
ExtractingCounterexamples InducedbySafetyViolation in

LinearHybrid Systems

Manish Goyal a, Parasara Sridhar Duggirala a

aDepartment of Computer Science,
University of North Carolina at Chapel Hill, USA

Abstract

Control design for linear systems typically involves pole placement and computing Lyapunov functions. While these tools are
useful for ensuring stability, they are not always helpful in ensuring safety. Control designers can employ model checking as a
tool for checking safety. We believe that supplementing the model checker to provide various types of counterexamples for the
safety specification would help the control designer in the control development process. In this paper, we describe a technique
for obtaining the variety of counterexamples for a safety violation in linear hybrid systems. More specifically, we develop
algorithms to extract the longest counterexample — the execution that stays in the unsafe set for the longest contiguous time,
deepest counterexample — the execution that ventures the most into the unsafe set in a user specified direction, and the
robust counterexample — the unsafe execution from which some bounded perturbation yields a new counterexample. These
measures for classifying counterexamples can further assist in quantifying controllers’ performance.

Key words: Safety verification; hybrid systems; counterexample; dynamic programming; linear programming.

Designing a controller for a system is an iterative pro-
cess. First, the control designer is provided with a sys-
tem model and specification. The designer uses tools in
his repertoire to come up with a controller, check if the
system satisfies the required specification and iteratively
refines the controller. Stability and safety are two im-
portant classes of specifications. While the tools for sta-
bility such as performing pole placement and comput-
ing Lyapunov functions provide very intuitive informa-
tion to the designer, similar tools for safety verification
do not exist. Employing model checkers for safety spec-
ification yields in a counterexample for safety violation
(if safety is indeed violated). However, current model
checkers do not have the capability to generate a variety
of counterexamples that give additional information to
control designer. Such lack of information prevents the
designer from comparing different possible refinements
of an existing controller.

These challenges are exacerbated when the system is a
hybrid system and has several modes of operation. For
proving stability or convergence properties of hybrid sys-
tems, one has to come up with a common Lyapunov func-
tion [34,31] or a set of Lyapunov functions [14,32,44].

Email addresses: manishg@cs.unc.edu (Manish Goyal),
psd@cs.unc.edu (Parasara Sridhar Duggirala).

These artifacts are not immediately useful in comparing
the performance properties of two different hybrid con-
trollers. In such circumstances, metrics on counterexam-
ples for safety specification (or performance specifica-
tion) can be used as a proxy for comparing performance
of different controllers. Thus, providing an important
counterexample would greatly reduce the burden of the
system designer and provide a more detailed insight into
the system behavior.

In verification of hybrid systems domain, while a lot of
attention was paid for generating counterexamples for
hybrid systems with timed and rectangular dynamics,
not many approaches have been developed to extracting
various counterexamples for hybrid systems with linear
dynamics. This is primarily because most of the model
checking approaches in affine hybrid system verification
focus on computing over-approximation of reachable set
and hence establish the safety specification.

Our goal to generate various types of counterexamples
stems from the desire to provide intuition to the control
system designer during the process of controller synthe-
sis. A controller that is originally stable and safe, can
become unsafe if the safety specification is tightened or
the operating conditions are changed. To the control de-
signer, not all counterexamples for this safety specifi-

Preprint submitted to Automatica 24 March 2021

Figure 1. Classical case of overshoot in stabilizing controllers.

cation are equivalent. For example, the designer would
want to observe counterexample trajectory that stays
for the longest duration in the unsafe set or that goes
the farthest along a specific direction in the unsafe set.
The designer might also be interested in the counterex-
ample such that some perturbation around this provides
another counterexample. Currently, none of the existing
model checkers provides us with a technique for extract-
ing such counterexamples. We will illustrate the utility
of the counterexample through an example.

Example 1 Consider the classic case of a regulation
control problem where the control designer wants to make
the error between the observation and the desired value
to be 0. The typical execution profiles after applying the
feedback control would look similar to Figure 1. In such
cases, the control designer is most concerned about the
amount of overshoot that occurred, its duration, and the
robust overshoot profile. For instance, the blue colored
execution has the longest duration of overshoot in inter-
val 1, whereas the red one has the maximum overshoot in
the interval 2. Further, in interval 1, a profile equidistant
from both blue and red would be the most robust because
some perturbation in any direction still yields an execu-
tion with overshoot. Current verification techniques, al-
though inform the designer whether the overshoot hap-
pened or not, do not provide them with enough support
to quantify and classify multiple overshoot profiles.

In this paper, we present multiple types of counterex-
amples (deepest, longest and robust) that we believe are
important for control designer, and provide algorithms
for generating them when the specification is violated. In
other words, these counterexamples characterize the ex-
tent of violation in terms of metrics - depth, length, and
robustness. This approach builds on our previous work
of computing simulation-equivalent reachable set [10],
which includes the set of states encountered by a simu-
lation algorithm for hybrid systems with linear dynam-
ics. The reachable set computation and counterexample
generation algorithms leverage the superposition princi-
ple and the generalized star representation [23,10]. Ad-
ditionally, the algorithms presented reuse the artifacts
generated during the model checking process.

While we present our analysis in the form of generating
counterexamples for safety specification, it is also ap-

plicable to other types of performance specification. For
example, a control designer might want to reduce the
amount of time spent by the system in a region with sub-
optimal performance characteristics. Similarly, the con-
trol designer might choose to maximize the time spent in
a desired region of state space. Currently, given an ini-
tial set of configurations (and their corresponding execu-
tions), there are no tools for searching for an execution
that maximizes or minimizes the time spent in a spec-
ified region of state space. This paper fills this crucial
gap. We illustrate this feature of our paper by analyzing
an adaptive cruise control system.

We argue that these counterexamples can also be used
as the proxy for comparing performance of controllers
that are unsafe. We demonstrate this by comparing
the longest and deepest counterexamples for two dif-
ferent adaptive cruise controllers. We also evaluate our
approach on several linear hybrid system benchmarks.
Keeping to the motivation of extracting a variety of
counterexamples, we focus particularly on scenarios
where the safety specification is violated. Our evaluation
suggests that the cost of generating these counterexam-
ples while being less than the safety verification time,
is dependent on the duration of overlap between the
reachable set and the unsafe set.

Related Work: Counterexamples currently play very
important role in the domain of model checking. While
in the beginning, counterexamples were a mere side
effect of model checking, they were regarded as an
important artifact due to their practical relevance. Pri-
marily, they provide intuition to the system designer
about the reason why the system does not satisfy
the specification. More recently, techniques were de-
veloped to uncover deep bugs which would otherwise
take a long time to uncover [12,13]. The introduction
of Counter-Example-Guided-Abstraction-Refinement
(CEGAR) [15,16] changed the role of counterexamples
from a mere feature to an algorithmic tool. In CEGAR,
the counterexample acts as a primary guide to restrict-
ing the space of the possible refinements. In the domain
of automated synthesis, Counterexample Guided Induc-
tive Synthesis (CEGIS) framework [43,42], as the name
suggests, leverages counterexamples from verification
for inductive synthesis.

Generating specific type of counterexamples has been
an active research topic in model checking. In one of the
recent works [29], the authors provide techniques to
generate longest and deepest counterexamples for linear
dynamical systems. In the domain of hybrid systems,
many CEGAR based approaches pursue various notions
of counterexamples [25,19,17,7,6,36,22,39,41,46,26].
Most of them are restricted to the domain of timed and
rectangular hybrid systems. The current state of the art
tools such as SpaceEx [27] and HyLAA [9] spit out the
counterexample that violates the safety specification at
the earliest time and at the latest time respectively.

2

Counterexamples also play an important role in falsifica-
tion techniques [24,21]. Instead of proving that the spec-
ification is satisfied, falsification tools like S-Taliro [8]
and Breach [20] search for an execution that violates
the specification. Given a specification of Cyber-Physical
System in Metric Temporal Logic (MTL) [30] or Signal
Temporal Logic (STL) [33], falsification techniques em-
ploy a variety of techniques [35,4,40,48,18] for discover-
ing an execution that violates the specification. Unlike
the counterexamples given in this paper, the counterex-
amples returned by falsification techniques need not be
the deepest or the longest counterexamples.

The approach presented in this paper bears some re-
semblance to the CEGIS based approach described
in [38,37]. Here, the verification condition that the sys-
tem satisfies an STL [38] specification is encoded as a
mixed-integer linear program (MILP). If the specifica-
tion is violated, one can investigate the results of MILP
to obtain counterexamples. In [28], the authors extend
the previous work and provide an intuition/reason for
the system failing to satisfy the specification.

