
Formalizing traffic rules for uncontrolled
intersections

Abolfazl Karimi
Department of Computer Science

University of North Carolina at Chapel-Hill
Chapel Hill, United States

ak@cs.unc.edu

Parasara Sridhar Duggirala
Department of Computer Science

University of North Carolina at Chapel-Hill
Chapel Hill, United States

psd@cs.unc.edu

Abstract—One of the challenges in designing autonomous
vehicles (AV’s) is driving around humans (i.e. drivers, cyclists,
pedestrians, etc.) In particular, the AV’s and the humans must
have a common set of traffic rules to follow. In this paper,
we present a new approach to formalize and implement traffic
rules. We use California’s DMV driver handbook as a working
example. Our approach provides a straightforward mapping
from the rules in the handbook to its formal model, and from
the model to its implementation. To demonstrate the efficiency
of this approach, we formally model the traffic rules in the logic
programming paradigm of Answer Set Programming (ASP) using
a programming language called Clingo. We then integrate these
rules into CARLA, a virtual test bed environment for autonomous
vehicles. We simulate the behavior of autonomous vehicles at
four way and three way uncontrolled intersections by correct
reasoning of right-of-way rules for autonomous vehicles in real
time. As a result, the behaviors of autonomous vehicles under
our controller are more realistic compared to CARLA’s default
FIFO controller. This also improves the throughput of the traffic
through the intersection.

I. INTRODUCTION

According to a report by Governors Highway Safety Asso-
ciation [1], “all vehicles on the road will not be autonomous
for a very long time, perhaps never. Until then, autonomous
vehicles must share the road with vehicles driven by humans,”
so “the short-run challenge is to manage a world with a mix
of driver-operated and autonomous vehicles.” One approach to
handle the mixture of autonomous vehicles (AVs) and human
drivers is to change current rules and traffic infrastructure
to incorporate AVs. This approach seems inadequate for at
least two reasons: the high cost of new infrastructure and
drivers’ education, and lack of industry standards in AV
technologies since the sector is still in its experimental stages.
Another approach is to design AVs such that they abide by the
current traffic rules. This calls for a set of rules that are both
machine and human understandable, that is, it requires a set of
statements in natural language as well as their mathematically
precise representation.

Considering the ambiguity and complexity of natural lan-
guage, the problem is to develop a formal version of traf-
fic rules that is machine-understandable. The challenge is
to preserve the human understanding of the rules as much
as possible. A formalized version of the rules removes the
ambiguities in natural language and makes all the assumptions

explicit. This provides the ground truth (of legal behaviour)
that can be used in designing AVs, testing and certifying
AVs, fault determination in accidents, automating drivers’
education, ADAS1 features, etc.

Currently, self reported disengagement rates and traffic
incidents2 by the AV companies is used as a benchmark for
measuring the efficacy of autonomous vehicles. For a safety
critical system such as autonomous vehicles, we believe that
disengagements and traffic incidents are a very weak form of
evidence for safety assurance. A better form of evidence would
be all incidents that are violations of traffic rules. Finally, for
any safety critical system, one has to establish a rigorous basis
for evaluating functional correctness. For all these reasons, we
believe that a rigorous mathematical model of traffic rules is
an essential part of certification procedures for autonomous
vehicles.

In this paper, we present a framework to formalize traffic
rules. We use California’s driver handbook as a working
example. While we focus here on a subset of the rules,3 the
goal is to formalize all of the driver handbook using this
framework. We follow a top-down approach to formalize the
rules. That is, we first study the driver handbook to identify the
logical form of the rules and the concepts that they employ.
We model the rules as formal logic sentences using atomic
predicates that represent the concepts employed. The concepts
referred to by the atomic predicates are modeled using spatio-
temporal mathematical objects. The separation of logical form
and mathematical concepts provides flexibility to incorporate
various types of traffic rules in the driver handbook.

