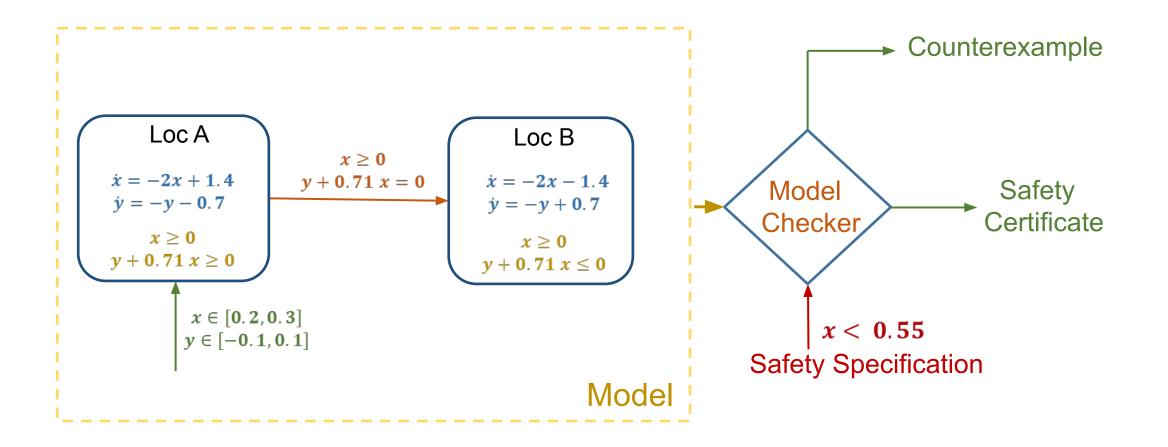
NeuralExplorer: State Space Exploration of Closed-loop Control Systems using NN

Manish Goyal, Parasara Sridhar Duggirala Department of Computer Science, University of North Carolina at Chapel Hill Automated Technology for Verification and Analysis (ATVA) Oct 22, 2020

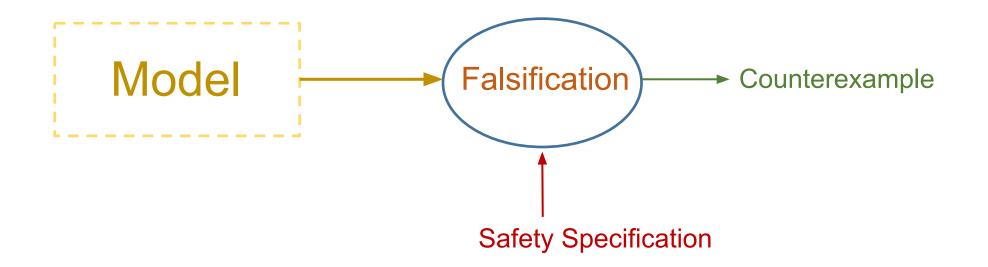
Outline

- Introduction
- Preliminaries
- Methodology
- Evaluation
- Applications
- Discussion