The rest of the paper is structured as follows. Prelimi-
nary definitions and background details regarding reach-
able set computation using simulations are stated in Sec-
tion 1. Section 2, 3 and 4 describe approaches to gener-
ate the deepest, longest and robust counterexamples re-
spectively. Application of counterexamples is explained
using adaptive cruise controller in Section 5. The eval-
uation results of counterexample generation on various
benchmarks are provided in Section 6. In Section 7, the
authors discuss future directions that can be pursued
based on the work presented here.

1 Preliminaries

States and vectors are elements in Rn are denoted as x
and v. The Inner product of two vectors is denoted as
vT1 v2. Given a sequence seq = s1, s2, . . ., the ith element
in the sequence is denoted as seq[i]. In this work, we use
the following mathematical notation of a linear hybrid
system.

Definition 1 A linear hybrid system H is defined to be
a tuple 〈Loc,X, F low, Inv, Trans,Guard〉 where:

Loc is a finite set of locations (also called modes).
X ⊆ Rn is the state space of the behaviors.
Flow : Loc → AffineDeq(X) assigns an affine differ-

ential equation ẋ = Alx + Bl for location l of the
hybrid automaton.

Inv : Loc→ 2R
n

assigns an invariant set for each loca-
tion of the hybrid system.

Trans ⊆ Loc× Loc is the set of discrete transitions.
Guard : Trans → 2R

n

defines the set of states where a
discrete transition is enabled.

For a linear hybrid system, the invariants and guards are
given as the conjunction of linear constraints.

The initial set of states Θ is a subset of Loc×2R
n

, where
second element in the pair is a conjunction of linear con-
straints. An initial state q0 is a pair (Loc0, x0), such that
x0 ∈ X, and (Loc0, x0) ∈ Θ. The unsafe set of states is
a subset of state space, U ⊆ Rn.

Definition 2 Given a hybrid system and an initial set
of states Θ, an execution of the hybrid system H is a
sequence of trajectories and transitions ξ0a1ξ1a2 . . . such
that (i) the first state of ξ0 denoted as q0 is in the initial
set, i.e., q0 = (Loc0, x0) ∈ Θ, (ii) each ξi is the solution
of the differential equation of the corresponding location
Loci, (iii) all the states in the trajectory ξi respect the
invariant of the location Loci, and (iv) the state of the
trajectory before each transition ai satisfies Guard(ai).

The set of states encountered by all executions that
conform to the above semantics is called the reachable
set. Linear dynamical systems can be considered as hy-
brid systems with one mode. The closed form expres-
sion for their trajectories is given as ξl(t) = eAltξl(0) +∫ t
0
eAl(t−µ)Bldµ where Al and Bl define the affine dy-

namics of the mode l. Since this paper deals with find-
ing counterexamples, we focus on counterexamples that
can be generated using a specific simulation engine for
hybrid systems. More specifically, we use the simulation
engine that is described in [10]. This simulation engine
also accounts for non-determinism induced due to dis-
crete transitions. The closed form expression of a linear
dynamical system execution involves matrix exponen-
tial; thus, we are better off using simulation engine that
generates simulation as a proxy for an execution. For a
unit time (also called the step), the hybrid system sim-
ulation starting from state q0 is denoted as ξH(q0).

Definition 3 A sequence ξH(q0) = q0, q1, q2, . . ., where
each qi = (Loci, xi), is a (q0)-simulation of the hybrid
system H with initial set Θ if and only if q0 ∈ Θ and
each pair (qi, qi+1) corresponds to either: (i) a continu-
ous trajectory in location Loci with Loci = Loci+1 such
that a trajectory starting from xi would reach xi+1 af-
ter exactly unit time with xi ∈ Inv(Loci), or (ii) a dis-
crete transition from Loci to Loci+1 (with Loci−1 =
Loci) where ∃a ∈ Trans such that xi = xi+1, xi ∈
Guard(a) and xi+1 ∈ Inv(Loci+1). Bounded-time vari-
ants of these simulations, with time bound T , are called
(q0, T)-simulations.

If the pair (qi, qi+1) corresponds to a continuous trajec-
tory, qi+1 is called the continuous successor of qi, other-
wise qi+1 is the discrete successor of qi.

While talking about the continuous or discrete behav-
iors of simulations, we abuse notation and use xi, the
continuous component of the state instead of qi.

3

Observations On Simulation Algorithm: We would
like to make a few observations regarding the simulation
algorithm that we have presented. First, the simulation
engine allows the execution to make a discrete transition
even when the invariant is violated. That is, if xi and
xi+1 are two successive states in the simulation, xi+1 can
make a discrete transition to the new mode even when
xi+1 /∈ Inv(Loci) as long as xi+1 ∈ Guard(a). This is
necessary to handle the common case where a guard is
the complement of an invariant, and a sampled simula-
tion jumps over the guard boundary during a single step.
If these types of behaviors are not desired, the guard
can be explicitly strengthened with the invariant of the
originating mode.

If a guard is enabled and the invariant is still true, or
if multiple guards are enabled, the simulation engine
can make a non-deterministic choice. Consider that a
one-dimensional system has two locations l1 and l2 such
that Flow(l1) : ẋ = 1, Inv(l1) : x ∈ [0, 50], transition
a = (l1, l2), and Guard(a) : x ≥ 45. The initial set is

Θ
∆
= (l1, x ∈ [0, 5]). After the guard is enabled in l1 i.e.,

x ≥ 45, the simulation engine, in a non-deterministic
manner, can either take a discrete transition to l2 or
continue evolving in l1 as long as its invariant is true.
At x = 50, the trajectory can no longer continue to stay
in l1 as the invariant will be violated. Hence, at x = 50,
the engine is forced to take the transition to l2.

Second, the simulation engine given in Definition 3 does
not check if the invariant is violated for the entire time
interval, but only at a discrete time instance. Computa-
tionally, it is very hard to give certainty about whether
a predicate was satisfied during an entire time interval,
and hence we consider this to a valid assumption. Read-
ers familiar with industrial simulation engines can relate
this to a feature of not detecting zero crossings.

Third, the discrete jumps are only enabled at time in-
stances that are multiples of the unit time. For discrete
transitions that are a result of change in controller input
that is driven by software, such an assumption is valid
as one can consider the control system providing actu-
ation values at discrete instances of time. This notion
might not accurately represent the discrete transitions
that are a result of environmental impact such as im-
pulse responses. However, we still argue that such a no-
tion of execution is useful because of two reasons. First,
it is impossible (except for some very specific cases) to
finitely represent the execution trace when the discrete
transition is a result of the environment. The closest we
can get to such representation is to consider executions
that are defined in Definition 3. Second, by reducing the
time step, one can get arbitrarily close to the execution
that is a result of impulse response.

Finally, in order to avoid Zeno executions, the simulation
engine forces the system should spend at least unit time
in each mode.

We now define the safety property for simulations and
for a set of initial states (from [10]).

Definition 4 A given simulation ξH(q0) is said to be
safe with respect to an unsafe set U if and only if ∀qi =
(Loci, xi) ∈ ξH(q0), xi /∈ U . Safety for bounded time
simulations are defined similarly.

Definition 5 A hybrid systemH with initial set Θ, time
bound T , and unsafe set U is said to be safe with respect
to its simulations if all simulations starting from Θ for
bounded time T are safe.

Our goal in this paper is to generate three types of coun-
terexamples namely the deepest, the longest and the ro-
bust counterexamples. We drop the subscript H from
ξH as the work in this paper refers to the hybrid setting.
We now give the definitions as follows.

Definition 6 Given a hybrid system H with an initial
set Θ, time bound T , unsafe set U , and direction d ∈ Rn,
the depth of a counterexample ξ in direction d is denoted
as depth(ξ, d) = max{dTxi | xi ∈ ξ ∧ xi ∈ U}.

The counterexample ξ with the maximum value of depth
is called the deepest counterexample.

Definition 7 Given a hybrid system H with an initial
set Θ, time bound T , and unsafe set U , a counterexample
ξ is said to be of length l if and only if ∃ consecutive states
xi, xi+1, . . . , xi+l−1 in ξ such that ∀i ≤ j ≤ i+ l−1, xj ∈
U .

The counterexample of the maximum length is called the
longest counterexamples.

Definition 8 Given a hybrid system H with initial set
Θ, time bound T , and unsafe set U , a counterexample ξ
starting from xr is said to be robust with robustness δ

if and only if ∀x ∈ Bδ(xr)
∆
= {x | ‖x− xr‖ ≤ δ}, there

exists at least one unsafe execution starting from x.

Above definition states that any initial state within δ
distance from xr has at least one unsafe execution start-
ing from it. The existential quantifier is introduced be-
cause of multiple active discrete transitions originating
from same mode. Two executions starting from same ini-
tial state can be different if they correspond to different
discrete transitions. That is, one execution can be safe
while another is unsafe, where only the unsafe execu-
tion is used for computing the robust counterexample.
If δ1 < δ2, then the robustness δ2 of a counterexample
trivially implies the robustness δ1. Note that the robust
counterexample may not be unique and is dependent on
how δ is defined.