Intersections are the main area where accidents happen.
According to the Fatality Analysis Reporting System (FARS)
and National Automotive Sampling System-General Estimates
System (NASS-GES) data, at least 47% of the estimated
11,275,000 crashes in the United States in 2015 [2] were
intersection-related. Furthermore, most of the accidents involv-
ing autonomous vehicles also happened at intersections [3],
[4]. According to Federal Highway Administration, “unsignal-
ized intersections are of particular concern because they com-

1Advanced Driver-Assistance System
2https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
3i.e. right-of-way rules at uncontrolled intersections

prise the vast majority of intersections in the U.S.” [5] The
rules for uncontrolled intersections (i.e. without “STOP” or
“YIELD” signs) apply to all types of conventional unsignal-
ized intersections. Furthermore, in case of a blackout, sig-
nalized intersections should be treated as all-way-stops. [6]
Therefore, uncontrolled intersection is an interesting case
study to demonstrate our framework.

To show the practicality of this approach, we encode the
traffic rules in logic programming paradigm using answer set
programming (ASP). Using this framework, one can decide
whether a given action of a vehicle in a traffic scenario respects
all the traffic rules. Further, one can also design a correct
controller such that all of its actions will respect the traffic
rules. We integrate this correct controller into the CARLA
simulator and simulate various traffic scenarios at various
four-way and three-way intersections. CARLA [7] is an open-
source simulator for autonomous driving research. Starting at
CVPR 2019 (Computer Vision and Pattern Recognition) con-
ference, CARLA organizes the CARLA Autonomous Driving
Challenge [8]. To create a traffic environment, CARLA has a
built-in vehicle driver called autopilot. For unsignalized inter-
sections, autopilot (not AI or manually driven) vehicles pass
the intersection only one at a time. However, our controller
implements several rules: first-in-first-out, yield-to-right, yield-
to-inside, etc. This makes the traffic more realistic and also
increases the traffic throughput.

The ambiguity of the natural language requires that we
try different formalizations and study the emergent traffic
behaviour from following each version. Our framework facil-
itates improving the model iteratively by specifying the rules
as a declarative logic program. One can easily add conditions
to the rules, or add more rules to see the interactions. Further-
more, changing the logic program does not require compiling
CARLA’s code.

We use Clingo to implement and evaluate the traffic rules.
Clingo is an open-source toolchain for answer set program-
ming (ASP) [9]. ASP is a logic programming paradigm. The
syntax of Clingo is similar to Prolog but the semantics is
different. The SAT-solving techniques used in ASP solvers
give them a significant performance advantage over Prolog.
Our choice of selecting ASP as the paradigm for modeling
traffic rules is a result of several design choices. First, we want
the mathematical representation to be fairly easy to understand.
Second, we want the model to be transparent, that is, given
a statement in the drivers manual provided by the DMV,
we would like to map it to a corresponding sentence (or a
collection of sentences) in the model. Finally, we want the
rules to be modular, that is, the rules can be adopted to other
traffic scenarios with minor modifications. As we shall see in
the rest of the document, we provide an intuitive, transparent,
and modular model for traffic rules using ASP.

We summarize the contributions of this paper as follows:

1) We provide a formalization of traffic rules that is straight-
forward from the human-understandable informal ver-
sion to the machine-understandable formal version. This

bridges the gap between the high-level human reasoning
to the low-level machine instructions.

2) Our formalization and implementation of the rules is ef-
ficiently executable. Unreal Engine computes the spatio-
temporal atomic predicates, and the Clingo ASP solver
evaluates the logical formulas over the atomic predicates.

3) Using a declarative logic program to implement the rules
creates great flexibility in iteratively improving the model.

