this is sufficient to prove that the loop terminates.

Fix ¢ € Outy,. Define S = {¢ € Out, | IsSat(e A p)}. Assume that ¢ A
(Vyes ¥) is satisfiable. Therefore, there exists some a € [¢] such that a ¢
\/wE 5. We will inductively prove that this is a contradiction on every iteration
of this loop such that ¢ € Out,,.

During the first loop iteration, Out, is equivalent to the predicates of the
outgoing transitions of ¢q. Because M is complete, there exists some ¢ € Out,
such that a € [¢]. So, ¢ A ¢ is satisfiable and 1 is an element of S which is
a contradiction because a & [\ ,,c5] Beyond the first iteration, assume that
there exists some ¢ € Out, at the start of the iteration such that a € [¢]. There
are two cases which we must consider:

1. If 4 is not removed from Out, during this iteration of the loop, then ¥ A ¢
is satisfiable and a € [¢/] which is a contradiction.

2. If ¢ is removed from Out, during this iteration, then there exists some ¢’ # ¢
in Out, with IsSat(y A¢’). At the end of this iteration, ¥ A ~¢’ replaces ¢ in
Out,. However, because M is deterministic and ¢ # ¢, a & [¢']. Therefore,
ac Y\] and ¢ A (Y A ') is satisfiable. Because ¥ A ¢’ € Out,, this is a
contradiction.

So, for any given point in the iteration of this loop, ¢ € Out, implies that there
exists a finite set S C Outy such that [o A =(V es)] = . This ensures that
the loop over Out, U Out,, is finite. Therefore, Equiv-p terminates.

Lemma 2. A call to Equiv-p from the body of IncrementalMinimize returns
true if and only if the states p and q of SFA M initially passed to it are equivalent.

Proof. Equiv-p returns false on (p, q) only if the pair (p, q) is contained in neg,
which only contains pairs of states known to be distinguishable, or if a recursive
call to Equiv-p returns false. In the later case, we know that p,q can not be
equivalent because we have found a string w € D% such that 6(p,w) and 0(g, w)
are known to be distinguishable.

A recursive call to Equiv-p returns true only if (p,q) is contained in path,
which only occurs if a cycle of indistinguishable states is found, or if all of its
recursive calls to Equiv-p return true. Therefore, when called from the body of

8 Jonathan Homburg and Parasara Sridhar Duggirala

IncrementalMinimize, Equiv-p returns true only if for all w € D%, §(p,w) is
either known to be equivalent or is indistinguishable from §(p, w). Therefore, p, g
are equivalent.

Lemma 3. If a call to Equiv-p from the body of IncrementalMinimize returns
true, equiv contains only pairs of states (p,q) such that p and q are equivalent.
If a call to Equiv-p from the body of IncrementalMinimize returns false, then
path contains only pairs of states (p,q) such that p and q are distinguishable.

Proof. equiv is a set of pairs of states such that for all (p/,q’) € equiv there
exists some w € D% with p’ = §(p, w) and ¢’ = 6(¢, w). If Equiv-p returns true
on (p,q) then p and ¢ are equivalent by the previous lemma. So, for all w € DY,
0(p,w) is equivalent to (g, w). Therefore, each pair of states in equiv contains
equivalent states.

path is a set of pairs of states that initially contains (pg,qo), the initial
arguments passed to Equiv-p. From that it tracks the path of Equiv-p in the
depth first traversal of the automata’s set of states. That is, for all (p;,q;) €
path, either i = 0 or there exists (p;—1,¢;—1) € path with p; = §(p;—1,a) and
qi = 0(¢i—1,a) for some a € Dy. If Equiv-p returns false on (po,qo), then,
every recursive call to (p;, ;) € path has returned false. Since the contents of
path are not changed if Equiv-p returns false, every pair of states in path is
distinguishable. Hence, these are added to negq.

Theorem 2. Running IncrementalMinimize on M wuntil termination returns
an SFA M’ such that M’ is minimal and L(M) = L(M").

Proof. Consider the loop starting in line 5 in IncrementalMinimize. This loop
checks for all normalized pairs of states p, ¢ for equivalence (if the states have
same minimum distance to accepting set of states). Each equivalence check is
performed by a call to Equiv-p. If Equiv-p returns true then, from Lemma 3,
every pair of states in equiv (including the initial arguments) are equivalent.