For computing these counterexamples of interest, we use
the simulation equivalent reachable set approach that is
presented in [23,10].

4

Figure 2. Observe that the state reached at
time t from x0+α1v1+ α2v2 is identical to
ξ(x0, t)+α1(ξ(x0+v1, t)−ξ(x0, t))+α2(ξ(x0+v2, t)−ξ(x0, t)).

1.1 Superposition principle, Generalized Stars, and
Simulation-equivalent Reachable Set

We now present some of the building blocks in compu-
tation of the reachable set (from [10]). There are three
main aspects of the reachable set computation. First
is the superposition principle, second is the generalized
star representation that is used for representing the set
of reachable states and finally, the reachable set algo-
rithm for a single mode and the simulation-equivalent
reachable set that is returned by Algorithm in [10].

Definition 9 Given any initial state x0, vectors
v1, . . . , vm where vi ∈ Rn, scalars α1, . . . , αm, the trajec-
tories of linear differential equations in a given location
l always satisfy

ξ(x0+Σmi=1αivi, t) = ξ(x0, t)+Σmi=1αi(ξ(x0+vi, t)−ξ(x0, t))

An illustration of the superposition principle for two vec-
tors is shown in Figure 2. We exploit the superposi-
tion property of linear systems in order to compute the
simulation-equivalent reachable set of states for a linear
hybrid system. Before describing the algorithm for com-
puting the reachable set, we introduce the data struc-
ture called a generalized star that is used to represent
the reachable set of states.

Definition 10 A generalized star (or simply star) S is
a tuple 〈c, V, P 〉 where c ∈ Rn is called the center, V =
{v1, v2, . . . , vm} is a set of m (≤ n) vectors in Rn called
the basis vectors, and P : Rn → {>,⊥} is a predicate.

A generalized star S defines a subset of Rn as follows.

[[S]]
∆
= {x | ∃ᾱ = [α1, . . . , αm]T such that

x = c+ Σmi=1αivi and P (ᾱ) = >}

Sometimes we will refer to both S and [[S]] as S. Addi-
tionally, we refer to the variables in ᾱ as basis variables

and the variables x as orthonormal variables. Given a
valuation of the basis variables ᾱ, the corresponding or-
thonormal variables are denoted as x = c+ V × ᾱ.

Similar to [10], we consider predicates P which are con-
junctions of linear constraints. This is primarily because
linear programming is very efficient when compared to
nonlinear arithmetic. We therefore harness the power
of these linear programming algorithms to improve the
scalability of our approach.

Example 2 Consider a set Θ ⊂ R2 given as Θ 1 ∆
=

{(x, y) | x ∈ [4, 6], y ∈ [4, 6]}. The given set Θ can be
represented as a generalized star in multiple ways. One
way of representing the set is given as 〈c, V, P 〉 where

c = (5, 5), V = {[0, 1]T , [1, 0]T } and P
∆
= −1 ≤ α1 ≤

1 ∧ −1 ≤ α2 ≤ 1. That is, the set Θ is represented as
a star with center (5, 5) with vectors as the orthonormal
vectors in the Cartesian plane and predicate where the
components along the basis vectors are restricted by the
set [−1, 1]× [−1, 1].

Reachable Set Computation For Linear Dynami-
cal Systems Using Simulations: We briefly describe
the algorithm for computing simulation-equivalent
reachable set for a single mode here, this is primarily
done to present some crucial observations which will
later be used in the algorithms for generating specific
counterexamples. Longer explanation and proofs for
these observations and algorithms is available in prior
work [23,10].

At its crux, the algorithm exploits the superposition
principle of linear systems and computes the reachable
states using a generalized star representation. For an
n-dimensional system, this algorithm requires at most

n+1 simulations. Given an initial set Θ
∆
= 〈c, V, P 〉 with

V = {v1, v2, . . . , vm}(m ≤ n), the algorithm performs
a simulation starting from c (denoted as ξ(c, 0)), and
∀1 ≤ j ≤ m, performs a simulation from each c + vj
(denoted as ξ(c + vj , 0)). For a given time instance i,
the reachable set denoted as Reachi(Θ) is defined as
〈ci, Vi, P 〉 where ci = ξ(c, i) and Vi = 〈v′1, v′2, . . . , v′m〉
where ∀1 ≤ j ≤ m, v′j = ξ(c+vj , i)− ξ(c, i). Notice that
the predicate does not change for the reachable set, but
only the center and the basis vectors are changed.

An illustration of this reachable set computation is
shown in Figure 3. Here, as the system is 2-dimensional,
a total number of three simulations are performed - one
from center c, and one from each c+ v1 and c+ v2. The
reachable set after time i is given as the star with center
c′ = ξ(c, i), basis vectors v′1 = ξ(c + v1, i) − ξ(c, i) and
v′2 = ξ(c + v2, i) − ξ(c, i), and the same predicate P as
given in the initial set.

1 We abuse the notation Θ to denote the initial set as well
as its star representation.

5

Figure 3. Illustration of the reachable set using sample sim-
ulations and generalized star representation. Notice that the
predicate remains the same over time.

Simulation-Equivalent Reachable Set for Hybrid
Systems with Linear Dynamics: The Algorithm pre-
sented in [23] has been extended in [10] to compute
the simulation equivalent reachable set for hybrid sys-
tems that accommodates for the invariants in each mode
and the guard transitions for discrete mode jumps. This
is achieved by introducing a new technique called in-
variant constraint propagation and dynamic aggregation
and de-aggregation. Since our focus in this paper is to
generate interesting counterexamples, we apply fully-
deaggregated version of the reachable set computation
algorithm and all reachable sets are given as stars.

Remark 1 For a discrete transition ai from modei to
modei+1, a set of constraints A are propagated from a
star Si ∈ modei to Si+1 ∈ modei+1 via Guard(ai) iff

A
∆
= Si ∩Guard(ai) 6= ∅ and A ⊆ Si+1

As a consequence of propagation, the initial set for
modei+1 after the discrete transition ai is the full inter-
section of the reachable set Si with Guard(ai).

The reachable set algorithm computeSimEquivReach re-
turns the reachable set in the form of a tree. The root
node of the tree is the initial set Θ. Each node in this
tree is a generalized star Si of the form Si

∆
= 〈ci, Vi, Pi〉

corresponding to the set of states visited at a discrete
step i. Notice that the predicate in Si might be different
from the predicate of the initial set Θ so as to accom-
modate the mode invariants and discrete transitions in-
duced due to hybrid behavior. Each node in reach tree
can have at most one continuous successor that corre-
sponds to the evolution for unit time in the same mode,
and multiple discrete successors each corresponding to
the reachable set after the discrete transition. We denote
this tree form of the reachable set as ReachTree.

The construction ofReachTree is illustrated in Figure 4.

Figure 4. Illustration of ReachTree construction. There are
6 modes. During a discrete transition, only predicates satis-
fying the guard are propagated.

Figure 5. Representation of a ReachTree. Discrete transi-
tions are shown in red and continuous transitions in green.
Each node has at most one continuous and as many discrete
successors as the number of enabled guards.

The part of the system shown has 6 modes - A, B, C, D,
E, and F. Inv A, Inv B, Inv C are the invariants for modes
A, B and C respectively. There are 4 nodes correspond-
ing to mode A where Ai+1 is the continuous successor of
Ai, 1 ≤ i ≤ 3. A1 itself can be the root node or a succes-
sor - continuous or discrete - to some another node. A
discrete transition (X → Y) from mode X to mode Y is
active when its associated guard (GX→Y) becomes en-
abled, and constraints X ∩GX→Y are propagated (Re-
mark 1). Hence, during the transition from A2 to B1,
predicates denoting the set A2 ∩GA→B are propagated.
It means that the initial set B1 is the full intersection of
the reachable set A2 and the associated guard GA→B .

As our reachable set construction algorithm explores all
possible transitions, a node has as many discrete succes-
sors as the number of active discrete transitions, in ad-
dition to having at most one continuous successor. This

6

behavior translates into 3 scenarios: 1) only continuous-,
2) only discrete-, 3) continuous- as well as discrete- suc-
cessors. For instance, C2 has one continuous and 2 dis-
crete successors as it satisfies the invariant Inv C, and it
has active transitions to both E and F . C1 does not have
any discrete successor because there is no active discrete
transition from C1. In a similar fashion, A4 has just one
successor which is discrete because A4 violates Inv A but
GA→F is enabled. The ReachTree constructed in this
manner is shown in Figure 5. The dashed transitions de-
note that there may or may not be a transition.