II. RELATED WORK

Formalizing and monitoring of traffic rules for autonomous
vehicles is studied by Rizaldi et al. [10]. They consider
highway driving and safe distance, but we focus on inter-
sections and right-of-way. Our formalization is similar in
using a top-down approach. First they “codify” a rule in
a temporal logic sentence using abstract atomic predicates
and then “concretize” the atomic predicates by giving them
a computable definition. Computation of the predicates are
done by code generated by Isabelle. However, we codify the
rules in a first-order logic sentence and implement them in
an ASP logic program, and compute the concretized atomic
predicates using Unreal Engine. In [10], given the trajectories
of all vehicles, the monitor detects any violations of traffic
rules. However, we determine the legal action at any point in
time. This gives us a high-level controller. Furthermore, we
easily get a monitor by comparing the required action with
the action taken.

Safety at intersections in terms of collision freedom is
studied by Hilscher et al. [11]. The main difference from our
work is that they develop a logic to prove safety of controllers,
whereas we formalize the traffic rules to determine the legal
action. Another difference is that the rules that we formalize in
this paper concern right-of-way, whereas they consider safety
in terms of collision freedom. Our concept of intersection-
lane is inspired by their paper, but our modeling and imple-
mentation is different: Our definition readily handles different
number of lanes and streets connecting to the intersection
and captures the geometry of the intersection more faithfully.
In particular, they partition the intersection area into four
disjoint regions called “crossing segments” and then define
intersection-lanes to be certain subsets of this partition. Two
lanes overlap if they share a segment. In our approach, each
intersection-lane is a curved lane specified by a spline. Unreal
Engine calculates whether two such lanes overlap.

Traffic protocols for safe behavior of autonomous vehicles
at intersections were proposed in [12], [13]. Approaches to
formally verify such protocols using dynamic logic were
developed in [14]. However, these papers focus on the safety
predicate (safe separation of vehicles). Unlike our paper, these
works do not explicitly consider the high level traffic behaviors
of vehicles. Furthermore, such protocols rely on vehicle-to-
vehicle (V2V) or vehicle-to-infrastructure (V2I) equipment
and do not propose a solution where the agents are a mix
of autonomous and human drivers.

OpenDRIVE [15] and OpenSCENARIO [16] are standards
from Association for Standardization of Automation and

Measuring Systems (ASAM) for describing road networks
and traffic scenarios in a tool-independent format. CARLA
partially supports OpenSCENARIO. Traffic sequence charts,
presented in [17], is a visual specification language for cap-
turing scenarios, that is easy to understand and reason. Another
project that provides schematics for describing traffic scenarios
is Open Autonomous Safety from Voyage [18]. Extracting
formal specification from natural language automatically has
been proposed in ARSENAL [19] and VARED [20]. However,
these tools only extract specification as LTL formulas [21].
In contrast, we manually translate the rules in the driver
handbook to first-order formulas and do not restrict ourselves
to temporal logic.

III. METHODOLOGY

Since our focus in this paper is formally modeling traffic
rules that are applicable at unprotected intersections, we first
list the relevant sentences in the drivers’ manual and explain
their semantics. We then mathematically rewrite these sen-
tences in first order logic and assign rigorous semantics to
all the relevant predicates. Finally, we provide some details
on converting these first order sentences into statements in
Clingo.

Traffic is a multi-agent system. Therefore, each traffic rule
determines the correct behaviour of only one vehicle, the
ego vehicle, with respect to other agents. Each vehicle has
complete access to its own state but has limited information
about its environment. Nevertheless, the rules assume that
the ego vehicle has some minimum knowledge about its
environment. For example, a vehicle is supposed to know
whether it was the first one reaching a four-way-stop or not.
However, it may not be supposed to know whether another
vehicle’s left-turn signal means a left-turn or a U-turn.

In each traffic scenario, the correct behavior (of the ego
vehicle) is dependent on three factors: the static features (e.g.,
lane shapes, lane types, lane overlaps, posted signs, etc), the
dynamic features (e.g., arrival at an intersection, turn signals,
etc.), and the relevant traffic rules. A traffic rule is a statement
about the static and dynamic features of a scenario.