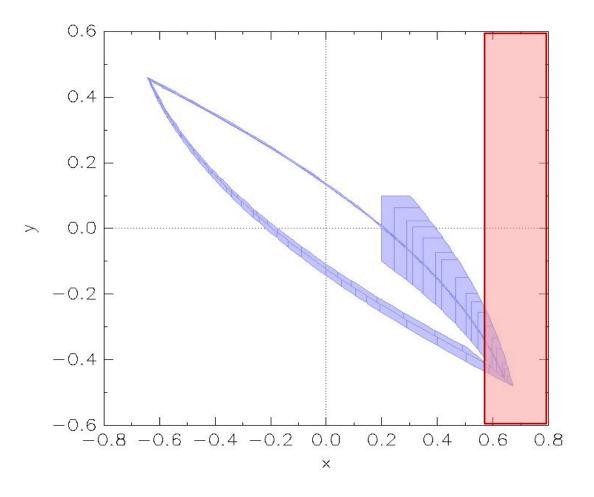
Verification Analogous to Reachability



Falsification

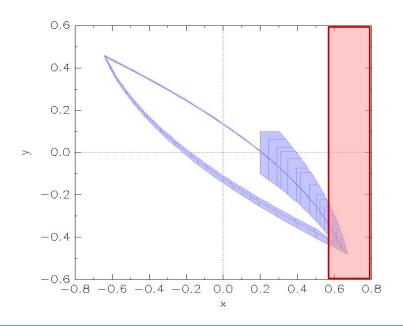


Verification

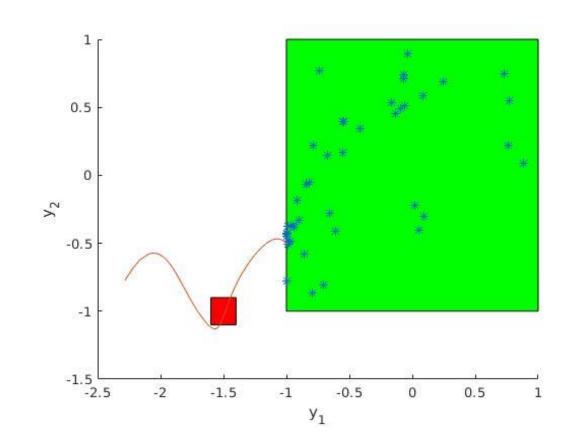


Verification

- SpaceEx
- HyLAA
- Flow*
- CORA

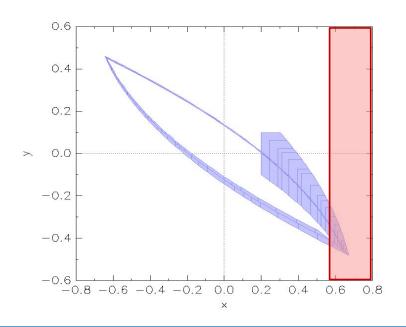


Falsification



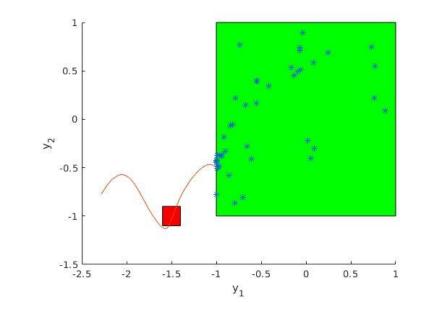
Verification

- SpaceEx
- HyLAA
- Flow*
- CORA

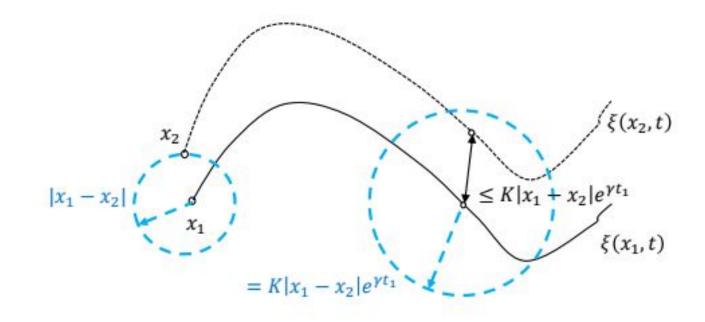


Falsification

- S-Taliro
- Breach

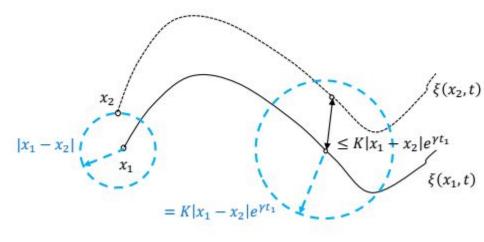


Simulation driven verification



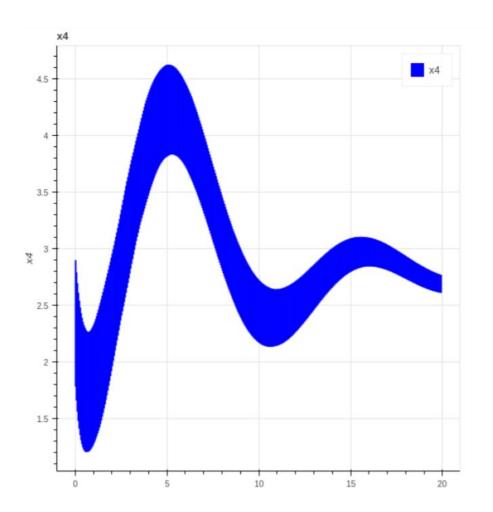
Discrepancy function

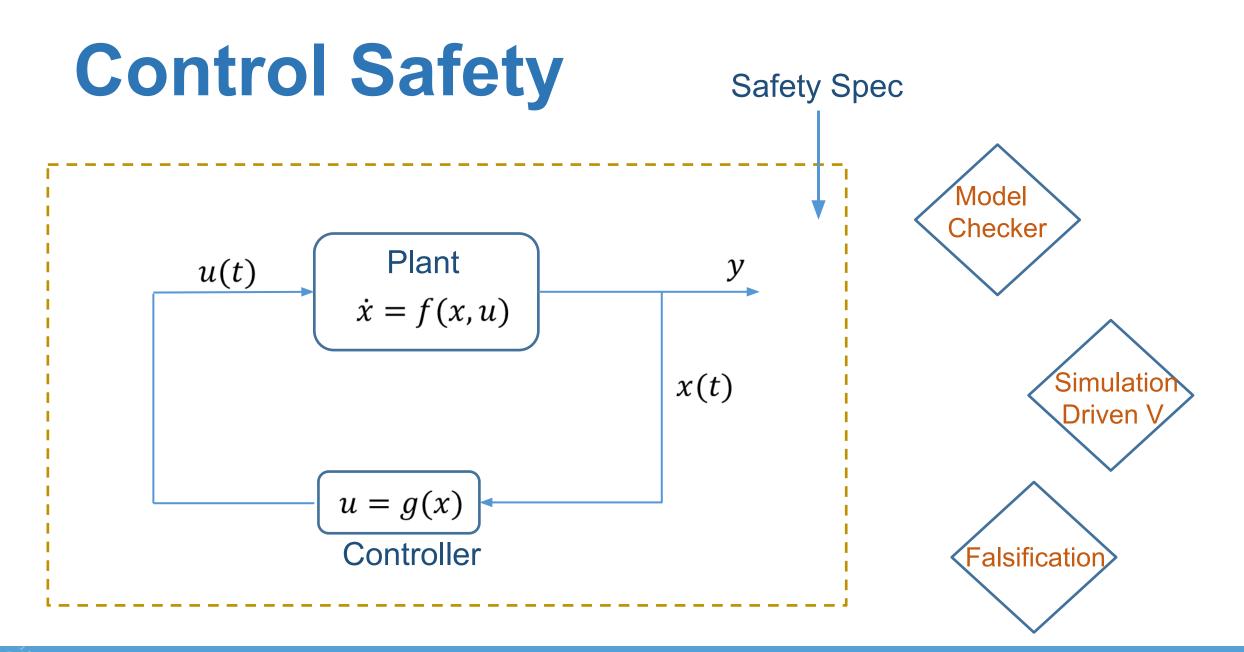
Simulation driven verification



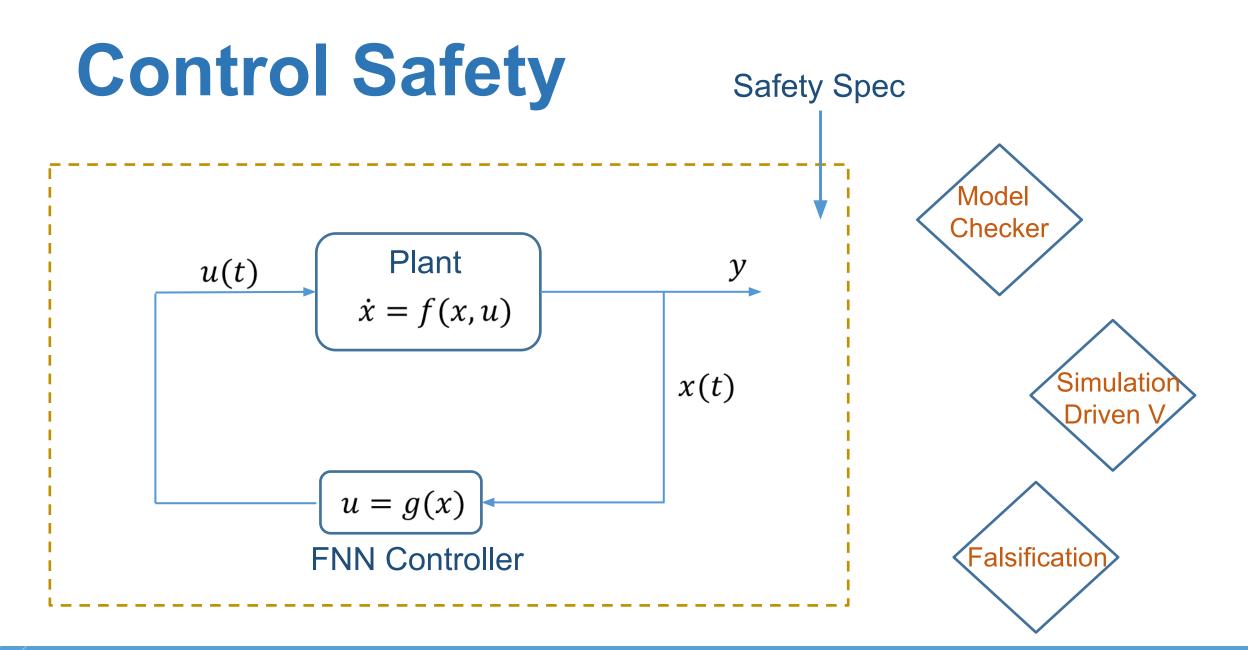
Discrepancy function

- C2E2
- DryVR



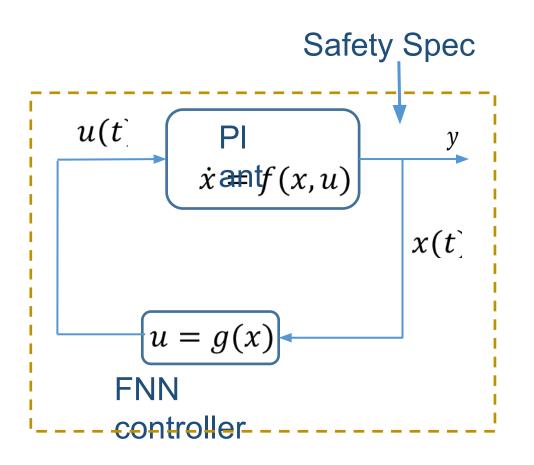


UNC-CS



UNC-CS

NN Control Safety



- Sherlock
- Verisig
- NNV
- S-Taliro

Motivation

- Complexity of systems
- Test case based exploration
- Abundance of data
- Application of neural networks

Motivation

- Complexity of systems
- Test case based exploration
- Abundance of data
- Application of neural networks

Learning system dynamics
 Learning Barrier function
 State classification, etc.