Definition 11 Consider an initial set Θ, bound T , and
the simulation equivalent reachable set as ReachTree.
Given a star Si ∈ ReachTree, we call a sequence of stars
σ = R1, R2, . . . , Rm a chain starting from Si if and only
if R1 = Si and ∀2 ≤ j ≤ m,Rj is (either continuous or
discrete) successor of Rj−1.

Remark 2 Given a star Si
∆
= 〈ci, Vi, Pi〉 in ReachTree

and its successor (either discrete or continuous) Si+1
∆
=

〈ci+1, Vi+1, Pi+1〉, observe that one has to either perform
intersection with the invariant or with the guards for
obtaining the predicate Pi+1. Hence Pi+1 ⊆ Pi. Thus,
given a valuation of ᾱ such that Pi+1(ᾱ) = >, it is
true that all the stars that are the parents of Pi+1, the
valuation of ᾱ is contained in the predicate. Addition-
ally, one can use this valuation of basis variables to gen-
erate the trace starting from the initial set Θ to Pi+1.
We call the procedure that generates this execution as
getExecution(ᾱ,Si+1, ReachTree).

A side effect of the above observation is that all the tra-

jectories that reach the star Si+1
∆
= 〈ci+1, Vi+1, Pi+1〉

would originate from the subset of the initial set Θ′
∆
=

〈c0, V0, Pi+1〉.

Assumptions: Similar to the assumptions in our earlier
work [10], we assume that ODE solvers give the exact re-
sult. While theoretically unsound, such an assumption is
adopted due to its practicality. Second, we use floating-
point arithmetic in our computations and do not track
the errors by floating point arithmetic. A user concerned
about the inaccuracy of numerical simulation can either
use validated simulations [2] or compute the linear ODE
solution as a matrix exponential to an arbitrary degree
of precision. The algorithms presented are oblivious to
the simulation engine used. We assume the initial set and
unsafe region to be convex polytopes. However, gener-
alized star provides flexibility to compute the reachable
set even when the initial set is non-convex [23].

2 Deepest Counterexample

In this section, we will present the algorithm that would
return the deepest counterexample for a safety specifi-
cation and a direction. We illustrate the way to obtain
the deepest counterexample using Figure 6.

Figure 6. Illustration of the deepest counterexample in the
direction of v.

Suppose that in the ReachTree computation, there are
three stars S1,S2, and S3 that overlap with the unsafe
set U . Given a direction d, the procedure to compute the
deepest counterexample would be the following. (1) For
each of the stars Si, compute the maximum depth depthi
of star Si as max (dTx) with x ∈ (Si ∩U). (2) Select the
star Sj with maximum value of depthj . (3) Extract the
corresponding value of basis variables ᾱ which achieves
the maximum depth and extract the corresponding exe-
cution. The correctness of the algorithm trivially follows
from Definition 6 and the correctness of the simulation-
equivalent reachable set. The algorithm is presented for-
mally in Algorithm 1.

input : Initial Set Θ, the simulation equivalent
reachable tree ReachTree, direction d and
unsafe set U

output: Counterexample ce with maximum depth in
direction d in the unsafe set U

1 depthmax ← −∞; depthStar ← ⊥; ce← ⊥;
2 for each star Si in ReachTree do
3 if Si ∩ U 6= ∅ then
4 OptProbi ← max dTx given x ∈ (Si ∩ U);
5 depthi ← solution(OptProbi);
6 if depthi > depthmax then
7 depthmax ← depthi;
8 ᾱmax ← getBasisV ariables(OptProbi);
9 depthStar ← Si;

10 end
11 end
12 end
13 if depthmax 6= −∞ then
14 ce← getExection(ᾱmax, depthStar,ReachTree);
15 end
16 return ce;

Algorithm 1: Algorithm that computes the deepest
counterexample with respect to a given direction d.

The main loop in lines 2- 12 iterates through all the stars
in the reachable set given as ReachTree and selects the
stars that overlap with the unsafe set U . The optimiza-
tion problem for maximizing the value of the cost func-
tion dTx for the overlap with the unsafe set is generated
in line 4, which is then solved in line 5. If the depth
computed in line 5 is greater than the current maximum
value (lines 6- 10), then the maximum value is updated
and the value of basis variables corresponding to the op-
timal solution as well as the current star are stored. In

7

Figure 7. Illustration of the longest counterexample.

line 14, the execution corresponding to the maximum
depth is extracted using the value of ᾱ.

Analysis: If m is the number of stars overlapping with
the unsafe set, we perform linear program optimization
for each of these stars to obtain respective depth. Hence,
the run time complexity for computing the deepest coun-
terexample is O(m).

3 Longest Counterexample

In this section, we will describe the algorithm for obtain-
ing the counterexample that spends the longest contigu-
ous time in the unsafe set. For this purpose, we leverage
the generalized star representation and the property of
the reachable set that is provided in Remark 2.

We illustrate the problem of finding the longest coun-
terexample through Figure 7. Consider three consecu-
tive stars S1,S2, and S3 in the reachable set having over-
lap with the unsafe set as shown. If one picks the state
e1 ∈ S1, then the post states of e1, denoted as e2 and e3,
do not lie in the unsafe set. However, if one picks l1 ∈ S1,
then its post states, l2 and l3, lie in the unsafe set.

The key insight behind the generation of longest coun-
terexample is that one has to select the appropriate state
which visits the maximum number of contiguous over-
laps between the unsafe set and the reachable set. In
this instance, any state x1 ∈ S1 such that x1 ∈ S1 ∩ U ,
with its successors x2, x3 such that x2 ∈ S2 ∩ U and
x3 ∈ S3 ∩ U is the appropriate choice.

For finding such a state, we perform constraint propa-
gation (similar to the invariant constraint propagation
in [10]). That is, we identify the constraints C on the ba-
sis variables (ᾱ) such that ∀ᾱ such that C(ᾱ) = >, we
have, x1 = c1+V1×ᾱ ∈ S1∩U , x2 = c2+V2×ᾱ ∈ S2∩U ,
and x3 = c3 + V3 × ᾱ ∈ S3 ∩ U .

To extract these set of constraints, we convert the unsafe
set U into the center and basis vectors of each of the
stars S1,S2, and S3. Thus, Si ∩ U

∆
= 〈ci, Vi, Pi ∧ Qi〉.

From Remark 2, we know that the set of states that reach
〈ci, Vi, Pi∧Qi〉 originate from 〈c0, V0, Pi∧Qi〉. Hence, the
set of states that would visit all the intersections of the
unsafe set should originate from 〈c0, V0, P1 ∧Q1 ∧ P2 ∧
Q2∧P3∧Q3〉. It follows that if the set of constraints P1∧

Q1 ∧P2 ∧Q2 ∧P3 ∧Q3 is satisfiable, then the trajectory
corresponding to the basis variables that satisfy these
constraints visits the unsafe set at all three consecutive
time instances.

Building on the above discussion, the algorithm to com-
pute the longest counterexample would iterate as fol-
lows. We first consider contiguous sequences of stars
S1,S2, . . . ,Sm that overlap with the unsafe set U . We
then compute the set of constraints C such that if C is
satisfiable, then there exists a trajectory that stays in the
unsafe set for at least m duration. We find the longest
sequence of stars such that the corresponding constraint
C is satisfiable and provide the counterexample trace.
This procedure is formally defined in Algorithm 2.

input : Initial set Θ, the simulation equivalent
reachable tree ReachTree and unsafe set U

output: Counterexample ce that spends longest
contiguous time in U

1 lengthmax ← −∞; lengthStar ← ⊥; ce← ⊥;
2 for each star Si in ReachTree do
3 if Si ∩ U 6= ∅ then
4 for each chain σ starting with Si do
5 Transform U into 〈ci, Vi, Qi〉 where

σ[i]
∆
= 〈ci, Vi, Pi〉;

6 Cσ ←
∧|σ|
i=1Qi ∧ Pi;

7 if Cσ is feasible and |σ| > lengthmax then
8 lengthmax ← |σ|;
9 ᾱlen ← feasible(Cσ);

10 lengthStar ← Si;
11 end
12 end
13 end
14 end
15 if lengthmax 6= −∞ then
16 ce← getExection(ᾱlen, lengthStar,ReachTree);
17 end
18 return ce;

Algorithm 2: Algorithm that computes the longest
counterexample.

The algorithm proceeds as follows: the main loop
(lines 2- 14) iterates over all stars that have an overlap
with the unsafe set U . The inner loop (lines 4- 12) enu-
merates all the contiguous sequences σ starting with Si
and computes the set of constraints Cσ for the sequence.
If the constraints are feasible, then the valuation of the
basis variables that satisfies these constraints and the
star Si are stored. The length of the longest counterex-
ample is also updated. In line 16, the execution cor-
responding to the longest counterexample is obtained
using the valuation ᾱlen.

Theorem 1 The execution returned by Algorithm 2 re-
turns the longest counterexample.

