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Abstract— We present a technique for obtaining the longest
counterexample – the execution that stays in the unsafe set
for the longest (not necessarily contiguous) time, for a safety
specification of linear hybrid systems. Given that hybrid systems
are infinite state systems, the number of counterexamples for
safety violations are potentially infinite. Therefore, searching
for the right counterexample is very challenging. We employ
two frameworks for solving this problem: first is an Mixed
Integer Linear Program (MILP) formulation and second is
to encode counterexamples using Satisfiability Module Theory
(SMT) solvers. We evaluate these frameworks on several linear
hybrid systems with up to 30 dimensions.

I. INTRODUCTION

Counterexamples play a critical role in the domain of
model checking. Perhaps most importantly, they provide
intuition to the system designer regarding the reason why
the system does not satisfy a specification. The intro-
duction of Counter-Example-Guided-Abstraction-Refinement
(CEGAR) [10] changed the role of counterexamples from a
mere feature to an algorithmic tool, where the counterexam-
ple acts as a primary guide to restrict the space of possible
refinements. Further, since the state space is uncountable in
hybrid systems, providing an important counterexample can
greatly reduce the burden of the system designer and provide
a more detailed insight into system behavior.

Designing controllers for hybrid systems that satisfy sta-
bility and safety specification is challenging. For proving
stability of hybrid systems, one has to come up with ei-
ther a common [27], [25] or multiple [9], [37] Lyapunov
function(s). One can then use a safety verification tool for
checking that safety specification is satisfied. Unlike stability,
the safety specification of a system would change based on
operating condition. For example, a hybrid controller that is
originally safe can become unsafe if the safety specification
is tightened. In such circumstances, counterexamples provide
a unique insight into the behavior of the hybrid system.
Additionally, metrics over counterexamples can be used
as a proxy for comparing performance of different hybrid
controllers. Such metrics can also be useful when the cost
function for designing optimal control is non-convex.

Safety specification is satisfied if all trajectories of a sys-
tem avoid the set of states labelled as unsafe. Any trajectory
that encounters an unsafe state is called a counterexample. In
the verification of hybrid systems domain, a few approaches
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have been developed for generating counterexamples for hy-
brid systems with linear dynamics. This is primarily because
most model checking approaches in affine hybrid system
verification focus on computing over-approximation of the
reachable set and hence establish the safety specification.
Our goal to generate counterexamples stems from the desire
to provide intuition to the control system designer during
the process of controller synthesis. To a control designer,
not all counterexamples for safety violation are equivalent.
For example, the control designer would want to observe the
counterexample trajectory that stays for the longest duration
in the unsafe set. Currently, none of the existing model
checkers are equipped with a technique for generating such
counterexamples.

Our approach of generating counterexamples builds on the
prior work of computing a simulation-equivalent reachable
set [6], which includes the set of states encountered by
a simulation algorithm for hybrid systems with linear dy-
namics. The reachable set computation and counterexample
generation algorithms leverage the superposition principle
and the generalized star representation [6], [17]. Further, the
algorithm presented reuses the artifacts generated during the
model checking process.

The contribution of this paper is twofold. First, we pro-
vide a new definition for the longest counterexample that
generalizes other variants [22], and extend it to linear hybrid
systems. Second, we provide two different ways to extract
such counterexamples from safety verification artifacts; one
based on Satisfiability Modulo Theory (SMT) solvers and
the other uses Mixed Integer Linear Programming (MILP)
solvers. Additionally, we compare and contrast the perfor-
mance of these approaches on multiple benchmarks. To the
best of our knowledge, such a comparison between MILP
and SMT for verification has not previously been conducted.
We believe that these two methods presented can be used for
extracting other type of counterexamples as well.

