Generating Longest Counterexample: At the Cross-roads of MILP and SMT

Manish Goyal¹, David Bergman², and Parasara Sridhar Duggirala¹ ¹Department of Computer Science, University of North Carolina at Chapel Hill ²School of Business, University of Connecticut, Storrs American Control Conference (ACC), July 2020

Outline

• Background

Verification, falsification and control

• Introduction

Longest counterexample

• Preliminaries

Simulation-equivalent analysis, reachable set computation

Methodology

- Frameworks
 - MILP-based and SMT-based

Verification Analogous to Reachability

UCONN

Verification Analogous to Reachability

UCONN

Hybrid Automaton

- Locations
- Flow
- Invariant
- Transitions
- Guard Condition
- Initial Condition

SpaceEx*: Filtered Oscillator**

*G. Frehse et al, Spaceex: Scalable verification of hybrid systems. CAV 2011. **https://ths.rwth-aachen.de/research/projects/hypro/filtered-oscillator/

UNC-CS **UCONN**

SpaceEx: Filtered Oscillator

UCONN

UNC-CS

 $x \ge 0.55$

Falsification

Falsification

UCONN

UNC-CS

*Y. Annapureddy et al, S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems. TACAS 2011.

6

Control Stability

Control Stability

Safety Spec

Motivation

Outline

- Background
 - Introduction
 - Preliminaries
 - Methodology
 - Frameworks

UCONN

Results

Introduction

Introduction

Outline

- Background
- Introduction
 - Preliminaries
 - Methodology
 - Frameworks

UCONN

Results

Simulation-equivalent Analysis

For a dynamical system *H* with affine dynamics $\dot{x} = Ax + B$, the simulation starting from a state x_0 is computed as a sequence $\tau_H(x_0, h)$ of states at discrete time steps with step size *h*.

In the sequence $\tau_H(x_0, h) = x_0, x_1, x_2, ...,$ each pair (x_i, x_{i+1}) corresponds to a continuous trajectory starting at x_i and reaching x_{i+1} after h time units.

UNC-CS **UCONN**

Star Representation

A generalized star Θ is a tuple $\langle c, V, P \rangle$ where $c \in \mathbb{R}^n$ is called the *center*, $V = \{v_1, v_2, \ldots, v_m\}$ is a set of $m \ (\leq n)$ vectors in \mathbb{R}^n called the *basis vectors*, and $P : \mathbb{R}^n \to \{\top, \bot\}$ is a predicate, defined as

$$\llbracket \Theta \rrbracket = \{ x \mid \exists \bar{\alpha} = [\alpha_1, \dots, \alpha_m]^T \text{ such that } x = c + \sum_{i=1}^n \alpha_i v_i \text{ and } P(\bar{\alpha}) = \top \}$$

Variables

- Orthonormal: x'_1 and x'_2
- Basis: α_1 and α_2

Reachable Set Computation

 $\Theta \triangleq \langle c, V, P \rangle$ $P \triangleq |\alpha_1| \le 1 \land |\alpha_2| \le 1$

Represented using simulations and generalized star

The predicate P remains the same

Simulation-equivalent Analysis

UCONN

UNC-CS

13

Outline

- Background
- Introduction
- Preliminaries
 - Methodology
 - Frameworks

UCONN

Results

UNC-CS **UCONN**

UCONN

UCONN

UCONN

UNC-CS

Computationally hard!

Computationally hard!

Outline

- Background
- Introduction
- Preliminaries
- Methodology
 - Frameworks

UCONN

Results

MILP-based Framework

UCONN

```
for each path \Gamma in ReachTree do
      \Pi \triangleq \{ \mathbb{S}_i | \mathbb{S}_i \in \Gamma, \mathbb{S}_i \cap U \neq \emptyset \};\
       Introduce |\Pi| decision variables z_1, z_2 \dots z_{|\Pi|};
       \mathcal{C}_{\Pi} \leftarrow \emptyset;
      Transform U into \langle c^i, V^i, P_U^i \rangle where
         \Pi[i] \triangleq \langle c^i, V^i, P^i \rangle;
      \mathcal{C}_{\Pi} \leftarrow \bigwedge_{i=1}^{|\Pi|} \bigwedge_{c \in P_{II}^{i} \wedge P^{i}} c + M(1-z_{i});
      length_{\Pi} \leftarrow max \sum_{i} z_{i} while C_{\Pi} is feasible;
      if length_{\Pi} > length_{max} then
            length_{max} \leftarrow length_{\Pi}; \\ \bar{\alpha}_{len} \leftarrow feasible(\mathcal{C}_{\Pi});
       end
end
```