Proof 1 We prove this by contradiction. Suppose

8

that for the given initial set Θ
∆
= 〈c0, V0, P0〉, the

longest counterexample ξ = x0, x1, . . . , xk spends du-
ration m in the unsafe set U . Consider that the states
xj , xj+1, . . . , xj+m−1 in the execution ξ lie in the unsafe
set. Additionally, suppose that the execution returned by
Algorithm 2 returns a counterexample of length strictly
less than m.

From the soundness and completeness result of simu-
lation equivalent reachability [10], we have that ∃ stars
Sj ,Sj+1, . . . ,Sj+m−1 in ReachTree such that ∀j ≤ r ≤
j +m− 1, xr ∈ Sr. Therefore, it should be the case that
∀r, j ≤ r ≤ j + m − 1, U ∩ Sr 6= ∅. Additionally, since
the trajectory ξ passes through U ∩ Sr, it should be the

case that ξ ∈ 〈c0, V0, Pr ∧ Qr〉 where Sr
∆
= 〈cr, Vr, Pr〉

and U
∆
= 〈cr, Vr, Qr〉. Therefore, the constraint Cσ that

is computed for the sequence σ = Sj ,Sj+1, . . . ,Sj+m−1
should be feasible and would be updated as the longest
counterexample in lines 7- 11. Which is a contradiction.

Analysis and Optimizations: In the ReachTree, a
star can have at most one continuous successor and d
discrete successors where d is the highest number of dis-
crete transitions from any mode. If we consider the full
tree with at least one step executed in each mode, the
worst case possible number of sequences σ of length m
would be O((d + 1)m). Hence, the worst case time for
computing the length would be to performO(k2·(d+1)k)
linear program optimizations. However, in practice, such
worst case bounds are not observed. In almost all of our
experiments, the duration for overlap is not the order of
k, each star has at most one active transition, and the
number of sequences to be handled is at most one or two
sequences of the maximum length.

One of the optimizations that can be performed for
eliminating certain counterexamples is to conduct
something similar to a binary search. That is, given a
sequence Si,Si+1, . . . ,Si+k−1 starting from star Si that
overlaps with U , we can check if Si+b k2 c overlaps with

U . If there is no overlap, we can assert that the length of
the longest unsafe sequence is less than k/2. However,
this is a heuristic which may help in saving run time in
some cases but not all.

4 Robust Counterexample

In this section, we will present the algorithm to obtain
the robust counterexample. Recall that a counterexam-
ple starting from xr is said to be δ-robust if and only if
for all states x ∈ Bδ(xr), there exists an unsafe execu-
tion starting from x. Informally, if we perturb the exe-
cution starting from xr by less than δ, it remains unsafe.
For obtaining this counterexample, we leverage the con-
vexity property of reachable set.

For an unsafe star, the ideal robust counterexample is
the center of the maximum ball inscribed inside the in-

Figure 8. Illustration of the robust counterexample.

tersection of the star with the unsafe set. Since comput-
ing the maximum ball inscribed in a convex polytope
is computationally hard [47,5], we, therefore, compute
a proxy as some internal state of the polytope. In our
case, this is the centroid of extreme points in each or-
thonormal direction. We illustrate the approach using
Figure 8 where xideal is the center of the maximum ball
inscribed and xr is its proxy. The generalization to the
case of multiple stars intersecting with the unsafe set for
the given sequence is trivial.

Consider a star S1 overlapping with the unsafe set. Af-
ter obtaining the set S1 ∩ U , we find extreme points by
optimizing (maximizing and minimizing) the cost func-
tion in each direction x and y. Suppose these points are
xlow, xhigh, ylow and yhigh, respectively. Then the robust
unsafe state is the centroid of these points.

xr = (xlow + xhigh + ylow + yhigh)/4

Remark 3 For each point x in a convex set X, there
existsm ≥ n+1 points x1, . . . xm ∈ X such that the point
x ∈ X is represented as their convex combination. That
is, ∃ scalars β1, . . . , βm ≥ 0 with

∑m
i=1 βi = 1 such that

x = β1x1 + β2x2 + . . .+ βmxm.

Theorem 2 If the intersection of the star S with the

unsafe set U is a non-empty convex set C
∆
= (S∩U) 6= ∅,

then the robust unsafe state xr ∈ C.

Proof 2 For n orthonormal directions, we obtain 2n ver-
tices of the convex set by maximizing and minimizing the
cost function in each direction. The centroid, xr, of these
vertices can be represented as their convex combination
with scalars βi = 1

2n ≥ 0 such that
∑2n
i=1 βi = 1. This

entails xr ∈ C as a consequence of Remark 3.

The user can pick non-orthonormal directions as well to
define cost function.

Remark 4 There exists a set Bδ(xr) ⊆ C, δr ≥ 0 where

δr = arg max
δ

Bδ(xr).

This follows from Theorem 2. The robust unsafe state
xr ∈ C is either on one of the hyper-planes defining C

9

or a state not on the edge. In first case, δ = 0, otherwise
δ is the euclidean distance from xr to its nearest vertex,
which is positive.

We use the longest contiguous sequence of unsafe stars
from Section 3 to find the robust counterexample.

input : Initial set Θ, the simulation equivalent
reachable tree ReachTree, unsafe set U ,
lengthStar and lengthmax as computed in
Algorithm 2

output: Robust counterexample ce
1 ce← ⊥;
2 if lengthStar 6= ⊥ then
3 S1 ← lengthStar;
4 σ ← S1,S2, . . . ,Sm where m = lengthmax ;
5 Transform U into 〈ci, Vi, Qi〉 where

σ[i]
∆
= 〈ci, Vi, Pi〉;

6 Cσ ←
∧m
i=1Qi ∧ Pi;

7 for each orthonormal direction d ∈ Rn do
8 OptProbdmax ← max dTx given x ∈ Cσ;

9 ᾱdmax ← getBasisV ariables(OptProbdmax);

10 cedmax ← getExecution(ᾱdmax,S1, ReachTree);
11 Similarly, cedmin is obtained by minimizing dTx;

12 ced ← (cedmax + cedmin)/2;
13 end

14 ce← (
∑
d ce

d)/n;
15 end
16 return ce;

Algorithm 3: Algorithm that computes the robust
counterexample such that a small perturbation yields a
new counterexample.

In Algorithm 3, σ is the chain starting from lengthStar
and has the length of the longest counterexample. Cσ
represents the intersection of unsafe set U with stars in
σ. In main loop (lines 7- 13), we formulate optimization
problems to find the centroid (ced) in each orthonormal
direction d. In line 14, the robust counterexample ce
is obtained as the centroid of all ced computed in the
main loop. The user can provide additional directions for
finding extreme points which, in turn, may result into a
different robust counterexample.

Runtime Analysis: Since the robust counterexample is
obtained with respect to the longest unsafe sequence, the
worst case complexity is proportional to computing the
longest counterexample, that isO(k2 ·2k) as explained in
Section 3. The heuristic approach based on conducting
binary search applies here as well.

5 Analysis of Adaptive Cruise Controllers Us-
ing Counterexamples

In an adaptive cruise control system, the cars operate in
autonomous manner. The leading car moves at a con-
stant velocity; the following car slows down or speeds up

Figure 9. Adaptive cruise control system. Unsafe execution
profiles from 3 different controllers are shown. Image source:
https://my.cadillac.com/learnAbout/adaptive-cruise-control

Figure 10. Illustration of controllers’ performance in adap-
tive cruise control. s is the distance between two vehicles and
v is the follower’s speed. The unsafe and undesirable specifi-
cations are 0 ≤ s ≤ 2 and 2 ≤ s ≤ 5 respectively. Controller
I gives longer unsafe and undesirable executions in compar-
ison to controller II.

automatically by sensing its velocity and the distance
from the leading car. A control designer focuses on de-
veloping feedback controller for stabilizing this system.
But a stable controller may not be safe for all initial
states, where safety is defined as some minimum distance
between these two vehicles or reasonable speed of the
follower. As stated earlier, the objective is to evaluate
the performance of controllers which violate the safety
specification.

We provide an illustration of multiple adaptive cruise

10

Figure 11. Illustration of controllers’ performance on adap-
tive cruise control. s is the distance between two vehicles
and t is the time. The unsafe specification is 0 ≤ s ≤ 2 and
the desirable condition is 27 ≤ s ≤ 30. Although the system
with controller II gets more close to the leading car, it tries
to stabilize faster once it is at the desirable distance.

control algorithms in Figure 9 using their execution pro-
files. The distance between the follower and the leader is
shown in green, and the unsafe region is highlighted in
red. Consider the execution profiles after applying 3 dif-
ferent stable controllers are given. Since all 3 controllers
are unsafe as shown, these executions can be used in
evaluating their performance. For instance, controller 2
execution ventures the most in the unsafe region in the
direction of vehicles’ movement. Although controller 1
execution is not the farthest in the unsafe region but it
stays there for the longest time interval. Similarly, con-
troller 3 execution is the most robust among all.