II. RELATED WORK

Generating specific type of counterexamples has been an
active research topic in model checking. In one of the recent
works in this area [22], the authors provide techniques to
generate longest contiguous and deepest counterexamples for
linear dynamical systems. In the domain of hybrid systems,
many CEGAR based approaches pursue various notions of
counterexamples [19], [13], [3], [30], [16], [33], [34]. Most
of them are restricted to the domain of timed and rectangular
hybrid systems. The current state-of-the-art tools such as
SpaceEx [20] and HyLAA [5] spit out the counterexample



that violates the safety specification at the earliest time and
at the latest time, respectively.

Counterexamples also play an important role in falsifi-
cation techniques [18], [15]. Instead of proving that the
specification is satisfied, falsification tools like S-Taliro [4]
and Breach [14] search for an execution that violates the
specification. Given a specification of Cyber-Physical System
in Metric Temporal Logic (MTL) [24] or Signal Temporal
Logic (STL) [26], falsification tools employ a variety of tech-
niques [28], [2], [38], [12] for discovering an execution that
violates the specification. Unlike the counterexamples given
in this paper, the counterexamples returned by falsification
techniques need not be the longest counterexamples.

In the domain of automated synthesis, the Counterexample
Guided Inductive Synthesis (CEGIS) framework [36], as the
name suggests, leverages counterexamples from verification
for synthesis. The approach presented in this paper bears
some resemblance to the CEGIS-based approach described
in [32], [31]. Here, the verification condition that the system
satisfies an STL [32] specification is encoded as an MILP. If
the specification is violated, one can investigate the results
of the MILP to obtain counterexamples. In [21], the authors
extend the previous work and provide an intuition for the
system failing to satisfy the specification. These work, in
contrast to the presented work, do not compute reachable set
for generating the counterexamples.

III. PRELIMINARIES

States and vectors are elements in Rn are denoted as x and
v. The inner product of two vectors, v1 and v2, is denoted
by vT1 v2. Given a sequence seq = s1, s2, . . ., the ith element
in the sequence is denoted as seq[i]. Given a finite set S,
we denote its cardinality as |S|. In this work, we use the
following mathematical notation of a linear hybrid system.

Definition 1: A linear hybrid system H is defined to be a
tuple 〈Loc,X, F low, Inv, Trans,Guard〉 where:
Loc is a finite set of locations (also called modes).
X ⊆ Rn is the state space of the behaviors.
Flow : Loc → AffineDeq(X) assigns an affine differential

equation ẋ = Alx + Bl for location l of the hybrid
automaton.

Inv : Loc→ 2R
n

assigns an invariant set for each location
of the hybrid system.

Trans ⊆ Loc× Loc is the set of discrete transitions.
Guard : Trans → 2R

n

defines the set of states where a
discrete transition is enabled.

For a linear hybrid system, the invariants and guards are
given as the conjunction of linear constraints.

The initial set of states Θ is a subset of Loc × 2R
n

,
where second element in the pair is a conjunction of linear
constraints. An initial state q0 is a pair (Loc0, x0), such that
x0 ∈ X , and (Loc0, x0) ∈ Θ. The unsafe set of states is a
subset of state space, U ⊆ Rn.

Definition 2: Given a hybrid system and an initial set of
states Θ, an execution of the hybrid system is a sequence
of trajectories and transitions ξ0a1ξ1a2 . . . such that (i) the
first state of ξ0 denoted as q0 is in the initial set, i.e.,

q0 = (Loc0, x0) ∈ Θ, (ii) each ξi is the solution of the
differential equation of the corresponding location Loci, (iii)
all the states in the trajectory ξi respect the invariant of the
location Loci, and (iv) the state of the trajectory before each
transition ai satisfies Guard(ai).

The set of states encountered by all executions that con-
form to the above semantics is called the reachable set. The
closed form expression for the trajectory in each mode is
given as ξi(t) = eALoci

tξi(0)+
∫ t

0
eALoci

(t−µ)BLocidµ where
ALoci and BLoci define the affine dynamics of the mode
Loci. As the closed form expression of an execution involves
matrix exponential, typically a simulation engine is used to
generate simulation as a proxy for such execution. For our
work, we use the simulation engine that is described in [6].
This simulation engine also accounts for non-determinism
induced due to discrete transitions. For a unit time (also
called the step size), the hybrid system simulation starting
from state q0 is denoted as ξH(q0). We present the definition
here for completeness.