Our formal model of traffic rules hence has three compo-
nents. The logical form of a traffic rule is modeled as a first-
order-logic formula. The predicates in the formula refer to
the static and dynamic features of the traffic scenario. The
static features are modeled by mathematical concepts such as
sets, functions, relations, curves, etc. The dynamic features
are modeled by events. An event indicates that the truth of
a mathematical statement transitions from false to true at a
specified time. Therefore, each predicate representing an event
has a time parameter.

We follow a top-down approach to model the three com-
ponents. That is, for each rule, first we determine its high-
level logical form and the corresponding predicates, then we
define each predicate. In the following subsection, we study
the California driver handbook and identify the concepts that
should be included in our model.

A. The Analysis of Driver Handbook

Before we delve into the traffic rules examples, we note that
each phrase in the driver handbook plays a role. These roles
fall into three main categories:

1) definition of terms,
2) rule contexts,
3) rules.

A definition specifies the meaning of an informal (natural)
language term used in the document. A rule context specifies
the circumstances in which a traffic rule applies. A traffic rule
specifies the correct behaviors of each vehicle in applicable
contexts.

Now we look at a few sentences from the California driver
handbook. We focus on the rules that concern the right-of-
way at an uncontrolled intersection, i.e. an intersection without
‘STOP’ or ‘YIELD’ signs [5].

1) “An intersection is any place where one line of road-
way meets another roadway. Intersections include
cross streets, side streets, alleys, freeway entrances,
and any other location where vehicles traveling on
different highways or roads join each other.” [6, p.
35]

Here we see the semantic definition of the term ‘intersec-
tion’ which is used in the rest of the driver handbook. The
definition is followed by some instances of the definition,
such as ‘cross streets’ and ‘freeway entrances’.

2) “At intersections without ‘STOP’ or ‘YIELD’ signs,
yield to traffic and pedestrians already in the inter-
section or just entering the intersection.” [6, p. 36]

First we observe that the phrase “at intersections without
‘STOP’ or ‘YIELD’ signs” specifies the context in which
the rule applies. The context here is whenever the ego
vehicle is at an uncontrolled intersection. We rewrite
the rule (without the context specifier) in the following
form which makes the logical form of the sentence more
transparent:
‘If vehicle V 1 is at the intersection and vehicle V 2 is in

the intersection, then V 1 must yield to V 2.’
The rule above introduces the predicates must yield to,
at the intersection and in the intersection. Note that for
this rule, we can abstract ‘in the intersection’ and ‘just
entering the intersection’ as the same. (That is, it does not
matter whether the whole vehicle or only part of it is in
the intersection.) In this rule, V 1 is the ego vehicle, since
the rule requires V 1 (and only V 1) to take an action.

3) “At intersections without ‘STOP’ or ‘YIELD’ signs,
yield to the vehicle or bicycle that arrives first.” [6,
p. 36]

We rewrite the rule in the following form:
‘If vehicles V 1, V 2 are at the intersection and V 1

arrived earlier than V 2, then V 2 must yield to V 1.’
The rule above introduces the temporal event of arrival
at an intersection. The relation ‘arrived earlier than’
suggests that the events are sorted by a notion of global

clock. The original form of the rule explicitly presumes
that the ego vehicle (i.e. V 2 in our formulation) is at the
intersection. However, we can assume that V 1 is also
at the intersection since the case where V 1 is in the
intersection is covered by Rule (2).

4) “At intersections without ‘STOP’ or ‘YIELD’ signs,
yield to the vehicle or bicycle on your right if it
reaches the intersection at the same time as you.”
[6, p. 36]

First, we rewrite the rule in the following form:

“If vehicles V 1, V 2 are at the intersection, V 1 arrived
at the same time as V 2, and V 1 is on the right of V 2,

then V 2 must yield to V 1.”

The relation arrived at the same time is again referring to
the global time of the arrival event. This rule introduces
‘is on the right of ’ as a temporal relation between two
vehicles.