For simulation purpose, we pick adaptive cruise con-
troller provided in [45]. We are unaware of the rationale
behind the specific controller presented in [45]. 2 How-
ever, given such a black-box scenario, our approach can
be used to compare two controllers based on the safety
specification. Consider the leading car is moving with a

2 This controller is not related to the execution profiles il-
lustrated in Figure 9 which is presented to only illustrate the
application of counterexamples.

Figure 12. Illustration of controllers’ performance on adap-
tive cruise control. Here, the follower’s speed v is plotted
versus time t. Multiple levels of specification over v are also
shown. Although the system with controller II slows down
to an undesirable speed 10.145, it eventually achieves the
desirable speed faster.

constant speed vf , the follower’s velocity is v, its accel-
eration is a, and the distance between two vehicles is s.
The differential equations for the automatic cruise con-
trol system used by the follower are as follows:

ṡ = (vf − v)

v̇ = a

ȧ = g1 ∗ a+ g2(v − vf) + g3(s− (v + 10))

Here, g1, g2 and g3 are gain variables. The original sys-
tem has g1 = −3, g2 = −3 and g3 = 1. By changing
the values of gain variables, a new controllers can be ob-
tained. We pick g1 = −1 to obtain a different controller
for our experiments. The stable equilibrium of the sys-
tem is a = 0, v = vf , and s = vf + 10. The designer can
use standard tools like SOSTOOLS [3] to find Lyapunov
functions for proving stability of these controllers. The
original goal of adaptive cruise control is to always keep
the follower at a safe distance from the leader. Because
not every stable controller is essentially safe, conducting
a quantitative analysis of such controllers would be of

11

interest to the designer.

Given the initial set as s ∈ [2, 5], v ∈ [18, 22], vf = 20,
and a ∈ [−1, 1], the reachable sets computed by Hy-
LAA for above mentioned two adaptive cruise controllers
(ACC) are shown in Figure 10. Although both systems
eventually stabilize to v = vf = 20 or s = vf + 10 = 30,
they are unsafe with respect to the specification 0 ≤ s ≤
2. Notice that the true safety specification is s ≥ 0, but,
during the design phase, one would want to work with
specification that is conservative. As shown in Figure 10,
the longest counterexample after applying controller I is
of length 8 whereas its counterpart obtained from con-
troller II has length 7. This means that controller II helps
the system to recover faster from the unsafe region.

As an important side effect, our approach can also mea-
sure the extent to which a specification is satisfied. For
instance, although 0 ≤ s ≤ 2 is certainly unsafe, the
specification 2 ≤ s ≤ 5 is undesirable as it can possibly
render the system unsafe if the follower speeds up or the
leader slows down. The longest undesirable execution
obtained from controller I is of length 13 while controller
2 gives the longest undesirable execution to be of length
11. This re-emphasize that controller II makes the fol-
lower to get to the safe distance quicker as compared to
controller I (Refer Figure 10).

Building on above discussion, one might change the spec-
ification level to be desirable (27 ≤ s ≤ 30) because the
system is required to be eventually stable i.e., s = 30. We
plot distance s against time t in Figure 11. The longest
desirable execution obtained from controller I is longer
than the longest desirable execution generated from con-
troller II. This would mean that the system with con-
troller II tries to stabilize faster once it is at a desirable
distance. Similarly, if we look at the maximum depth in
the unsafe region, controller II is better.

To highlight that specifications over two different system
variables may semantically differ, Figure 12 shows multi-
ple specifications defined over v. As the given system sta-
bilizes when v = vf = 20, the specification 19 ≤ v ≤ 20
is regarded as desirable and v > 20 as unsafe. Having
the follower slowed down beyond a reasonable speed is
also bad, therefore, the condition v ≤ 15 is considered
undesirable. The lengths of longest desirable executions
indicate that the system with controller II obtains the
desirable speed faster than that with controller I. How-
ever, looking at the deepest undesirable executions re-
veals that controller II slows down the system to a speed
10.145 while controller I helps maintaining it above 13.

This exercise underlines the need for a software tool that
can assist the designer in not only evaluating different
controllers but also understanding their merits when the
specification changes. The analysis will enable them to
take action(s) to improve respective controllers.

Model Initial Set Unsafe Set

Small Medium Large

Ball x ∈ [-1.05 -0.95] [-0.2 0.2] [-0.5 0.5] [-0.8 0.8]

String y ∈ [-0.15 0.15] [5 6] [5 7] [3 7]

Two x ∈ [1.5 2.5] [0.5 1] [0.0 1.1] [0.0 1.9]

Tanks y ∈ [1 1.1] [-0.2 0.1] [-0.3 0.3] [-0.3 0.7]

x ∈ [0.2 0.3]

Filtered y ∈ [-0.1 0.1]

Oscillator x3 = 0.0 y ≥ −0.2 y ≥ −0.3 y ≥ −0.4

x1 = 0.0

x2 = 0.0

iLm ∈ [0 0.4]

Forward il ∈ [0 0.4] vc ≥ 2.5 vc ≥ 2.2 vc ≥ 2.0

Converter vc ∈ [0 0.4]

u = 0.0, t = 0.0

Table 1
Initial set and unsafe set values for benchmarks. Original
Forward Converter has 4 variables; we added an extra variable
t for time.

Figure 13. Illustration of the longest contiguous and deep-
est counterexamples for MU configuration of the unsafe set
in Ball string benchmark. This is a 2-dimensional system
(x, v) having two modes - extension and freefall. The transi-
tion from extension to freefall occurs when x = 0. The unsafe
set is [-0.5 0.5][5 7]. As shown, the actual intersection dura-
tion (in discrete time steps) is [12 20][21 29] whereas that
of the longest counterexample is [13 20][21 29]. The deepest
counterexample has depth 7.0 in V direction (x2 = 1).

6 Evaluation on Hybrid Systems Benchmarks

The proposed algorithms have been implemented in a
Python based verification tool named HyLAA; although,
some of the computational libraries used may be writ-
ten in other languages. Simulations for reachable sets
are performed using scipy’s odeint function, which
can handle stiff and non-stiff differential equations using
the FORTRAN library odepack’s lsoda solver. Linear
programming is performed using the GLPK library, and
matrix operations are performed using numpy. The mea-
surements were performed on a system running Ubuntu
16.04 with an 3.00GHz Intel Xeon E3-1505M CPU with
8 cores and 32 GB RAM.

12

Figure 14. Illustration of the longest and robust counterex-
amples for SU configuration of the unsafe set in Forward
converter benchmark. This is a 5-dimensional system
(ilm, il, vc, u, t) with 5 modes. Each color in the reachable set
corresponds to a different mode. The longest counterexam-
ple duration is [8 11][12 16][17 18] which, in this case, is the
actual intersection duration. As explained in Section 4, the
robust counterexample is obtained by optimizing predicates
computed for the longest unsafe execution.

HyLAA has a provision to perform verification in ag-
gregation mode for better performance. For our experi-
ments, we run HyLAA in de-aggregation mode. By de-
fault, HyLAA concludes its run as soon as it finds a
counterexample. But, we let the tool run for the entire
duration because we require to perform our analysis on
all stars intersecting with the unsafe set.

The benchmarks for our study are taken from [1] and
[11]. The simulations for Ball string and Two tanks
benchmarks are performed for maximum 200 time steps
with step size 0.01 sec. The simulation for Filtered
oscillator is carried out for maximum 100 time steps
with step size 0.02 sec, and for Forward converter with
step size 1× 10−6. The values of input variables in Two
tanks benchmark are fixed to 0 which belongs to the ac-
tual interval [-0.1, 0.1]; whereas in Forward converter,
the input (Vin) is fixed to 100 from the interval [98 102].

Most of these benchmarks are originally safe. Since our
objective is to highlight counterexamples, we choose un-
safe set in a manner that the reachable set intersects
with the unsafe set at multiple time instances. We fur-
ther adjust the size of unsafe set and observe that the
intersection window of reachable set with the unsafe set
differs proportionally. The initial set and unsafe set are
given in Table 1.

For each benchmark, we increase the unsafe region size
such that the number of stars intersecting with the un-
safe set also increases. This, in turn, may lead to longer
counterexamples. The increase in the number of unsafe
stars translates directly into the counterexample gener-
ation time because every new star adds to the analy-
sis time. The longest counterexample generation can be

slower than the overall verification (Refer to III row in
the Table 2). This happens because the combined num-
ber of constraints to be solved can become fairly large
as explained in the algorithm in Section 3.