Definition 3: A sequence ξH(q0) = q0, q1, q2, . . ., where
each qi = (Loci, xi), is a (q0)-simulation of the hybrid
system H with initial set Θ if and only if q0 ∈ Θ and
each pair (qi, qi+1) corresponds to either: (i) a continuous
trajectory in location Loci with Loci = Loci+1 such that
a trajectory starting from xi would reach xi+1 after exactly
unit time with xi ∈ Inv(Loci), or (ii) a discrete transition
from Loci to Loci+1 (with Loci−1 = Loci) where ∃a ∈
Trans such that xi = xi+1, xi ∈ Guard(a) and xi+1 ∈
Inv(Loci+1). Bounded-time variants of these simulations,
with time bound T , are called (q0, T )-simulations. If the
pair (qi, qi+1) corresponds to a continuous trajectory, qi+1 is
called the continuous successor of qi, otherwise qi+1 is the
discrete successor of qi.

While talking about the continuous or discrete behaviors
of simulations, we abuse notation and use xi, the continuous
component of the state instead of qi.
Observations On Simulation Algorithm: We would like
to note that our simulation algorithm has three features.
First, the discrete transitions happen only at time instances
that are multiples of the step size. Second, the invariant
is also checked at these discrete instances of time. Third,
the invariant can be violated at the instance of taking
the discrete transition. As a result, the simulations never
encounter zeno executions. Industrial grade simulation en-
gine tools like Simulink/Stateflow deploy similar simulation
algorithms. Our rationale for picking this specific semantics
for simulation engine is provided in [6].

We now define the safety property for simulations and for
a set of initial states (from [6]).

Definition 4: A given simulation ξH(q0) is said to
be safe with respect to an unsafe set U if and only if
∀qi = (Loci, xi) ∈ ξH(q0), xi /∈ U . Safety for bounded
time simulations are defined similarly. We drop the subscript
H from ξH when it is clear from the context.

Definition 5: A hybrid system H with initial set Θ, time
bound T , and unsafe set U is said to be safe with respect



to its simulations if all simulations starting from Θ for
bounded time T are safe.

Definition 6: Given a hybrid system H with initial set Θ,
time bound T , and unsafe set U , a counterexample ξ is said
to be of length l if and only if ∃X ∆

= {xi|xi ∈ ξ ∧ xi ∈ U}
such that |X| ≥ l. A counterexample of maximum length is
called the longest counterexample.

Notice that there need not be a unique counterexample of
unique length. Therefore, any counterexample that has the
maximum length can be considered a longest counterexam-
ple. For computing these counterexamples of interest, we
use the simulation equivalent reachable set approach that is
presented in [6], [17].

A. Superposition principle, Generalized Stars, and
Simulation-equivalent Reachable Set

We now present three main aspects of the reachable set
computation (from [6]). First is the superposition principle,
second is the generalized star representation, and finally,
the reachable set algorithm for a single mode and the
simulation-equivalent reachable set that is returned by the
computeSimEquivReach algorithm in [6].

Remark 1: Given any initial state x0, vectors v1, . . . , vm
where vi ∈ Rn, scalars α1, . . . , αm, the trajectories of linear
differential equations in a given location l always satisfy

ξ(x0+Σmi=1αivi, t) = ξ(x0, t)+Σmi=1αi(ξ(x0+vi, t)−ξ(x0, t))

We exploit the superposition property of linear systems
in order to compute the simulation-equivalent reachable set
for a linear hybrid system. Before describing the algorithm
for computing the reachable set, we introduce the data
structure called a generalized star that is used to represent
the reachable set of states.