5) “At ‘T’ intersections without ‘STOP’ or ‘YIELD’
signs, yield to traffic and pedestrians on the through
road. They have the right-of-way.” [6, p. 35]

The context of this rule is a T-intersection. The rule
introduces the ‘through road’ type. The through road
is sometimes referred to as the major road. The road
attaching to the major road is called the minor road. We
rewrite the rule as follows:

“If vehicles V 1, V 2 are at the intersection, V 1 is on the
through road, and V 2 is not on the through road, then

V 2 must yield to V 1.”

6) “When crossing or entering city or highway traffic
from a full stop, signal, and leave a large enough
gap to get up to the speed of other vehicles. You need
a gap that is about: Half a block on city streets; A
full block on the highway.” [6, p. 67]

This rule is applicable to uncontrolled T-intersections
since a vehicle on the minor road must cross and/or enter
the traffic on the major road.4 We included this rule since
it sheds light on the term ‘on the through road’ in Rule 5.
That is, we consider a vehicle on the through road only if
it is within a certain distance (about half or a full block)
from the intersection.

7) The rules 2, 3, 4, and 5, define when a vehicle has a
yield obligation. However, we still have to define what
it means to yield as an action. First note that ‘yield’ has
different meanings in different rules. For example,

• “A 3-sided red YIELD sign indicates that
you must slow down and be ready to stop,
if necessary, to let any vehicle, bicyclist, or
pedestrian pass before you proceed.” [6, p.
31]

• “Do not block the passing lane. Stay out of
the far left lane if other traffic wants to drive

4To turn right, the vehicle must enter the traffic approaching from left.
To turn left, the vehicle must cross the traffic approaching from left, and enter
the traffic approaching from right.

faster, and yield to the right for any vehicle
that wants to pass.” [6, p. 84]

• “When 2 vehicles meet on a steep road
where neither vehicle can pass, the vehicle
facing downhill must yield the right-of-way
by backing up until the vehicle going uphill
can pass.” [6, p. 37]

In the case of uncontrolled intersections, the handbook
does not explicitly define the yield action. Following the
meaning of ‘YIELD’ sign, we interpret the yield action
either as slow down or stop, depending on the context.

We argue that for each context, we must formalize the
handbook separately:

First, a term may have different meanings in different
contexts. For example, in Item 7, we observed that ‘yield’
has several meanings. Therefore, one cannot first decide the
meaning of a term and then use it in irrelevant contexts.

Second, whether a rule applies to a context depends on
the other rules for that context. This is because some rules
override others. In particular, if a rule for a special type of
intersection is inconsistent with a rule for all intersections, then
the specialized rule overrides the generic one. For example,
Rule 5 overrides Rule 4: In a T-intersection, the minor road
is on the right of (one side of) the major road, but the traffic
on the major road has the right of way. Therefore, one should
first pick a context, then formalize the applicable rules.

To formalize the whole handbook for a context, one may try
an iterative approach. At each iteration, more rules are added
to the context while maintaining consistency. Consistency may
require to redefine a previous rule. In this paper, we take the
first step by formalizing a few rules for two contexts, a generic
uncontrolled intersection, and an uncontrolled T-intersection.

IV. MODELING UNCONTROLLED INTERSECTIONS

Each rule is modeled with a first-order formula. A formula
is a combination of atomic formulas, logical connectives
and quantifiers. We identify some subformulas that have an
intuitive intended meaning as auxiliary predicates. This is to
simplify the expression of long formulas.

Atomic formulas represent either events or static facts. The
events and static facts are defined in terms of mathematical
concepts, such as shapes, curves, sets, intersection, union,
collision (the first time two sets intersect), etc. An event is
represented by a predicate with time as one of the arguments.
A static fact is represented by a predicate without time as an
argument.

We use Herbrand semantics to interpret the formulas [22].
A traffic scenario is described by a finite collection of ground
atomic formulas which represent static facts and events. There-
for, traffic rules are grounded on traffic scenarios. This choice
of semantics provides a more intuitive interpretation (than
a Tarskian semantics.) Furthermore, implementation becomes
straightforward using Answer Set Programming.