Motivation

Complexity of systems

Our Approach
Sensitivity function

- Test case based exploration
- Abundance of data
- Application of neural networks

Learning system dynamics
 Learning Barrier function
 State classification

Outline

- Introduction
 - Preliminaries
 - Methodology
 - Evaluation
 - Applications
 - Discussion

System Trajectory

Definition 1 (Unique Trajectory Feedback Functions). A feedback function u = g(x) is said to be unique trajectory feedback function if the closed loop system $\dot{x} = f(x, g(x))$ is guaranteed existence and uniqueness of the solution for the initial value problem for all initial points $x_0 \in \mathbb{R}^n$.

System Trajectory

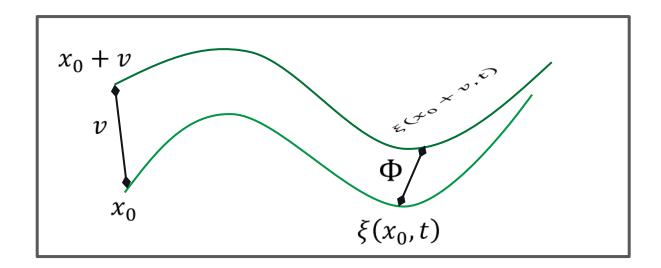
Definition 1 (Unique Trajectory Feedback Functions). A feedback function u = g(x) is said to be unique trajectory feedback function if the closed loop system $\dot{x} = f(x, g(x))$ is guaranteed existence and uniqueness of the solution for the initial value problem for all initial points $x_0 \in \mathbb{R}^n$.

Definition 2 (Trajectories of Closed Loop System). Given a unique trajectory feedback function u = g(x), a trajectory of closed loop system $\dot{x} = f(x, g(x))$, denoted as $\xi_g(x_0, t)$ ($t \ge 0$), is the solution of the initial value problem of the differential equation $\dot{x} = f(x, g(x))$ with initial condition x_0 . We often drop the feedback function g when it is clear from the context.

Sensitivity

Definition 3 (Sensitivity of Trajectories). Given an initial state x_0 , vector v, and time t, the sensitivity of the trajectories, denoted as $\Phi(x_0, v, t)$ is defined as.

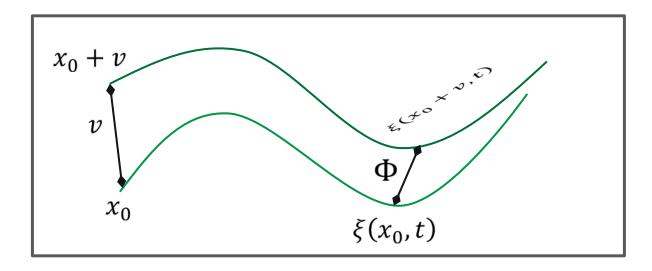
$$\Phi(x_0, v, t) = \xi(x_0 + v, t) - \xi(x_0, t).$$



Sensitivity

Definition 3 (Sensitivity of Trajectories). Given an initial state x_0 , vector v, and time t, the sensitivity of the trajectories, denoted as $\Phi(x_0, v, t)$ is defined as.

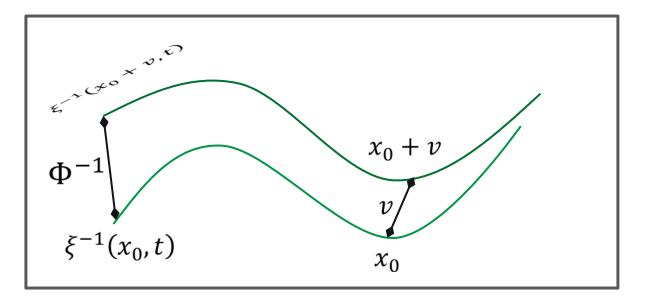
 $\Phi(x_0, v, t) = \xi(x_0 + v, t) - \xi(x_0, t).$



Vector difference between trajectories at time *t*

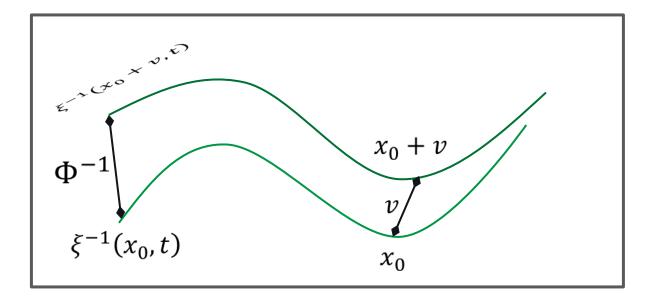
Inverse Sensitivity

$$\Phi^{-1}(x_0, v, t) = \xi^{-1}(x_0 + v, t) - \xi^{-1}(x_0, t).$$



Inverse Sensitivity

$$\Phi^{-1}(x_0, v, t) = \xi^{-1}(x_0 + v, t) - \xi^{-1}(x_0, t).$$



Initial perturbation required to displace the trajectory by v

Outline

- Introduction
- Preliminaries
 - Methodology
 - Evaluation
 - Applications
 - Discussion

Learning Φ and Φ^{-1}

- Generate finite set of time bounded trajectories
- Recall $v_{sen} = \Phi(x_0, v, t)$ and $v_{isen} = \Phi^{-1}(x_0, v, t)$
- For each pair of (real or virtual) trajectories
- Generate tuples $< x_0, v, t, v_{sen} > and < x_0, v, t, v_{isen} >$
- Use tuples for training to approximate sensitivity and inverse sensitivity
- Denote these networks as *NN*_{sen} and *NN*_{isen}, resp.

Results: Learning Φ^{-1}

MSE: Mean Squared error MRE: Mean Relative error

Benchmark		Dims	Step size (sec)	Time bound	Training Time (min)	MSE	MRE
Continuous Nonlinear Dynamics	Brussellator	2	0.01	500	67.0	1.01	0.29
	Buckling	2	0.01	500	42.0	0.59	0.17
	Lotka	2	0.01	500	40.0	0.50	0.13
	Jetengine	2	0.01	300	34.0	1.002	0.26
Hybrid/NN Systems	HybridOsc.	2	0.01	1000	77.0	0.31	0.077
	SmoothOsc.	2	0.01	1000	77.5	0.23	0.063
	Mountain Car	2	-	100	10.0	0.005	0.70
	Quadrotor	6	0.01	120	25.0	0.0011	0.16

Outline

- Introduction
- Preliminaries
- Methodology
 - Evaluation
 - Applications
 - Discussion

Reaching a state *z* with Φ^{-1}

• If the function is learnt without error, we should be able to reach a destination state in one shot

• Since we use an approximation, we need to iterate for a couple of times to get to the destination