Definition 7: A generalized star (or simply star) S is a
tuple 〈c, V, P 〉 where c ∈ Rn is called the center, V =
{v1, v2, . . . , vn} is a set of n vectors in Rn called the basis
vectors, and P : Rn → {>,⊥} is a predicate.

A generalized star S defines a subset of Rn as follows.

[[S]]
∆
= {x | ∃ᾱ = [α1, . . . , αm]T such that
x = c+ Σmi=1αivi and P (ᾱ) = >}

Sometimes we will refer to both S and [[S]] as S. Additionally,
we refer to the variables in ᾱ as basis variables and the
variables x as orthonormal variables. Given a valuation of the
basis variables ᾱ, the corresponding orthonormal variables
are denoted as x = c+ V × ᾱ.
Similar to [6], we consider predicates P which are conjunc-
tions of linear constraints. This is primarily because linear
programming is very efficient when compared to nonlinear
arithmetic.
Reachable Set Computation For Linear Dynamical Sys-
tems Using Simulations: We briefly describe the algorithm
for computing a simulation-equivalent reachable set for a

single mode. This is primarily done to present some crucial
observations which will later be used in the algorithms for
generating counterexamples. Longer explanation and proofs
for these observations and algorithms are available in prior
work [6], [17].

At its crux, the algorithm exploits the superposition prin-
ciple of linear systems and computes the reachable states
using a generalized star representation. For an n-dimensional
system, this algorithm requires at most n + 1 simulations.
Given an initial set Θ

∆
= 〈c, V, P 〉 with V = {v1, v2, . . . , vn},

the algorithm performs a simulation starting from c (denoted
as ξ(c, 0)), and ∀1 ≤ j ≤ n, performs a simulation from
c + vj (denoted as ξ(c + vj , 0)). For a given time instance
i, the reachable set denoted as Reachi(Θ) is defined as
〈ci, Vi, P 〉 where ci = ξ(c, i) and Vi = 〈v′1, v′2, . . . , v′m〉
where ∀1 ≤ j ≤ m, v′j = ξ(c+vj , i)−ξ(c, i). An illustration
of reachable set computation is shown in Fig. 1. Notice that
the predicate that defines the reachable set does not change.

Fig. 1: Illustration of the reachable set using sample simula-
tions and generalized star representation.

Simulation-Equivalent Reachable Set for Hybrid Systems
with Linear Dynamics: In [6], the algorithm presented
in [17] has been extended to compute simulation equivalent
reachable set for hybrid systems that accommodates for the
invariants in each mode and the guard transitions for discrete
mode jumps. For generating counterexamples, we use the
fully de-aggregated version of the reachable set computation
algorithm, denoted as computeSimEquivReach, where the
stars in the reachable set are organized as a tree structure
as illustrated in Fig. 2. With the initial set as its root, the
elements of the tree represent the reachable set computed at
discrete time instances. Each node (except the root) is either
a continuous or a discrete successor of its parent.

Remark 2: Given a star Si
∆
= 〈ci, Vi, Pi〉 in ReachTree

and its successor (either discrete or continuous) Si+1
∆
=

〈ci+1, Vi+1, Pi+1〉, observe that one has to either perform
intersection with the invariant or with the guards for obtain-
ing the predicate Pi+1 so that Pi+1 ⊆ Pi. Hence, given a
valuation of ᾱ such that Pi+1(ᾱ) = >, it is true that for
all the stars that are the parents of Pi+1, the valuation of
ᾱ is contained in the predicate. Additionally, one can use
this valuation of basis variables to generate the trace starting
from the initial set Θ to Pi+1. We call the procedure that
generates this execution getExecution(ᾱ, ReachTree).



Fig. 2: ReachTree for a hybrid system with 3 locations - A,
B, and C. Discrete transitions are shown in red, continuous
transitions in green, and dashed transitions denote that there
may be a transition. This snapshot of the ReachTree has 3
paths, < A1, A2, A3, A4 >,< A1, A2, B1, B2, B3, ... > and
< A1, A2, A3, C1, C2, ... >.