Hence, when the loop terminates, the equivalence check on all pairs of states
is performed and all possible pairs of equivalent states would be identified.
Since IncrementalMinimize only merges states that are proved to be equivalent
(line 14), all equivalent states would be merged into the same equivalence class.
Since all the states that are not merged are not-equivalent, IncrementalMinimize
returns the minimal symbolic automata.

Our algorithm is incremental because each disjoint set only ever contains
states that are known to be equivalent. So, the option to halt computation and
return a partially minimized SFA comprised of the merged sets is always available.

IncrementalMinimize makes several calls to Equiv-p. From the proof of
Lemma, 1, it follows that at most n? recursive calls are made to Equiv-p. Each
of these recursive calls would take at most k iterations where k is the number
of local minterms computed in the loop starting at line 9. Further, each call
to the theory solver to generate @ in line 10 would take worst-case f(k) time.
Finally, the operations for performing Union and Find can be performed in

Incremental Minimization of Symbolic Automata 9

worst case a(n) where « is the inverse Ackermann’s function. Hence, the worst
case complexity is O(n?kf(k)a(n)). Notice that this is comparable to the time
complexity of O(n?logn - f(nl)) of the Hopcroft minimization without minterm
generation in [5].

4 Evaluation

We have implemented our symbolic incremental algorithm 2 using the Symbolic
Automata Library * in Java. To evaluate the performance of our algorithm and
understand its properties, we have used the automata generated by parsing
regular expressions acquired from [7] and initially obtained from the regular
expressions library RegExLib [1] as the test suite. Our test suite consists of a
nearly two thousand symbolic automata with under 400 states.

Our evaluation consists of 4 parts. First, we compare the performance of incre-

mental symbolic minimization with the symbolic adaptations of the Moore’s and
Hopcroft’s minimization algorithms in [5]. Second, we compare the performance
of “naive” incremental minimization with symbolic incremental minimization.
Third, we provide a computational budget that is equal to the running time of the
most efficient minimization algorithm and observe the minimization achieved by
incremental algorithm. Lastly, we observe the fraction of time spent and compare
it with the fraction of minimization achieved.
Comparison with other minimization techniques: In [5], the authors ex-
tend Moore’s and Hopcroft’s algorithm to symbolic domain using minterm
generation and present a modified Hopcroft algorithm (i.e., without minterm
generation). While Hopcroft’s algorithm with minterm generation works better
than Moore’s for larger state spaces, Moore’s algorithm outperforms in the case
of larger predicates. For this purpose, we choose Moore’s minterm generation
and modified Hopcroft algorithm (without minterms) to serve as baseline for our
comparison.

Figure 1 compares the average running time of symbolic incremental min-
imization algorithm to Moore’s minterm algorithm and modified Hopcroft’s
algorithm. In comparison to Moore’s algorithm, the incremental algorithm is
generally quicker for automata of small size (under about 150 states). However,
the minimization time for incremental algorithm grows at almost the same rate (if
not more, as seen in some cases) as Moore’s algorithm. Additionally, the modified
Hopcroft algorithm almost always outperforms incremental minimization.

However, there are a few instances, where incremental minimization outper-
forms modified Hopcroft. These are instances where the automata is already
minimized (such as automata with less number of states) or are nearly minimal
(e.g. automata with 129 states has 122 equivalence classes). We believe that there
are two primary reasons for this behavior. First, the number of partitions created
by modified Hopcroft algorithm increases when the automata is near minimal.

3 https://github.uconn.edu/jah12014/symbolic-automata-research
* https://github.com /lorisdanto/symbolicautomata

10 Jonathan Homburg and Parasara Sridhar Duggirala

Comparison of SFA Minimization Algorithms

104_

103_

102_

101_

100_

10—1_

Average Minimization Time (ms)

-2]
10 —— Symbolic Incremental

i ----= Symbolic Hopcroft
10734 ¢ e Symbolic Moore

0 50 100 150 200 250 300 350
Number of States

Fig. 1: Plot of the time taken by incremental minimization, Moore’s algorithm with
minterm generation and modified Hopcroft without minterm generation.

Incremental Minimization of Symbolic Automata 11

Second, the worst case time complexity of incremental minimization and modified
Hopcroft are close.