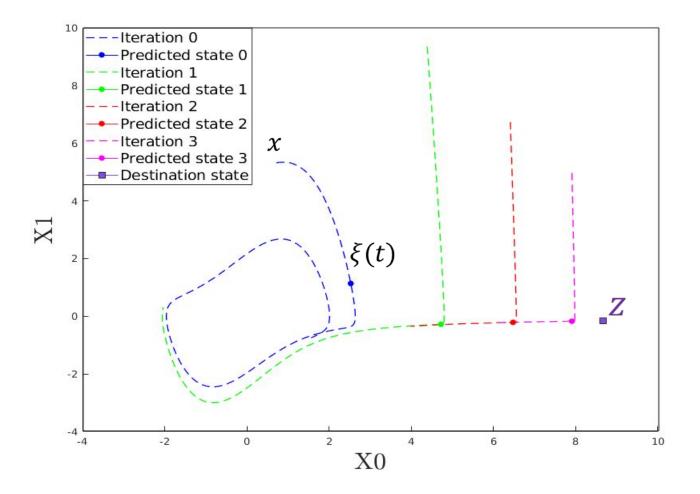
Reaching a state *z* with Φ^{-1}

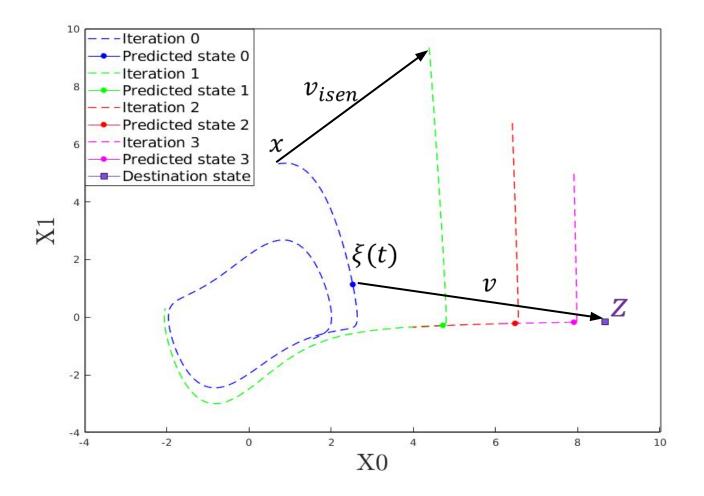
- Generate a trajectory ξ from random state x
- For the given time *t*, compute the vector $v = z \xi(t)$
- Repeat while $||v||_2 \ge \delta$ and $iter \le max$
- a. Estimate $v_{isen} = NN_{isen}(\xi(t), v, t)$
- b. Generate a new trajectory ξ from $x = x + v_{isen}$
- c. Compute $v = z \xi(t)$
- Return $(x, ||v||_2)$

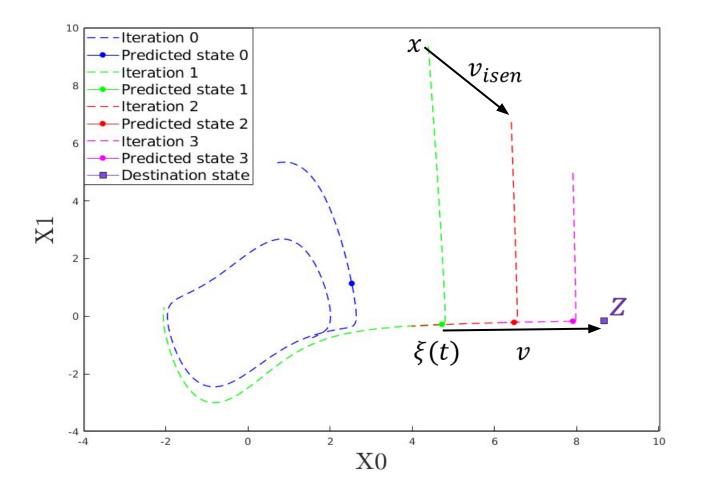
Reaching a state *z* with Φ^{-1}

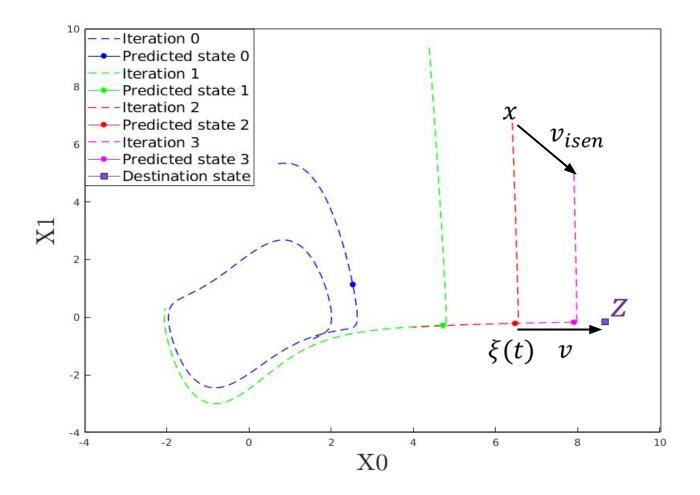
- Generate a trajectory ξ from random state x
- For the given time *t*, compute the vector $v = z \xi(t)$
- Repeat while $||v||_2 \ge \delta$ and *iter* $\le max$

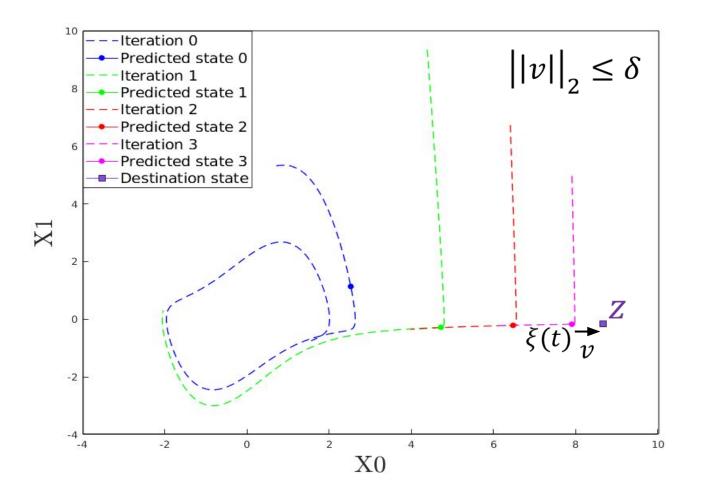
- a. Estimate $v_{isen} = NN_{isen}(\xi(t), v, t)$
- b. Generate a new trajectory ξ from $x = x + v_{isen}$
- c. Compute $v = z \xi(t)$
- Return $(x, ||v||_2)$