A side effect of the above observation is that all the
trajectories that reach the star Si+1

∆
= 〈ci+1, Vi+1, Pi+1〉

would originate from the subset of the initial set Θ′
∆
=

〈c0, V0, Pi+1〉.

IV. LONGEST COUNTEREXAMPLE

In this section, we formally state the longest counterex-
ample problem and describe the underlying technique used
for obtaining these counterexamples. For this purpose, we
leverage the generalized star representation and the property
of the reachable set that is provided in Remark 2.

A. Problem Statement

Definition 8: For a set U ⊆ Rn, an indicator function

1U : Loc× Rn → {0, 1}

is defined as

1U (q) =

{
1, if x ∈ U
0, otherwise

where q = (loc, x) and loc ∈ Loc.
Problem Given the set of initial states Θ, the set of unsafe
states U and its indicator function 1U , compute

arg max
q0∈Θ

T−1∑
t=0

1U (ξ(q0, t))

where ξ is the system simulation from Definition 3. For a
simulation, the optimization problem aims to maximize the
number of overlaps with the unsafe set.

B. Constraint Propagation

We illustrate the problem of finding the longest coun-
terexample through an illustration in Fig. 3. Consider five
consecutive stars, S1,S2,S3,S4 and S5 in the reachable set
have overlap with the unsafe set as shown. If one picks the
state e1 ∈ S1, then some of the post states of e1, denoted as
e2 and e5 do not lie in the unsafe set, while e3 and e4 lie

in the unsafe set. Similarly, if one picks the state l1 ∈ S1 as
shown, then the post states l2, l4 and l5 lie in the unsafe set
but l3 does not. Thus, the execution starting from l1 provides
a longer counterexample than the execution starting from e1.

Fig. 3: Illustration of the longest counterexample.

The key insight behind the generation of longest coun-
terexample is that one has to select the appropriate state
such that its corresponding execution has the maximum
number of overlaps with the unsafe set. In this instance, any
state x1 ∈ S1 ∩ U , with its successors x2, x4, x5 such that
x2 ∈ S2 ∩ U , x4 ∈ S4 ∩ U and x5 ∈ S5 ∩ U may be
an appropriate choice. For finding such a state, we perform
constraint propagation (similar to the invariant constraint
propagation in [6]). That is, we identify the constraints C on
the basis variables (ᾱ) such that ∀ᾱ such that C(ᾱ) = >, we
have, x1 = c1 +V × ᾱ ∈ S1∩U , x2 = c2 +V2× ᾱ ∈ S2∩U ,
x4 = c4 +V4× ᾱ ∈ S4∩U , and x5 = c5 +V5× ᾱ ∈ S5∩U .

To extract these set of constraints, we convert the unsafe
set U into the center and basis vectors of each of the
stars S1,S2,S4 and S5. Thus, Si ∩ U = 〈ci, Vi, Pi ∧ Qi〉.
From Remark 2, we know that the set of states that reach
〈ci, Vi, Pi ∧Qi〉 originate from 〈c0, V0, Pi ∧Qi〉. Hence, the
set of states that would visit the maximum intersections of
the unsafe set should originate from 〈c0, V0, P1 ∧Q1 ∧P2 ∧
Q2 ∧ P4 ∧Q4 ∧ P5 ∧Q5〉. Further, if the set of constraints
P1∧Q1∧P2∧Q2∧P4∧Q4∧P5∧Q5 is satisfiable, then the
corresponding trajectory corresponding to the basis variables
that satisfy these constraints visits the unsafe set in maximum
number of stars i.e., S1,S2,S4 and S5.