Comparison of Incremental Algorithms

104_

10°; WA~V
i

102 4 AalltAN [V
‘ Q;VNVV%F%‘ |
I g\ | a

10% 4 1 M
100 5 N

10—1_

Average Minimization Time (ms)

10724 |
| —— Symbolic Incremental

Naive Incremental

10—3_

0 50 100 150 200 250 300 350
Number of States

Fig. 2: Time taken by incremental minimization with minterm generation vs without
minterm generation.

Comparison between naive and symbolic incremental minimization:
Figure 2 compares our symbolic incremental algorithm to a “naive” incremental
algorithm. This naive algorithm consists of computing the minterms, i.e., the
maximal set of satisfiable Boolean combinations of the predicate set in Boolean
algebra. It then treats the symbolic automata as if it were a classical DFA with
the minterm set as its alphabet, and runs the incremental DFA minimization
algorithm on it. In general, any classical algorithm can be modified to run symbolic
automata in this way [8]. However, because of this upfront computational cost
of minterm computation, the naive algorithm runs noticeably slower than our
symbolic algorithm for small automata. Interestingly though, as the number of
states in the automata increases, both algorithms appear to converge to the
same running time. This is a surprising but not unreasonable result. Intuitively,
our symbolic algorithm computes the local minterms between the predicates of
outgoing states while minimization is in progress. On the other hand, the naive
algorithm performs all of this computation upfront.

Incremental minimization under time budget: We run the incremental
minimization (both with and without minterm generation) under a time budget.

12 Jonathan Homburg and Parasara Sridhar Duggirala

Comparison of Incremental Minimization Rates

100% + mmm Symbolic Incremental
P 'Naive' Incremental

80% A

60% A

40% A

20% A

Average Amount of Minimization Completed

0% -

0-39 40-79 80-119 120-159 160-199 200-239 240-279 280-319 320-359 360 -399
Number of States

Fig. 3: Incremental minimization achieved under computational budget.

The time budget corresponds to the minimization time taken by the modified
Hopcroft algorithm. When the time budget expires, the minimization algorithms
are halted and the fraction of minimization achieved is reported. Figure 3 presents
the fraction of minimization achieved with the budget.

The symbolic incremental minimization always outperforms the naive incre-
mental minimization with minterms. Although both incremental algorithms take
about the same time to fully complete minimization, Figure 3 reveals that the
symbolic incremental algorithm reduces the state size of the given automata
significantly quicker than the naive algorithm during its early runtime. Further-
more, the number of minterms might be exponential in the number of predicates.
Hence, using an incremental minimization algorithm that takes exponential time
pre-processing does not capture the spirit of incremental minimization.

Time taken vs minimization achieved: To understand the nature of incre-
mental minimization, we present a heat map of the average time (as a fraction of
the total minimization time) that the algorithm took to reach a certain amount
of minization in Figure 4. Blue regions correspond to less amount of time taken
(0-50%) and Yellow corresponds to the more time (50-100%). Observe that for
automata with less number of states (< 100), the time taken for minimization is
fairly proportional to the minimization achieved. However, as the number of states
increases (> 200), it takes less than 20% of time to achieve 80% minimization for
majority of the automata.

Incremental Minimization of Symbolic Automata 13

Progress of Symbolic Incremental Minimization

350
300
el
(]
250 a
(%] ©
() o
g 2
(V)]
200 £
IS c
lCT) o
a (]
€ 150 g
=]
z @
o
100 &

50

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Automata Minimized

Fig. 4: Heatmap of the time taken over number of states and minimization achieved.

5 Related Work

Minimization of automata has been a very well studied topic with classical results
from Huffman [12], Moore [13], Hopcroft [11], and Brzozowski [4]. The concept
of automata with transitions labeled by predicates was first conceived in [17] and
first studied in [15]. Moore’s algorithm for DFA minimization was first extended
to symbolic automata in [16]. The non-incremental algorithms that we compare
our algorithm against in Figure 1 were adapted from the symbolic minimization
algorithms presented in [5]. These algorithms were generalized to the computation
of forward bisimulations for nondeterministic symbolic finite automata in [6]. The
minimization of symbolic transducers is also studied in [14]. A good overview of
the theory and applications of symbolic automata and symbolic transducers is
included in [8].

An incremental algorithm for DFA minimization was first proposed by Wat-
son [18]. However, the worst case performance of this algorithm was exponential.
An efficient incremental algorithm was presented by Almeida et al. in [3] and
tended to outperform Hopcroft’s algorithm in empirical evaluation [2]. Our sym-
bolic incremental algorithm was an adaptation of algorithm in [3]. An incremental
hybrid of the algorithms by Hopcroft and Almeida et al. was given in [9]. To
the best of our knowledge, this paper is the first in presenting an incremental
algorithm for minimization of symbolic automata.

