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Abstract

In this paper, we present a 2-step framework for high-
precision dense depth perception from stereo RGB images
and sparse LiDAR input. In the first step, we train a deep neu-
ral network to predict dense depth map from the left image
and sparse LiDAR data, in a novel self-supervised manner.
Then in the second step, we compute a disparity map from
the predicted depths, and refining the disparity map by mak-
ing sure that for every pixel in the left, its match in the right
image, according to the final disparity, is the local optimum.

Introduction
3D information perception has been playing an essential
role in numerous robotics and computer vision tasks, such
as autonomous driving, 3D object detection, and 3D recon-
struction. To obtain reliable dense depth information from
the scene, stereo cameras (with stereo matching algorithms),
and active sensing sensors (e.g. 3D LiDARs) are the most
commonly used techniques. While each of them alone has
inherent pros and cons, stereo cameras can provide two rec-
tified RGB images with dense information, but the necessary
stereo matching algorithms, which computes the disparity
for each pixel in the left image by finding its correspond-
ing pixel in the right image, are well-known to be expensive
in computation, and problematic in matching regions with
repetitive patterns, homogeneous appearance, and occluded
objects. Alternatively, 3D LiDAR scanners can measure the
depths accurately, but their outputs are usually too sparse,
and dense 3D LiDARs are expensive. Thus, fusing sparse
3D LiDAR data with images becomes a promising option in
computing a trustworthy dense depth map.

Previously, the general idea for this task is to plug Li-
DAR data into existing stereo matching algorithms. For ex-
ample, Wang et al (2019) enhance the GC-Net (Kendall et
al, 2017) by extracting more features and regularizing the
cost volume using LiDAR data, while Park et al (2018) de-
sign a deep learning network to refine the output of SGM
(Hirschmüller, 2008) with the help of LiDAR data. How-
ever, we argue that these stereo matching-base algorithms
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have two intrinsic drawbacks: first, intuitively, once the ac-
curate disparity value of a pixel is known, it should usually
be easier to compute the disparities of the pixels around it,
thus faster to compute a dense disparity map. However, none
of the state-of-art methods actually reduce the computational
burden of their corresponding stereo matching algorithms,
instead they exert more; secondly, even though deep learn-
ing methods are achieving much better results than others,
due to its lack of explainability, it would be hard to ensure
the safety of their outputs.

Thus, to make LiDAR-stereo fusion more efficient and ex-
plainable, and to improve its accuracy, we propose a brand
new 2-step framework for LiDAR-Stereo fusion problems:
in the first step, we take advantage of the progress in deep
learning and use a convolutional neural network to predict a
raw depth map from the left image and sparse LiDAR data;
next, in the second step, instead of searching the whole dis-
parity range to find the best match, we give confidence to
the disparity transformed from the predicted depth map, and
refine it by only looking for a better match around it.

Framework Details
Step 1: Disparity Prediction
The architecture design of our LiDAR-Monocular fusion
network, which follows an encoder-decoder paradigm, is
based on the work of Ma et al (2019). The biggest modifi-
cation is, we train the network in a different self-supervised
way, and reach the same level of accuracy as the state-of-art.
As shown in the figure 1, during the training process, besides
normal depth loss computed by summing up the differences
between raw prediction and the ground truth, we also intro-
duce a new kind of photometric loss, which represents the
difference between the right image and the warped left im-
age, to the loss function. Specifically, if we use IL(i, j) to
represent the the value of the pixel at the ith row, jth col-
umn of the left image, and its predicted disparity is D(i, j),
then, the value of its corresponding pixel in the warped im-
age ILwarp

will be:

ILwarp
(i, j +D(i, j)) = IL(i, j).

In this way, if we the raw disparity prediction is generally
correct, the warped image ILwarp

should look like the right



image, with some points being zero if no pixel in the left
is mapped to that location. Thus, we define our photometric
loss to be:

Lphotometric(ILwarp , IR) =
1

|M |
∑
m∈M

||ILwarp(m)−IR(m)||1,

where M is the mask that for all pixel index m ∈ M ,
ILwarp

(m) is not zero.

Figure 1: Training method.

Step 2: Disparity Refinement
Once a raw depth map is predicted in the first step, we will
compute a disparity map using the equation: z = fB

d , where
z and d represents the disparity and depth value, with f and
B being the focal length and baseline of the stereo camera.

Next, given the left image IL, the right image IR, the raw
disparity map Dprior and search range S, we will refine the
disparity by:

Dafter(i, j) = Dprior(i, j) + argmin
s∈S

Cost(i, j, s),

where i and j are the row and column number of the point in
the disparity map, and the cost function Cost(i, j, s), which
we currently use, is the simplest sum of the absolute differ-
ences (SAD), which can be computed by:

Cost(i, j, s) =∑
(i′j′)∈N(i,j)

|IL(i′, j′)− IR(i
′, j′ +Dprior(i

′, j′) + s)|,

, where N(i, j) represents a certain neighborhood of (i, j).
Thus, we get the final disparity map, Dafter, as the final

output of the framework.

Current Result & Future Work
Currently, we trained and tested our framework using the
KITTI dataset (Geiger et al, 2012), and achieve a root mean
squared error (RMSE) of 893, which is in the same level as
the state-of-art (Wang et al, 2019).

In the future, we plan to improve our framework by
adding more convolutional layers to our depth prediction
network, implementing better cost functions to find the local
optimum more accurately, and designing better refinement
methods that take the disparities of neighbor points into con-
sideration.

Figure 2: From top to down: Input color image (left), in-
put sparse LiDAR depths, and depth map predicted by our
method
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