V. COMPUTATIONAL FRAMEWORKS

A. MILP-based Framework

We formulate an MILP model for finding the longest coun-
terexample as follows. For a given path Γ in the ReachTree,
let Π be the set of stars Si overlapping with the unsafe set U ,
and α ∈ Rn be our basis variables such that i = 1, . . . , |Π|
index the elements in Π. Additionally, let Ci = Qi∧Pi be the
set of linear constraints that need to be satisfied in order for
Si to be overlapping with the unsafe set. We can write each
of these constraints as

(
ai,k
)T
α ≤ b, for i = 1, . . . , |Π|, and

k = 1, . . . , |Ci|. We therefore have:

max

|Π|∑
i=1

zi

s.t.
(
ai,k
)T
α ≤ b+M (1− zi) , i = 1, . . . , |Π|,

k = 1, . . . , |Ci|,
zi ∈ {0, 1}, i = 1, . . . , |Π|.



The zi variables indicate if all constraints in Ci are satisfied.
Note that since this is a maximization problem, zi will be 1
if it can, but the constraints prohibit it from being 1 if any
one of constraints is not satisfied. Also note that this model
requires the definition of an appropriate M , which in this
instance can be set to

max
i=1,...,|Π|

max
k=1,...,|Ci|


n∑
j=1

∣∣∣ai,kj ∣∣∣
 ,

noting that this can be refined if needed for each specific i
and k. The formal procedure to find the longest counterexam-
ple using above MILP framework is provided in Algorithm 1.

input : Initial Set Θ, the simulation equivalent
reachable tree ReachTree and unsafe set U

output: Trace ce that spends longest time in U
1 lengthmax ← −∞; ce← ⊥;
2 for each path Γ in ReachTree do
3 Π

∆
= {Si|Si ∈ Γ,Si ∩ U 6= ∅};

4 Introduce |Π| decision variables z1, z2 . . . z|Π|;
5 CΠ ← ∅;
6 Transform U into 〈ci, Vi, Qi〉 where

Π[i]
∆
= 〈ci, Vi, Pi〉;

7 CΠ ←
∧|Π|
i=1

∧
c∈Qi∧Pi

c+M(1− zi);
8 lengthΠ ← max

∑
i zi while CΠ is feasible;

9 if lengthΠ > lengthmax then
10 lengthmax ← lengthΠ;
11 ᾱlen ← feasible(CΠ);
12 end
13 end
14 if lengthmax 6= −∞ then
15 ce← getExecution(ᾱlen, ReachTree);
16 end
17 return ce;

Algorithm 1: MILP-based Algorithm for computing the
longest counterexample.

B. SMT-based Framework

An SMT solver primarily answers the decision problem
of whether a given logical formula is satisfiable i.e., if there
exists some assignment to variables included in the formula
such that this assignment makes the logical formula evaluate
to true. It either provides a satisfying assignment or declares
that the formula is unsatisfiable. Certain SMT solvers also
allow to encode linear optimization problems where the
objective is to optimize a cost function while satisfying a
given set of constraints. For this purpose, the solver provides
the flexibility to specify constraints to be either soft or hard.
A hard constraint is required to be asserted, whereas a
soft constraint can be either satisfied or violated. Since a
penalty is associated with the violation of soft constraint,
the optimizer targets to minimize or maximize the overall
penalty depending on the objective function. The approach to
compute the longest counterexample using SMT is explained
in Algorithm 2.

input : Initial Set Θ, the simulation equivalent
reachable tree ReachTree and unsafe set U

output: Trace ce that spends longest time in U
1 lengthmax ← −∞; ce← ⊥;
2 for each path Γ in ReachTree do
3 Π

∆
= {Si|Si ∈ Γ,Si ∩ U 6= ∅};

4 Introduce |Π| binary variables b1, b2 . . . b|Π|;
5 CΠ ←4|Π|i=1bi;
6 Transform U into 〈ci, Vi, Qi〉 where

Π[i]
∆
= 〈ci, Vi, Pi〉;

7 CΠ ← CΠ

∧|Π|
i=1(bi == (Qi ∧ Pi));

8 lengthΠ ← OptimizeSMT (CΠ) while CΠ is
feasible;

9 if lengthΠ > lengthmax then
10 lengthmax ← lengthΠ;
11 ᾱlen ← feasible(CΠ);
12 end
13 end
14 if lengthmax 6= −∞ then
15 ce← getExecution(ᾱlen, ReachTree);
16 end
17 return ce;

Algorithm 2: SMT-based Algorithm that computes the
longest counterexample. 4 designates soft constraints.