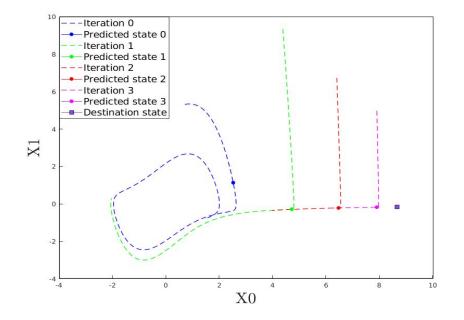


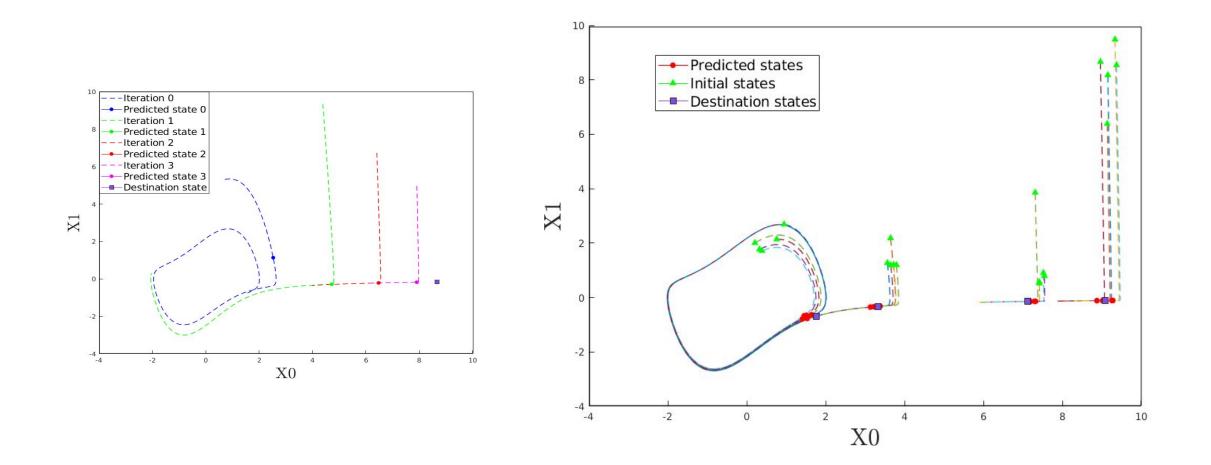












Evaluation: ReachDestination

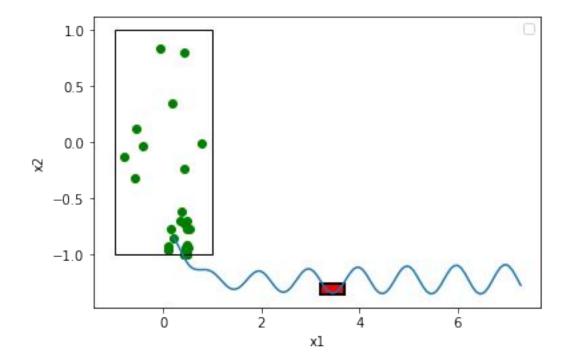
Benchmark	Dims	Iteration count = 1			Iteration count = 5		
		d_a	d_r	Time (ms)	d_a	d_r	Time (ms)
Brussellator	2	[0.19–1.87]	[0.23-0.74]	11.38	[0.003-0.22]	[0.01-0.12]	31.34
Buckling	2	[1.67–11.52	[0.17-0.45]	13.61	[0.36- 2.09]	[0.06-0.31]	34.51
Lotka	2	[0.08-0.24]	[0.21-0.45]	12.38	[0.02-0.07]	[0.09-0.22]	34.28
Jetengine	2	[0.05 -0.20]	[0.19-0.28]	15.96	[0.0004-0.05]	[0.006-0.14]	38.26
HybridOsc	2	[0.28-0.92]	[0.13-0.29]	16.70	[0.03-0.31]	[0.01-0.10]	45.82
SmoothOsc	2	[0.37-1.09]	[0.13- 0.23]	52.22	[0.04-0.42]	[0.02-0.18]	136.72
Mountain Car	2	[0.004-0.24]	[0.08-0.22]	138.90	[0.0002-0.005]	[0.03-0.12]	266.76
Quadrotor	6	[0.014–1.09]	[0.10-0.67]	284.96	[0.004-0.04]	[0.02-0.13]	668.78

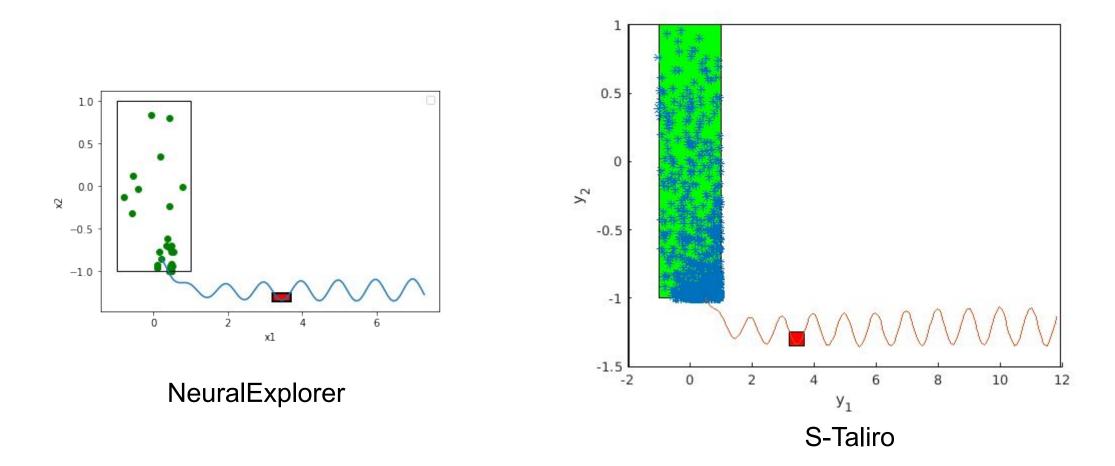
Outline

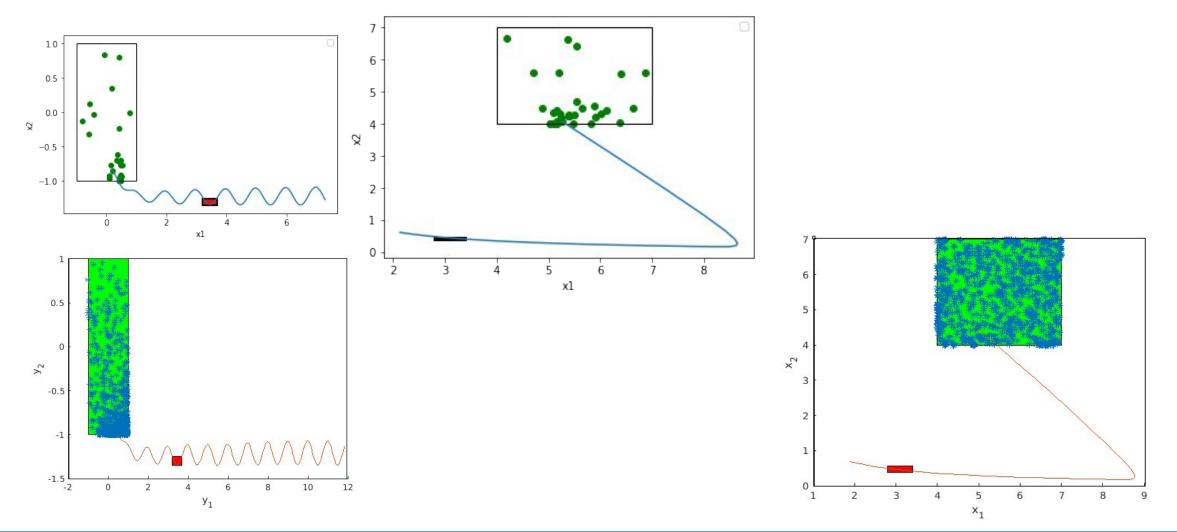
- Introduction
- Preliminaries
- Methodology
- Evaluation
 - Applications
 - Discussion