In modeling traffic rules, we avoid using function symbols.
Therefore, each Herbrand model (of some traffic rules and
a traffic scenario) is finite. For example, the domain of a

quantifier on a time variable T is the set of all timestamps
observed in the traffic scenario.

A. Traffic Rules
In this section, we model the logical form of the traffic rules.

In the fragment of handbook that we analyzed, we identified
three rules: Rule 2, 3 and 4. Here we present the formula
for each rule using the predicates that were introduced in the
analysis.

1) Rule (2):

mustY ieldToForRule(V 1, V 2, yieldToInside)↔(
atTheIntersection(V 1) ∧

inTheIntersection(V 2)
)

In our model of the yield obligation, we keep track of who
must yield to whom, and an identifier for the corresponding
rule (e.g. yieldToInside). The identifier accounts for the fact
that the mapping from the yield obligations to the actions
depends on the rule corresponding to the obligation. This will
become clear in the definition of mustStopToY ield.

2) Rule (3):

mustY ieldToForRule(V 2, V 1, firstInF irstOut)↔(
atTheIntersection(V 1) ∧
atTheIntersection(V 2) ∧

arrivedEarlierThan(V 1, V 2)
)

3) Rule (4):

mustY ieldToForRule(V 1, V 2, yieldToRight)↔(
atTheIntersection(V 1) ∧
atTheIntersection(V 2) ∧

arrivedSameTime(V 1, V 2) ∧
isOnRightOf(V 2, V 1)

)
4) The yield action: In the case of an uncontrolled inter-

section, there is no explicit definition of the yield action in the
driver handbook. We interpret the yield action to be stopping
and waiting for a certain amount of time. The duration of
wait depends on the rule corresponding to the yield obligation.
For rules firstInF irstOut and yieldToRight, we define the
duration to be until the other vehicle enters the intersection;
thus the duration is the same as of the yield obligation.
However, for rule yieldToInside, the duration depends on a
notion of lane reservation. The predicate mustStopToY ield
defines the yield action:

mustStopToY ield(V 1) ↔ ∃V 2

(
∃L
(
mustY ieldToForRule(V 1, V 2, yieldToInside) ∧

requestedLane(V 1, L) ∧ reservedLane(V 2, L)
)

∨
mustY ieldToForRule(V 1, V 2, firstInFirstOut)

∨

mustY ieldToForRule(V 1, V 2, yieldToRight)

)
.

B. Auxiliary Predicates
1) At the intersection:

atTheIntersection(V) ↔
(
arrived(V) ∧ ¬entered(V)

)
where

arrived(V) ↔ (∃F)(∃T)arrivedAtForkAtT ime(V, F, T)

and

entered(V) ↔ (∃F)(∃T)enteredForkAtT ime(V, F, T).

The predicates arrivedAtForkAtT ime and
enteredForkAtT ime represent the events arrival at an
intersection and entering an intersection, respectively. The
time parameter T in these predicates is called a time stamp.

2) In the intersection:

inTheIntersection(V) ↔
(
entered(V) ∧ ¬exited(V)

)
where

exited(V) ↔ (∃E)(∃T)exitedFromAtT ime(V,E, T).

3) Arrival precedence:

arrivedEarlierThan(V 1, V 2) ↔
(∃T1)(∃T2)

(
arrivedAtT ime(V 1, T1) ∧

arrivedAtT ime(V 2, T2) ∧ T1 < T2
)
.

where

arrivedAtT ime(V, T) ↔
(∃F)arrivedAtForkAtT ime(V, F, T).

The arrivedSameTime is similar, except ‘=’ instead of
‘<’.

4) On-the-right-of relation for vehicles:

isOnRightOf(V 1, V 2) ↔ (∃F1)(∃F2)(∃T1)(∃T2)
(

arrivedAtForkAtT ime(V 1, F1, T1) ∧
arrivedAtForkAtT ime(V 2, F2, T2) ∧

isOnRightOf(F1, F2)
)
.