VI. EVALUATION

For ReachTree computation, we use a Python-based ver-
ification tool HyLAA (in de-aggregation mode) which uses
scipy’s odeint for simulating the differential equa-
tions, GLPK for linear programming, and numpy for matrix
operations. The measurements were performed on a system
running Ubuntu 18.04 with an 2.20GHz Intel Core i7-8750H
CPU with 12 cores and 32 GB RAM. We use Z3Py [11]
as an SMT solver, and Gurobi Optimizer (called from C++)
for solving MILPs [23].

The benchmarks for our study are taken from [1], [29]
and [35]. As stated earlier, one can characterize various
regions in the state space using specifications. We label that
subspace as unsafe for our experiments. The designer can
specify a region of interest in the same manner, and the
longest execution obtained can be used to evaluate controllers
with respect to that particular region/specification. Fig. 4
illustrates the experimental result for Buck Converter.

The evaluations on various benchmarks are provided in
Table I. The counterexamples given are the valuation of basis
variables for the longest counterexample. The ReachTree
computed for a linear hybrid system can have multiple paths
due to discrete transitions. Furthermore, each path may have
multiple nodes overlapping with the unsafe set. As shown
in the table, counterexample generation using SMT takes
significantly more time than the time taken by MILP-based
framework. Verification time of some benchmarks such as
Damped Oscillator and Ball String is comparable
to the SMT-based longest counterexample generation time.



Model Dims, Actual Inter. LCE Duration Counterexample Verification LCE Gen. Time
Modes Duration MILP SMT MILP SMT Time (sec) MILP SMT

Damped [5 10] [5 9] [5 9]
Oscillator 1 2, 1 [34 44] [35 44] [35 44] [-5.28 0.764] [-5.321 0.865] 0.44 0.04 0.51

[66 74] [66 73] [66 73]
Damped [3 10] [3 10] [3 9]

Oscillator 2 2, 1 [29 49] [30 49] [29 49] [-5.0 0.398] [-5.0 0.606] 0.59 0.04 0.55
[59 100] [59 100] [59 100]

Oscillating [18 21] [18 21] x1 = −0.0932 x1 = 0.0385
Particle 3, 1 [17 29] [24 28] [26 29] x2 = 0.8193 x2 = 0.8877 0.33 0.04 0.43

[51 58] [52 56] [52 57] x3 = 0.9 x3 = 0.9
Vehicle x11 = 0.96

Platoon 5 15, 1 [27 100] [27 100] [27 100] xi ∈ {0.9, 1.1} xi ∈ {0.9, 1.1} 8.57 0.37 58
Vehicle x23 = 1.029 x11 = 1.0

Platoon 10 30, 1 [36 100] [36 100] [36 100] xi ∈ {0.9, 1.1} xi ∈ {0.9, 1.1} 31 0.91 360
Ball ext: [12 13] [12 13]

String 2, 2 ext: [15 20] [18 20] [16 20] [-1.008 -0.15] [-0.95 -0.15] 0.31 0.03 0.3
freefall: [21 29] [21 28] [21 24]

Two loc3: [16 28]
Tanks 2, 4 loc1: [33 78] [34 77] [35 78] [2.399 1.079] [2.407 1.077] 19.13 0.50 6.51
Buck cl1: [13 21] [13 21] [13 21] il = 1.0 il = 0.6892

Converter 4, 6 op1: [22 50] [22 50] [22 50] vc = 0 vc = 0 0.66 0.04 0.60
cl2: [51] [51] [51] t = 0, gt = 0 t= 0, gt = 0