It is interesting to note that the length of counterexam-
ple is not necessarily same as the actual intersection du-
ration of reachable set with the unsafe set. This is the
direct consequence of our approach: if a system of con-
straints during certain time interval is not feasible, we
prune the list and again check for its feasibility until
we find a solution. In Figure 13, the duration of longest
counterexample is different from the actual overlap du-
ration. However, their duration is same in Figure 14.

Another observation is that the variations in the unsafe
set size as well as depth direction can provide different
counterexamples (Table 3). The time taken for gener-
ating deepest counterexample is much less compared to
that of the longest one. The reason being we need to scan
through the list of unsafe star only once to find the star
with maximum depth.

The reader interested in evaluation results for regular
linear dynamical systems can refer to [29].

7 Conclusions and Future Work

In this paper, we provided approaches for generating var-
ious counterexamples based on metrics such as length,
depth and robustness. Our approach relies on a simu-
lation based reachable set computation method for lin-
ear hybrid systems. Linear constraints based star rep-
resentation significantly simplifies our counterexample
generation mechanism. We also observe that the vari-
ations in unsafe set size and optimizing direction may
generate different counterexamples. The proposed work
finds its merit in the development of template based
techniques for the refinement of initial and unsafe sets.
We demonstrated the applicability of these approaches
for comparing the performance of two adaptive cruise
controllers. Additionally, we evaluated them on several
hybrid systems benchmarks and presented our observa-
tions on their scalability and performance.

As the next step, we are interested in exploring a coun-
terexample guided controller synthesis framework that
leverages these various counterexamples. The counterex-
ample guided inductive synthesis (CEGIS) approach re-
quires to first find a stable feedback controller. Then
verification is performed to either prove safety or alter-
natively find a counterexample. This process is repeated
until a valid controller is obtained. The measures such
as distance, duration or robustness can be used in de-
termining the validity and merit of a controller during
synthesis. We hope that such CEGIS approach would be
useful for synthesizing a controller with both safety and
stability specification.

13

Model Dims, Unsafe Set Longest Actual Inter. LCE Verification LCE Gen

Modes Size Counterexample Duration Duration Time (sec) Time (sec)

Ball 2, 2 (ext, freefall) (ext, freefall)

String SU [-0.9507 -0.15] [18 20][21 23] [18 20][21 23] 0.25 0.01

MU [-1.0191 -0.15] [12 20][21 29] [13 20][21 29] 0.33 0.07

LU [-0.9618 -0.15] [7 20] [21 37] [7 20][21 37] 0.38 0.22

Two 2, 4 (loc3, loc1) (loc3, loc1)

Tanks SU [1.763 1.1] [21 26][27 40] [24 26][27 40] 15.24 0.40

MU [2.407 1.077] [16 28][33 78] [-][34 77] 17.78 5.25

LU [2.497 1.1] [7 30][31 81] [15 30][31 81] 20.55 11.46

Filtered 6, 4 (loc3, loc4) (loc3)

Oscillator SU [0.2 0.092 0...] [1 23][50 55] [1 23] 7.07 2.14

MU [0.2 0.0895 0...] [1 34][44 54] [1 34] 7.98 5.41

LU [0.2 0.099 0...] [1 49][52 66] [1 49] 8.20 11.09

Forward 5, 5 (loc1, loc2, loc5) (loc1, loc2, loc5)

Converter SU [0 0.399 0.223 0 0] [8 11][12 16][17 18] [8 11][12 16][17 18] 7.40 0.39

MU [0 0.4 0.2928 0 0] [6 11][12 16][17 22] [7 11][12 16][17 22] 7.79 0.83

LU [0 0.4 0.355 0 0] [5 11][12 16][17 25] [6 11][12 16][17 25] 8.84 1.32

Table 2

Longest Counterexample. Dims is the no. of dimensions (system variables), Modes is the number of system locations, SU, MU,
LU are variations of the unsafe set - Small, Medium and Large, as shown in Table 1. Longest Counterexample is a point in the
initial set, simulation from which stays for the longest contiguous time in the unsafe set. xi represents all the variables whose
values are not explicitly given. Actual Inter. Duration is the mode-wise ordered sequence of discrete time step intervals when
reachable set intersects with the unsafe set. LCE Duration is the interval for the longest counterexample. Verification Time is
the time Hylaa takes for verification, LCE Gen Time is the time it takes to generate the longest counterexample.

References

[1] Benchmarks of continuous and hybrid systems. https:

//ths.rwth-aachen.de/research/projects/hypro/

benchmarks-of-continuous-and-hybrid-systems/.
Benchmarks of continuous and hybrid systems.

[2] Computer Assisted Proofs in Dynamic Groups (CAPD).
http://capd.ii.uj.edu.pl/index.php/.

[3] G. Valmorbida S. Prajna P. Seiler A. Papachristodoulou,
J. Anderson and P. A. Parrilo. SOSTOOLS: Sum of squares
optimization toolbox for MATLAB.
http://arxiv.org/abs/1310.4716, 2013. Available from
http://www.eng.ox.ac.uk/control/sostools,
http://www.cds.caltech.edu/sostools and
http://www.mit.edu/~parrilo/sostools.

[4] Houssam Abbas and Georgios E. Fainekos. Linear hybrid
system falsification through local search. In Automated
Technology for Verification and Analysis, 9th International
Symposium, ATVA 2011, Taipei, Taiwan, October 11-14,
2011. Proceedings, pages 503–510, 2011.

[5] Zeyuan Allen Zhu, Zhenyu Liao, and Lorenzo Orecchia. Using
optimization to find maximum inscribed balls and minimum
enclosing balls. CoRR, abs/1412.1001, 2014.

[6] R. Alur, T. Dang, and F. Ivancic. Counterexample-
guided predicate abstraction of hybrid systems. Theoretical
Computer Science, 354(2):250–271, 2006.

[7] Rajeev Alur, Thao Dang, and Franjo Ivančić. Counter-
example guided predicate abstraction of hybrid systems. In
Tools and Algorithms for the Construction and Analysis of
Systems, pages 208–223. Springer, 2003.

[8] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and
Sriram Sankaranarayanan. S-taliro: A tool for temporal logic
falsification for hybrid systems. In Parosh Aziz Abdulla and
K. Rustan M. Leino, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 254–257, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[9] Stanley Bak and Parasara Sridhar Duggirala. Hylaa: A tool
for computing simulation-equivalent reachability for linear
systems. In Proceedings of the 20th International Conference
on Hybrid Systems: Computation and Control, pages 173–
178. ACM, 2017.

[10] Stanley Bak and Parasara Sridhar Duggirala. Rigorous
simulation-based analysis of linear hybrid systems. In
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 555–572.
Springer, 2017.

[11] Omar Beg, Ali Davoudi, and Taylor T. Johnson.
Reachability analysis of transformer-isolated DC-DC
converters. In ARCH17. 4th International Workshop on
Applied Verification of Continuous and Hybrid Systems,
collocated with Cyber-Physical Systems Week (CPSWeek) on
April 17, 2017 in Pittsburgh, PA, USA, pages 52–64, 2017.

14

Model Deepest Direction Depth Verification DCE Gen Robust RCE Gen

Counterexample Time (sec) Time (sec) Counterexample Time (sec)

Ball String [-1.05 0.0691] x2 = 1 6.0 0.25 0.00 [-0.956, 0.0] 0.01

[-1.045 -0.15] x2 = 1 7.0 0.33 0.00 [-1.019, -0.146] 0.08

[-1.035 -0.15] x1 = 1 0.8 0.38 0.01 [-0.956, 0.0] 0.24

Two Tanks [1.8995 1.0646] x2 = 1 0.1 15.24 0.02 [1.677, 1.016] 0.40

[2.406 1.0282] x2 = 1 0.3 17.78 0.10 [1.731, 1.003] 5.27

[2.225 1] x1 = 1 1.9 20.55 0.12 [2.326, 1.002] 11.50

Filtered [0.3 0.0987 0...] x6 = 1 0.566 7.07 0.08 [0.258 0.0867 0...] 2.17

Oscillator [0.3 0.0987 0...] x6 = 1 0.566 7.98 0.21 [0.258 0.0852 0...] 5.44

[0.3 0.0987 0...] x3 = 1 0.6187 8.20 0.22 [0.258 0.0826 0...] 11.12

Forward [0 0.4 0.4 0 0] x3 = 1 2.9056 7.40 0.01 [0.2 0.399 0.231 0 0] 0.40

Converter [0 0.4 0.2928 0 0] x2 = 1 0.3003 7.79 0.02 [0.2 0.396 0.346 0 0] 0.85

[0 0.4 0.4 0 0] x3 = 1 2.9056 8.84 0.02 [0.2 0.397 0.378 0 0] 1.36

Table 3

Deepest and Robust Counterexamples. The rows for each benchmark correspond to the size-variant (SU, MU and LU) of the
unsafe set shown in Table 1. Direction is the direction in which the depth of the counterexample is obtained. For instance, in
a 2-dimensional system (x, v), the direction x2 = 1 represents a vector [0, 1] ∈ R2. DCE Gen Time is the time Hylaa takes to
generate the deepest counterexample and RCE Gen Time is the time taken for generating the robust counterpart. As we first
obtain the LCE predicates to compute the robust counterexample, RCE Gen Time is inclusive of LCE Gen Time from Table 2.
Also, varying the unsafe set size may yield different deepest and robust counterexamples.