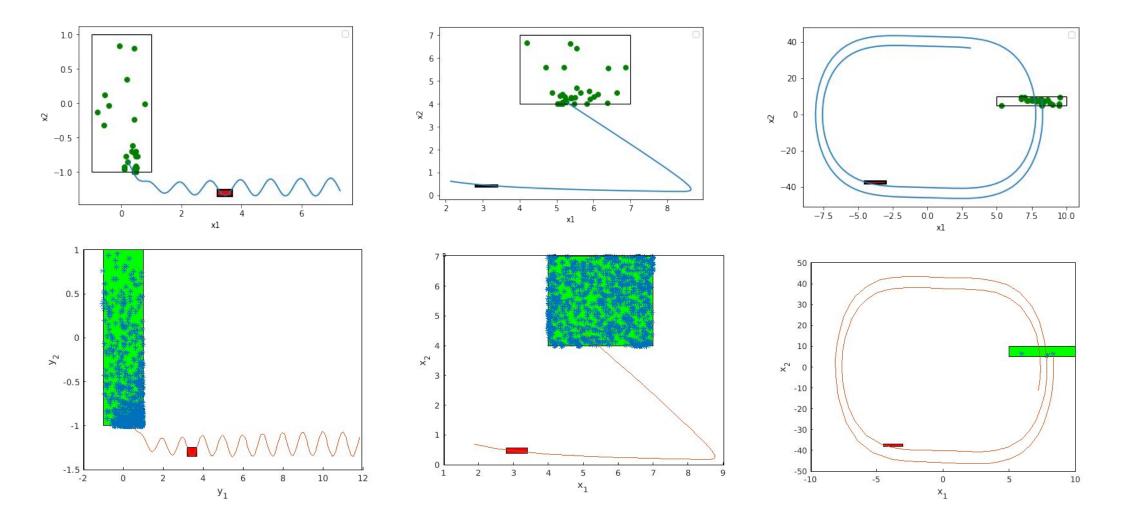
Falsification using Φ^{-1}

- Generate a set of random states in the unsafe set U
- Perform **ReachDestination** for each of those random states
- Terminate once a falsifying execution is obtained



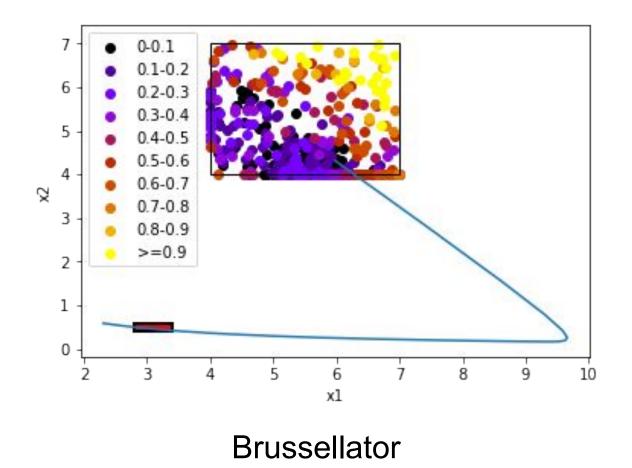


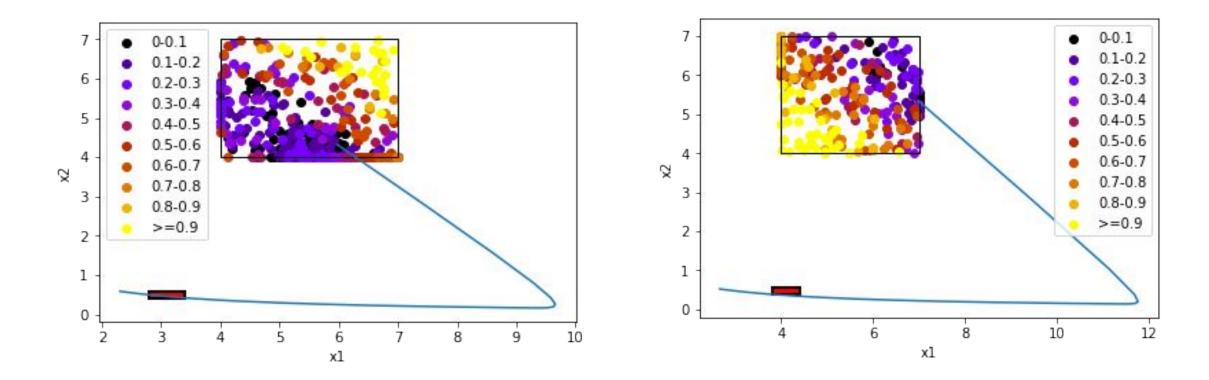




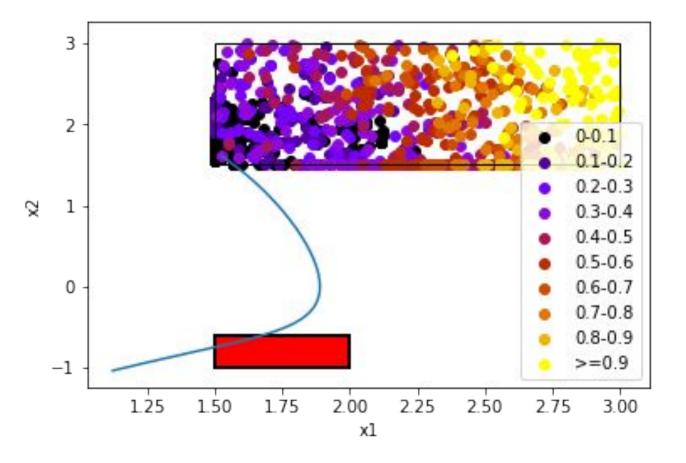
- Sample random states in the unsafe set
- Run ReachDestination on each state for a fixed number of times
- Maintain distance profiles of states explored in the initial set

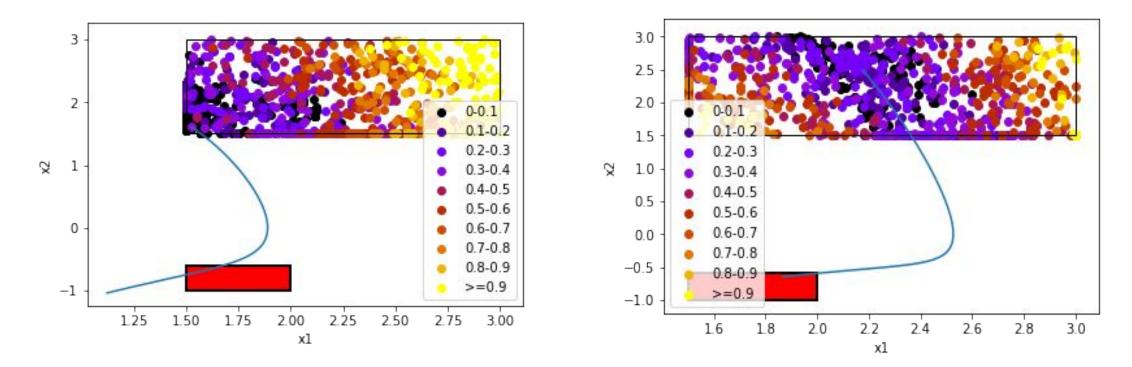
- Sample random states in the unsafe set
- Run ReachDestination on each state for a fixed number of times
- Maintain distance profiles of states explored in the initial set