Filtered loc3: [3 5] [5] [5]
Oscillator 34, 4 loc3: [7 21] [7 21] [7 21] [0.2069 0.07 0...] [0.205 0.07 0...] 37 2.14 49

loc4: [26] [26] [26]

TABLE I: Longest Counterexample. Dims is the number of system variables, Modes is the number of locations, Longest Counterexample
is the valuation of basis variables for an initial state from which the execution overlaps with the unsafe set at maximum time steps. xi

represents all the variables whose values are not explicitly given. Actual Inter. Duration is the mode-wise ordered sequence of discrete
time step intervals when the reachable set intersects with the unsafe set. LCE Duration is the interval for the longest counterexample.
Verification Time is the time HyLAA takes for verification which is exclusive of the counterexample generation time, LCE Gen Time is
the time (in seconds) each framework takes to generate the longest counterexample.

Fig. 4: Illustration of the longest counterexample in Buck
Converter. The original benchmark has 2 locations but our
model has 6 locations so as to incorporate transition resets.
The figure shows the reachable set computed for locations -
closed1, open1, and closed2.

VII. DISCUSSION AND CONCLUSION

As MILP turns out to be the better alternative for gener-
ating the longest counterexample, an obvious question arises
whether this framework is suitable in all cases. An issue with
an MILP-based approach is numerical stability. The model
requires the definition of M , which is larger than any value.
Initial testing, even with a state-of-the-art commercial solver,

led to a numerically unstable solution, returning a trajectory
that isn’t really a counterexample. Through iterating with Z3
we were able to identify a suitable choice of M , but this can
lead to an incorrect solution if sufficient care is not taken.
On the other hand, Z3 is slow but it doesn’t suffer with the
problem of numerical instability.

We also notice that the MILP-based approach and SMT-
based approach return different counterexamples. This is
compatible with our definition as longest counterexample
need not be unique. In fact, the overlap with the unsafe set in
the counterexamples returned by these two approaches can
differ (as shown in the Table I). Further, although the length
of the longest counterexample is fixed, the counterexamples
as well as their intersection intervals may differ across
both frameworks. For instance, the longest counterexample
length for Ball String is 11, and its respective duration
generated with MILP and SMT is [18 20][21 28] and [12
13][16 20][21 24], respectively.

Conclusion: We have illustrated the longest counterexample
for the safety specification of linear hybrid systems, and
provided SMT- and MILP-based frameworks to generate
these counterexamples. We have evaluated these techniques
on multiple benchmarks. Although relatively slow, the SMT-
based formalism provides guarantees on the solution ob-
tained; the MILP-based solution is much faster but it may
be numerically unstable. For the future work, we plan to
explore BDD-optimization techniques [8] [7] to overcome
some limitations of MILP, and also, to make use of these
counterexamples in controller synthesis.
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Alexandre Donzé, Alberto L Sangiovanni-Vincentelli, S Shankar Sas-
try, and Sanjit A Seshia. Diagnosis and repair for synthesis from
signal temporal logic specifications. In Hybrid Systems: Computation
and Control, 2016.

[22] Manish Goyal and Parasara Sridhar Duggirala. On generating a variety
of unsafe counterexamples for linear dynamical systems. In Proc. 6th
IFAC Conference on Analysis and Design of Hybrid Systems, 2018.

[23] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.
[24] Ron Koymans. Specifying real-time properties with metric temporal

logic. Real-time systems, 1990.
[25] D. Liberzon and A Stephen Morse. Basic problems in stability and

design of switched systems. IEEE Control systems, 1999.
[26] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal

properties of discrete, timed and continuous behaviors. In Pillars of
computer science. 2008.

[27] Kumpati S Narendra and Jeyendran Balakrishnan. A common lya-
punov function for stable lti systems with commuting a-matrices. IEEE
Transactions on automatic control, 1994.

[28] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo
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