SMT-based Framework

UCONN

UNC-CS

for each path Γ in ReachTree do $\Pi \stackrel{\Delta}{=} \{ \mathbb{S}_i | \mathbb{S}_i \in \Gamma, \mathbb{S}_i \cap U \neq \emptyset \};$ Introduce $|\Pi|$ binary variables $b_1, b_2 \dots b_{|\Pi|}$; $\mathcal{C}_{\Pi} \leftarrow \triangle_{i-1}^{|\Pi|} b_i;$ Soft constraints Transform U into $\langle c^i, V^i, P_U^i \rangle$ where $\Pi[i] \stackrel{\Delta}{=} \langle c^i, V^i, P^i \rangle;$ $\mathcal{C}_{\Pi} \leftarrow C_{\Pi} \bigwedge_{i=1}^{|\Pi|} (b_i = (P_U^i \wedge P^i));$ Hard constraints $length_{\Pi} \leftarrow Optimize_{SMT}(\mathcal{C}_{\Pi})$ while C_{Π} is feasible: if $length_{\Pi} > length_{max}$ then $length_{max} \leftarrow length_{\Pi}; \\ \bar{\alpha}_{len} \leftarrow feasible(\mathcal{C}_{\Pi});$ end end

Outline

- Background
- Introduction
- Preliminaries
- Methodology
- ✓ Frameworks

UCONN

Results

Adaptive Cruise Control*

$$\begin{split} \dot{s} &= (v_f - v) \\ \dot{v} &= a \\ \dot{a} &= g_1 a + g_2 (v - v_f) + g_3 (s - (v + 10)) \end{split}$$

v_f : leading car's velocity *v* : follower's speed *a*: follower's acceleration *s*: distance

*A. Tiwari, Approximate reachability for linear systems. HSCC, 2003

Adaptive Cruise Control*

$$\dot{s} = (v_f - v)$$

$$\dot{v} = a$$

$$\dot{a} = g_1 a + g_2 (v - v_f) + g_3 (s - (v + 10))$$

v_{f} : leading car's velocity	Initial Values	Controller 1	Controller 2
v: follower's speed	<i>s</i> ∈ [2, 5]		
<i>a</i> : follower's acceleration	<i>v</i> ∈ [18, 22]	$g_1 = -3$	$g_1 = -1$
s: distance	$v_f = 20$	$g_2 = -3$	$g_2 = -3$
	$a \in [-1, 1]$	$g_3 = 1$	$g_3 = 1$

*A. Tiwari, Approximate reachability for linear systems. HSCC, 2003

UCONN

UNC-CS

$$\begin{split} \dot{s} &= (v_f - v) \\ \dot{v} &= a \\ \dot{a} &= g_1 a + g_2 (v - v_f) + g_3 (s - (v + 10)) \end{split}$$

*M. Goyal, P. S. Duggirala, Extracting counterexamples induced by safety violation in linear hybrid systems, Automatica, 07/2020

18

UNC-CS **UCONN**

Model	Dims,	Actual Inter.	LCE Duration		Counterexample		Verification	on LCE Gen. Time	
	Modes	Duration	MILP	SMT	MILP	SMT	Time (sec)	MILP	SMT
Damped		[5 10]	[5 9]	[5 9]					
Oscillator 1	2, 1	[34 44]	[35 44]	[35 44]	[-5.28 0.764]	[-5.321 0.865]	0.44	0.04	0.51
		[66 74]	[66 73]	[66 73]					
Damped		[3 10]	[3 10]	[3 9]					
Oscillator 2	2, 1	[29 49]	[30 49]	[29 49]	[-5.0 0.398]	[-5.0 0.606]	0.59	0.04	0.55
		[59_100]	[59 100]	[<u>59 100]</u>	-				
Buck		cl1: [13 21]	[13 21]	[13 21]	il = 1.0	il = 0.6892			
Converter	4, 6	op1: [22 50]	[22 50]	[22 50]	vc = 0	vc = 0	0.66	0.04	0.60
		cl2: [51]	[51]	[51]	t = 0, gt = 0	t=0, gt=0			
Filtered		loc3: [3 5]	[5]	[5]					
Oscillator	34, 4	loc3: [7 21]	[7 21]	[7 21]	[0.2069 0.07 0]	[0.205 0.07 0]	37	2.14	49
		loc4: [26]	[26]	[26]					

Takeaways

- Use the artifacts from verification
- Search in the space of basis variables defining the initial set
- Longest counterexample may not be unique
- MILP-based framework is faster
- SMT-based formalism provides guarantees

Future work

- Explore BDD-based optimization techniques
- Use various counterexamples in controller synthesis

Generating Longest Counterexample: On the Cross-roads of MILP and SMT

manish.goyal@cs.unc.edu david.bergman@uconn.edu psd@cs.unc.edu

UNC-CS **UCONN**

UNC-CS **UCONN**

What to do!

Evaluation*: HyLaa

UCONN

UNC-CS

Buck Converter

*S. Bak and P. S. Duggirala, Hylaa: A tool for computing simulation-equivalent reachability for linear systems. HSCC 2017