The latter isOnRightOf is a static fact between two forks.
5) Lane request: At arriving at an intersection, a vehicle

must communicate (to other vehicles) its path through the
intersection.5 The turn signal is used to communicate that.
We say a vehicle requests an intersection-lane using its turn
signal.6

An intersection lane is a lane that connects an incoming lane
of the intersection to an outgoing lane. A fork is the collection
of all intersection lanes from an incoming lane. Therefore, an
incoming lane uniquely identifies a fork, and vice versa.

Each intersection-lane determines which turn signal must be
used if a vehicle wants to pass through the intersection using
that lane. That signal is called the correct signal for the lane.

5In fact, a vehicle must signal starting at 100 feet from the intersection
[6, p. 61]

6Note that due to the limited communication capacity of a turn signal,
more than one lane may be requested. For example, a left-turn signal could
mean a U-turn, or a left-turn to a crossing street.

Therefore, a lane L is requested by a vehicle V , if V
signaled the correct signal for L when arriving at L’s fork
F :

requestedLane(V,L) ↔
(∃S)(∃F)

(
signaledAtFork(V, S, F) ∧

branchOf(L,F) ∧ laneCorrectSignal(L, S)
)
.

where

signaledAtFork(V, S, F) ↔
(∃T)signaledAtForkAtT ime(V, S, F, T)

and

branchOf(L,F) ↔ (∃E)laneFromTo(L,F,E).

6) Lane reservation: We say that a vehicle inside the
intersection reserves a lane L, to indicate that it started passing
through the intersection and its path (may) pass through
(portions of) L, so it is not safe for other vehicles to use
L. We assume that the reserving vehicle’s path through the
intersection will be consistent with their requested lane(s).7 A
vehicle V reserves a lane L1 if

1) V requested L1 and V is on L1, or if
2) V requested L2, V is on L2, the lanes overlap (i.e.

intersect), and V has not left the overlapping lane L1
yet.

Formally:

reservedLane(V,L1) ↔((
requestedLane(V,L1) ∧ isOnLane(V,L1)

)
∨

∃L2
(
requestedLane(V,L2) ∧ isOnLane(V,L2) ∧

overlaps(L2, L1) ∧ ¬leftTheLane(V,L1)
))

.

where

leftTheLane(V,L) ↔ (∃T)leftLaneAtT ime(V,L, T).

The predicate leftTheLane(V,L) indicates that vehicle V
entered lane L and then left L. For most intersection geome-
tries, this implies that V will not enter L again. For example,
observe the pair of intersecting lanes in Figure 1. If a vehicle
passes the intersection through one of these lanes, it will enter
and leave the other lane only once.7

C. Events
1) Time stamp: A time stamp is a numerical representation

of the global clock. In real time, one event may strictly precede
another but the time difference be imperceptible to humans.
Hence, it is reasonable to assume that real time events that
are closer (in time) than a threshold, happened at the same
time. Therefore, we adopt a discrete view of time. That is,
a timestamp is simply the number of time steps since the
beginning of a scenario. The length of a time step is a
hyperparameter to our model.

7See §VIII for more discussion on this.

Fig. 1: Intersecting lanes.

2) Arrival event: The predicate
arrivedAtForkAtT ime(V, F, T) represents the event
of vehicle V arriving at the intersection from fork F at time
T . The arrival time is when the vehicle intersects with the
arrival box.

3) Turn signal event: The predicate
signaledAtForkAtT ime(V, S, F, T) represents the event of
vehicle V using turn signal S when it arrives at fork F at
time T .

4) Entrance event: The predicate
enteredForkAtT ime(V, F, T) represents the event of
vehicle V entering (branches of) fork F at time T . An
entrance box represents the border between the incoming
lane and the branches of F .