14 Jonathan Homburg and Parasara Sridhar Duggirala

In a seminal work on algebraic properties of sequential machines [10], the
authors present a notion of partitions (subsets of states) over set of states and
prove that they form a lattice. The minimization algorithms are essentially various
lattice traversal mechanisms that eventually reach the partition corresponding to
automata with minimal number of state. Incremental minimization is a strictly
upward lattice traversal mechanism, whereas traditional minimization algorithms
are strictly downward lattice traversal mechanisms.

6 Conclusion and Future Work

We have extended an incremental DFA minimization algorithm to symbolic
automata. For large automata, this incremental algorithm does not perform as
well as the most efficient algorithms for symbolic minimization. However, unlike
the other symbolic minimization algorithms, the incremental algorithm can be
halted at any time to return a partially minimized automata. Additionally, our
algorithm is preferable to the naive adaptation of incremental minimization
via minterm generation. Our experimental results show that, unlike the naive
algorithm, the symbolic algorithm achieves the majority of minimization during
its early runtime. This makes the symbolic algorithm superior as an incremental
algorithm.

As a part of the future work, we would like to improve the efficiency of symbolic
incremental minimization by performing memoization. We would also like to
extend the incremental minimization to non-deterministic symbolic automata.
Acknowledgements: The authors would like to thank anonymous reviews for their
feedback. The work done in this paper is based upon work supported by the
National Science Foundation (NSF) under grant numbers CNS 1739936, 1935724.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of
NSF.

References

1. Regexlib. http://wuw.regexlib.com/.

2. Marco Almeida, Nelma Moreira, and Rogério Reis. On the performance of automata
minimization algorithms. In Proceedings of the 4th Conference on Computation in
Europe: Logic and Theory of Algorithms, pages 3—14, 2007.

3. Marco Almeida, Nelma Moreira, and Rogério Reis. Incremental DFA minimisation.
In International Conference on Implementation and Application of Automata, pages
39-48. Springer, 2010.

4. Janusz A Brzozowski. Canonical regular expressions and minimal state graphs for
definite events. Mathematical theory of Automata, 12(6):529-561, 1962.

5. Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In ACM
SIGPLAN Notices, volume 49, pages 541-553. ACM, 2014.

6. Loris D’Antoni and Margus Veanes. Forward bisimulations for nondeterministic
symbolic finite automata. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 518-534. Springer, 2017.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Incremental Minimization of Symbolic Automata 15

Loris DAntoni. symbolicautomata. https://github.com/lorisdanto/symbolicautomata/.

Accessed 2017-10-30.

Loris DAntoni and Margus Veanes. The power of symbolic automata and trans-
ducers. In International Conference on Computer Aided Verification, pages 47-67.
Springer, 2017.

Pedro Garcia, Manuel Vazquez de Parga, Jairo A Velasco, and Damidn Lépez. A
split-based incremental deterministic automata minimization algorithm. Theory of
Computing Systems, 57(2):319-336, 2015.

Juris Hartmanis. Algebraic structure theory of sequential machines (prentice-hall
international series in applied mathematics). 1966.

John Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Theory of machines and computations, pages 189—-196. Elsevier, 1971.

David A Huffman. The synthesis of sequential switching circuits. Journal of the
Franklin Institute, 257(3):161-190, 1954.

Edward F Moore. Gedanken-experiments on sequential machines. Automata studies,
34:129-153, 1956.

Olli Saarikivi and Margus Veanes. Minimization of symbolic transducers. In
International Conference on Computer Aided Verification, pages 176—196. Springer,
2017.

Gertjan van Noord and Dale Gerdemann. Finite state transducers with predicates
and identities. Grammars, 4(3):263-286, 2001.

Margus Veanes, Peli De Halleux, and Nikolai Tillmann. Rex: Symbolic regular
expression explorer. In International Conference on Software Testing, Verification
and Validation, pages 498-507. IEEE, 2010.

Bruce W Watson. Implementing and using finite automata toolkits. Natural
Language Engineering, 2(4):295-302, 1996.

Bruce W Watson. An incremental DFA minimization algorithm. In Interna-
tional Workshop on Finite-State Methods in Natural Language Processing, Helsinksi,
Finland, 2001.