[12] Aaron R Bradley. Sat-based model checking without
unrolling. In Vmcai, volume 6538, pages 70–87. Springer,
2011.

[13] Aaron R Bradley. Ic3 and beyond: Incremental, inductive
verification. In CAV, page 4, 2012.

[14] Michael S Branicky. Multiple lyapunov functions and other
analysis tools for switched and hybrid systems. IEEE
Transactions on automatic control, 43(4):475–482, 1998.

[15] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer
Aided Verification, pages 154–169, 2000.

[16] E. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like
counterexamples in model checking. In lics, pages 19–29,
2002.

[17] Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh,
Olaf Stursberg, and Michael Theobald. Verification of
hybrid systems based on counterexample-guided abstraction
refinement. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 192–207. Springer, 2003.

[18] Jyotirmoy V. Deshmukh, Georgios E. Fainekos, James
Kapinski, Sriram Sankaranarayanan, Aditya Zutshi, and
Xiaoqing Jin. Beyond single shooting: Iterative approaches
to falsification. In American Control Conference, ACC 2015,
Chicago, IL, USA, July 1-3, 2015, page 4098, 2015.

[19] H. Dierks, S. Kupferschmid, and K.G. Larsen. Automatic
Abstraction Refinement for Timed Automata. In Proceedings
of the International Conference on Formal Modelling and
Analysis of Timed Systems, pages 114–129, 2007.

[20] Alexandre Donzé. Breach, A toolbox for verification and
parameter synthesis of hybrid systems. In Computer Aided
Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010., pages 167–170, 2010.

[21] Alexandre Donzé and Oded Maler. Robust satisfaction
of temporal logic over real-valued signals. In Formal
Modeling and Analysis of Timed Systems - 8th International
Conference, FORMATS 2010, Klosterneuburg, Austria,
September 8-10, 2010. Proceedings, pages 92–106, 2010.

[22] Parasara Sridhar Duggirala and Sayan Mitra. Abstraction-
refinement for stability. In Proceedings of 2nd IEEE/ACM
International Conference on Cyber-physical systems (ICCPS
2011), Chicago, IL, April 2011.

[23] Parasara Sridhar Duggirala and Mahesh Viswanathan.
Parsimonious, simulation based verification of linear systems.
In International Conference on Computer Aided Verification,
pages 477–494. Springer, 2016.

[24] Georgios E. Fainekos and George J. Pappas. Robustness
of temporal logic specifications for continuous-time signals.
TCS, 410, 2009.

[25] A. Fehnker, E.M. Clarke, S. Jha, and B. Krogh. Refining
Abstractions of Hybrid Systems using Counterexample
Fragments. In Proceedings of the International Conference
on Hybrid Systems Computation and Control, pages 242–257,
2005.

[26] Goran Frehse, Bruce H. Krogh, and Rob A. Rutenbar.
Verifying analog oscillator circuits using forward/backward
abstraction refinement. In Proceedings of the Conference on
Design, Automation and Test in Europe: Proceedings, DATE
’06, pages 257–262, 3001 Leuven, Belgium, 2006. European
Design and Automation Association.

[27] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott
Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,
Antoine Girard, Thao Dang, and Oded Maler. Spaceex:
Scalable verification of hybrid systems. In Proc. 23rd
International Conference on Computer Aided Verification

15

(CAV), LNCS. Springer, 2011.

[28] Shromona Ghosh, Dorsa Sadigh, Pierluigi Nuzzo, Vasumathi
Raman, Alexandre Donzé, Alberto L Sangiovanni-
Vincentelli, S Shankar Sastry, and Sanjit A Seshia.
Diagnosis and repair for synthesis from signal temporal
logic specifications. In Proceedings of the 19th International
Conference on Hybrid Systems: Computation and Control,
pages 31–40. ACM, 2016.

[29] Manish Goyal and Parasara Sridhar Duggirala. On
generating a variety of unsafe counterexamples for linear
dynamical systems. In Proc. 6th IFAC Conference on
Analysis and Design of Hybrid Systems, IFAC-PapersOnLine.
Elsevier, 2018.

[30] Ron Koymans. Specifying real-time properties with metric
temporal logic. Real-time systems, 2(4):255–299, 1990.

[31] Daniel Liberzon and A Stephen Morse. Basic problems in
stability and design of switched systems. IEEE Control
systems, 19(5):59–70, 1999.

[32] Hai Lin and Panos J Antsaklis. Stability and stabilizability
of switched linear systems: a survey of recent results. IEEE
Transactions on Automatic control, 54(2):308–322, 2009.

[33] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking
temporal properties of discrete, timed and continuous
behaviors. In Pillars of computer science, pages 475–505.
Springer, 2008.

[34] Kumpati S Narendra and Jeyendran Balakrishnan. A
common lyapunov function for stable lti systems with
commuting a-matrices. IEEE Transactions on automatic
control, 39(12):2469–2471, 1994.

[35] Truong Nghiem, Sriram Sankaranarayanan, Georgios
Fainekos, Franjo Ivancić, Aarti Gupta, and George J. Pappas.
Monte-carlo techniques for falsification of temporal properties
of non-linear hybrid systems. In Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation
and Control (HSCC 2010). ACM, 2010.

[36] Pavithra Prabhakar, Parasara Sridhar Duggirala, Sayan
Mitra, and Mahesh Viswanathan. Hybrid automata-based
cegar for rectangular hybrid systems. In Verification, Model
Checking, and Abstract Interpretation, pages 48–67. Springer,
2013.

[37] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy,
Richard M. Murray, Alberto L. Sangiovanni-Vincentelli, and
Sanjit A. Seshia. Model predictive control with signal
temporal logic specifications. In 53rd IEEE Conference on
Decision and Control, CDC 2014, Los Angeles, CA, USA,
December 15-17, 2014, pages 81–87, 2014.

[38] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh,
Richard M Murray, and Sanjit A Seshia. Reactive synthesis
from signal temporal logic specifications. In Proceedings
of the 18th International Conference on Hybrid Systems:
Computation and Control, pages 239–248. ACM, 2015.

[39] Stefan Ratschan and Zhikun She. Safety verification of
hybrid systems by constraint propagation based abstraction
refinement. In Hybrid Systems: Computation and Control,
pages 573–589. Springer, 2005.

[40] Sriram Sankaranarayanan and Georgios E. Fainekos.
Falsification of temporal properties of hybrid systems using
the cross-entropy method. In Hybrid Systems: Computation
and Control (part of CPS Week 2012), HSCC’12, Beijing,
China, April 17-19, 2012, pages 125–134, 2012.

[41] Sriram Sankaranarayanan and Ashish Tiwari. Relational
abstractions for continuous and hybrid systems. In Computer
Aided Verification, pages 686–702. Springer, 2011.

[42] Armando Solar-Lezama. Program synthesis by sketching.
University of California Berkeley, 2008.

[43] Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık,
Sanjit A. Seshia, and Vijay A. Saraswat. Combinatorial
sketching for finite programs. In Proceedings of the
12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS,
San Jose, CA, USA, pages 404–415, 2006.

[44] Kazuo Tanaka, Tsuyoshi Hori, and Hua O Wang. A multiple
lyapunov function approach to stabilization of fuzzy control
systems. IEEE Transactions on fuzzy systems, 11(4):582–
589, 2003.

[45] Ashish Tiwari. Approximate reachability for linear systems.
In International Workshop on Hybrid Systems: Computation
and Control, pages 514–525. Springer, 2003.

[46] Ashish Tiwari. Hybridsal relational abstracter. In Computer
Aided Verification, pages 725–731. Springer, 2012.

[47] Yulai Xie, Jack Snoeyink, and Jinhui Xu. Efficient
algorithm for approximating maximum inscribed sphere in
high dimensional polytope. In Proceedings of the Twenty-
second Annual Symposium on Computational Geometry,
SCG ’06, pages 21–29, New York, NY, USA, 2006. ACM.

[48] Aditya Zutshi, Jyotirmoy V Deshmukh, Sriram
Sankaranarayanan, and James Kapinski. Multiple shooting,
cegar-based falsification for hybrid systems. In Proceedings
of the 14th International Conference on Embedded Software,
page 5. ACM, 2014.

16