Brussellator: Change in spec

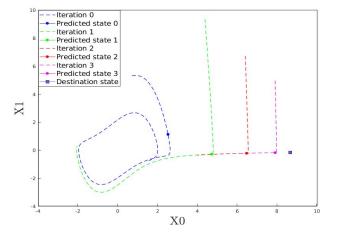




Vanderpol: Change in time instance

Advantages

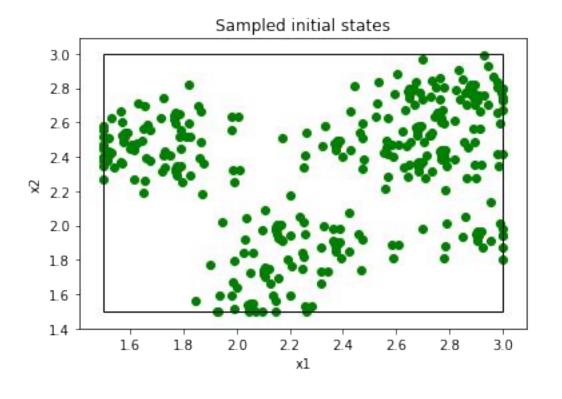
- Each subsequent trajectory would make progress towards the destination
- Effective when the safety specification is modified
- Provides geometric insight



- Sample a set of states in the initial set
- Generate anchor trajectories from these initial states
- Sample a fixed number of states around each initial state
- Use *NN*_{sen} to predict the trajectories starting from new states

- Sample a set of states in the initial set
- Generate anchor trajectories from these initial states
- Sample a fixed number of states around each initial state
- Use NN_{sen} to predict the trajectories starting from new states

UNC-CS



Vanderpol

3.0 2.8

2.6

2.4

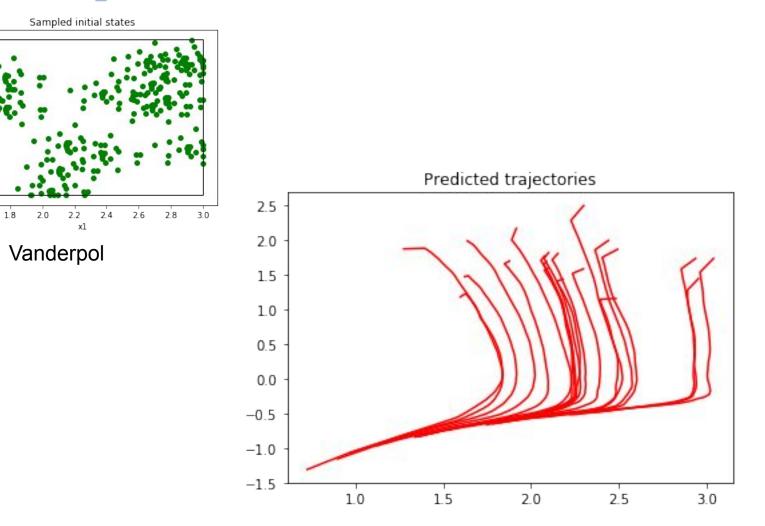
16

14

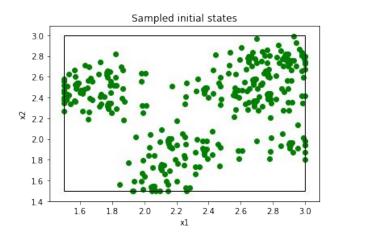
16

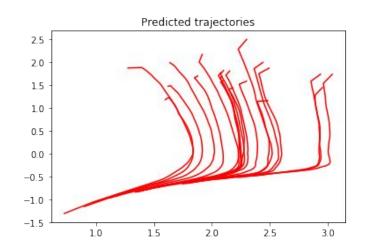
∑ 2.2 2.0 1.8

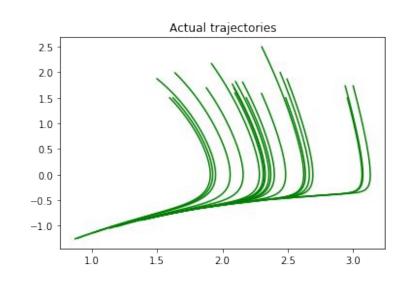
- Sample a set of states in the initial set
- Generate anchor trajectories from these initial states
- Sample a fixed number of states around each initial state
- Use *NN*_{sen} to predict the trajectories starting from new states



- Sample a set of states in the initial set
- Generate anchor trajectories from these initial states
- Sample a fixed number of states around each initial state
- Use NN_{sen} to predict the trajectories starting from new states







Vanderpol

Takeaways

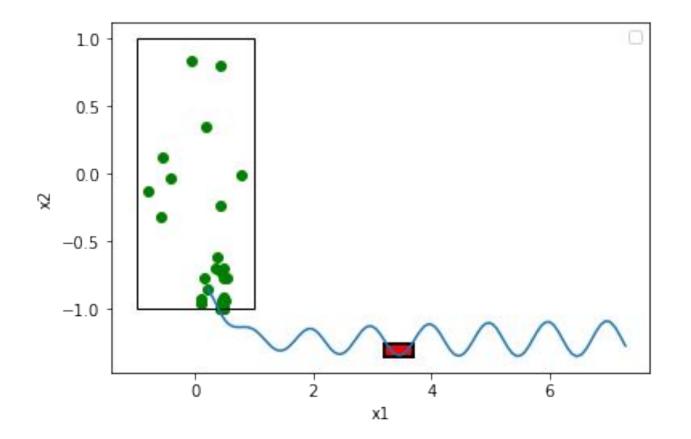
- Approximation of sensitivity and inverse sensitivity using Neural networks
- Robust falsification *wrt* change in unsafe spec
- Density based state space exploration
- Provides geometric insights into the system behavior

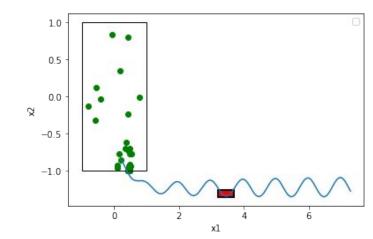
Takeaways

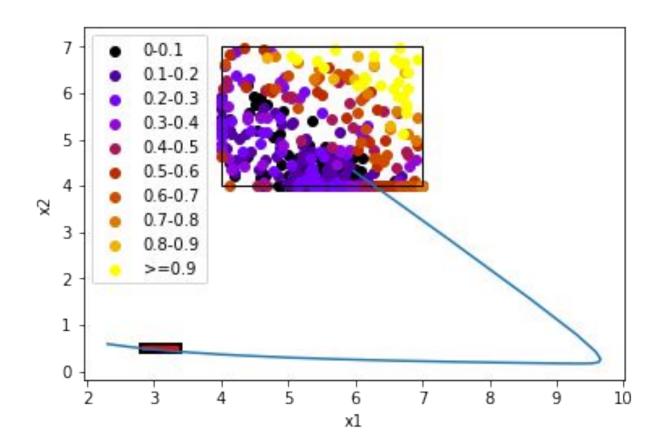
- Approximation of sensitivity and inverse sensitivity using Neural networks
- Robust falsification *wrt* change in unsafe spec
- Density based state space exploration
- Provides geometric insights into the system behavior

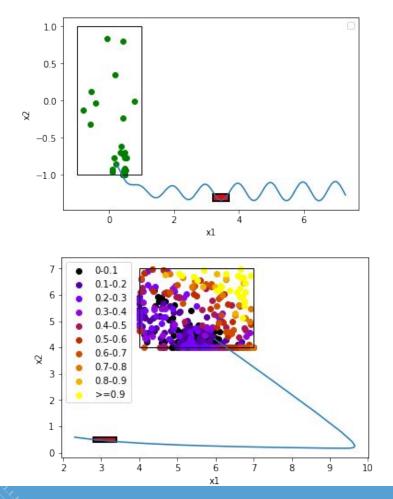
Future Work

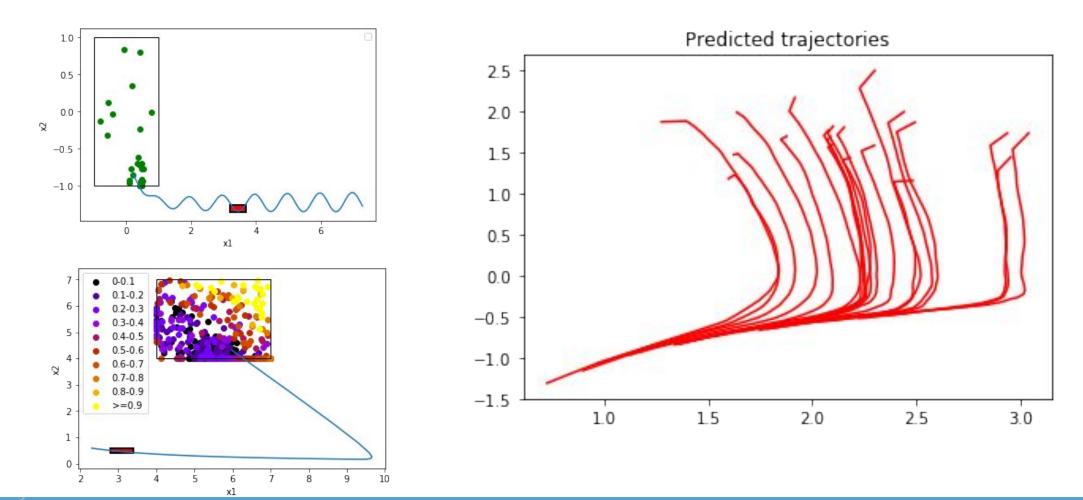
- Handle generic systems such
 as feedback systems with
 environmental inputs
- Devise a better framework to reduce training time
- Explore techniques to mask timing information for reachDestination subroutine

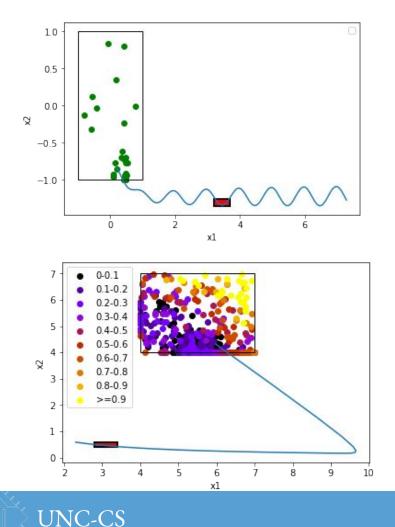


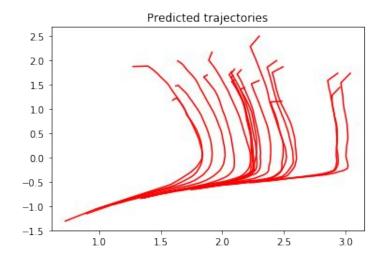


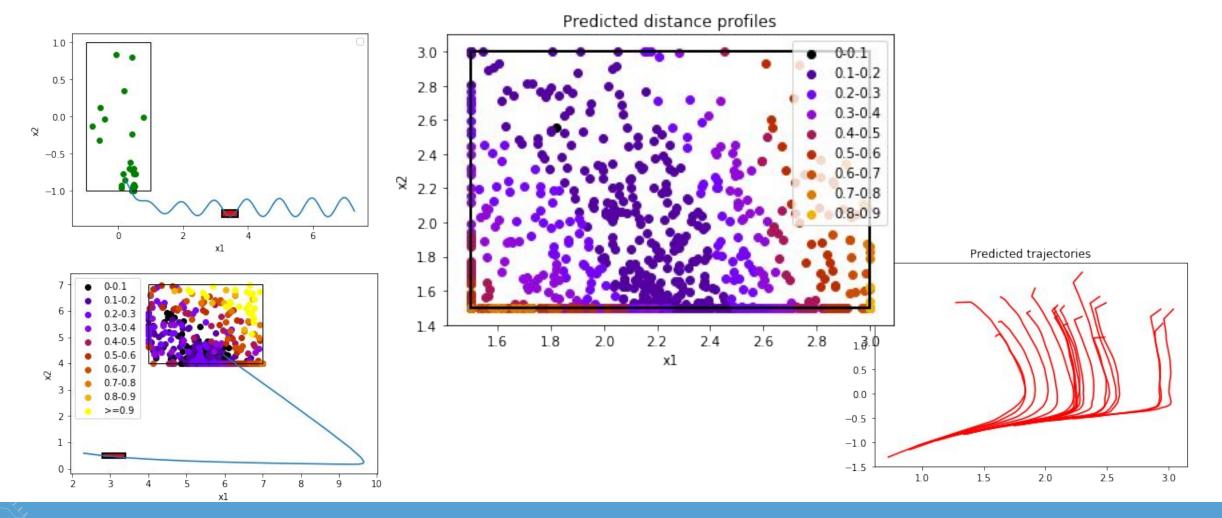


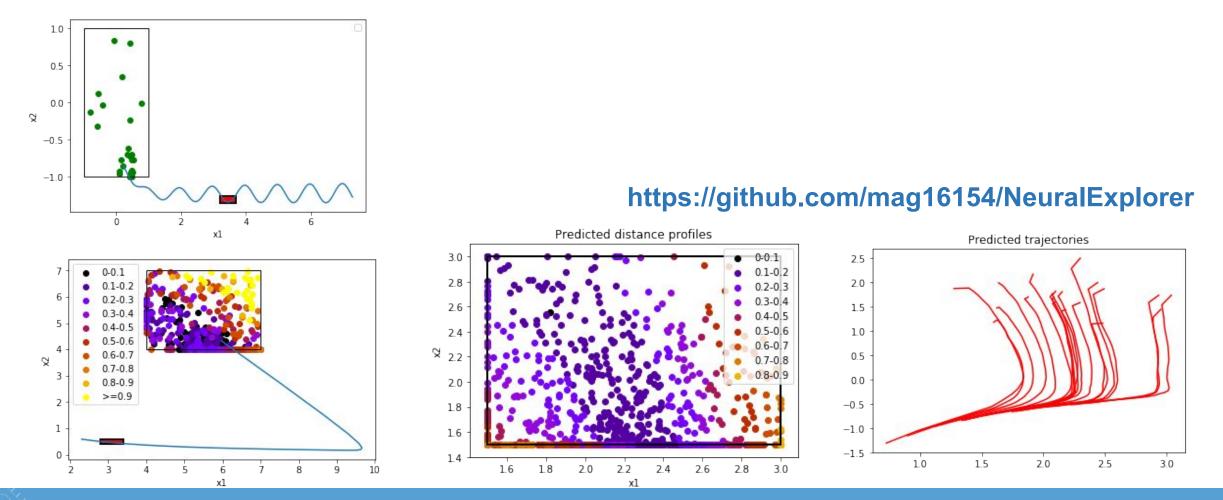












ReachTarget on a time interval