5) Lane leave event: The predicate
leftLaneAtT ime(V,L, T) represents the event of vehicle
V leaving lane L completely at time T . That is, at time T ,
intersection of V and L transitions from nonempty to empty.

6) Exit event: The predicate
exitedFromAtT ime(V,E, T) represents the event of
vehicle V leaving the intersection from the exit E at time T .
The time T is when the vehicle’s body stops intersecting the
exit E’s extent box. The extent box is simply a box-shaped
subset of the 3D space.

D. Static predicates

In this section we define the static predicates identified in
the traffic rules. The arguments of the predicates are traffic-
related objects such as lane, turn signal, etc.

1) Intersection lane: An intersection lane is a lane that con-
nects an incoming lane to an outgoing lane of the intersection.
A lane is a tube-shaped volume that is curved along its length
and has a rectangular cross section. The center of the lane is
a spline curve along the length of the tube. The left and right
boundaries of an intersection lane are offsets of the center by
half of the lane width. The width of a lane changes from the
width of the incoming lane to the width of the outgoing lane.
This change is linear with respect to the length of the center
curve from the incoming lane. The bottom of the lane aligns
on the pavement. In Figure 2 we see an example of left-turn,
right-turn, and no-turn intersection lanes.

2) Fork: A fork is the set of all intersection-lanes that start
from the same incoming lane. Each intersection-lane is called a
branch of its fork. Since there is a one-to-one correspondence

(a) Top view (b) Perspective view

Fig. 2: Examples of intersection-lane geometry.

between forks and incoming lanes, we can identify a fork with
an incoming lane or vice versa.

3) Lane overlaps: The predicate overlaps holds for a pair
of intersection lanes if their regions intersect. Therefore, it
defines a symmetric relation.

4) Is-on-right-of relation for forks: We define
isOnRightOf(F2, F1) for two forks, based on their
corresponding incoming lanes. The relation isOnRightOf
must be irreflexive and anti-symmetric.8 The driver handbook
does not give a clear definition. We define this relation based
on angles between vectors. The direction of an incoming lane
defines a 2D vector on the plane (i.e. the pavement). We say
F2 is on the right of F1 if the angle of F2 relative to F1,
measured counterclockwise, is more than 30 and less than
150 degrees.9 The direction counterclockwise is with respect
to a downward view of the intersection from above.

For example, consider Figure 3 (b).10 It shows the in-
coming lanes and the angles between consecutive lanes.
Then, as expected intuitively, the predicate isOnRightOf
holds for the following pairs: (East, South), (North,East),
(West,North), and (South,West). Under our definition,
more than one leg of an intersection may be on the right of
another leg. For example, consider Figure 3 (c).11 The F Street
and Pico Way are 50 degrees and 140 degrees from south side
of 46th Street, counterclockwise. Hence, both of them are on
the right of (the south side of) 46th Street.

If the angle from F1 to F2 is in the interval [0, 30] or
[330, 360), then the incoming lanes are considered heading
the same direction, i.e. on the same street. If the angle is in
[150, 210] we say F2 is in front of F1 i.e. vehicles on F2 are
oncoming traffic relative to F1. If the angle is in (210, 330),
then F2 is on the left of F1, i.e. F1 is on the right of F2.

5) Arrival box: The arrival box is a box on an incoming
lane that starts at a pre-specified distance from the intersection

8That is, no fork is to the right of itself; and if F2 is on the right of F1
then F1 is not on the right of F2.

9The Federal Highway Administration recommends that “in the design of
new facilities or redesign of existing facilities where right-of-way is restricted,
intersecting roadways should meet at an angle of not less than 75 degrees.”
[23] However, as we see in Figure 3 (c), the north side of 46th St is 40 degrees
to the right of Pico Way. Therefore, we choose a conservative infimum of 30
degrees.

10Intersection of Harrison Street and Providence Street, Worcester, Mas-
sachusetts.

11Intersection of 46sth St, F St, and Pico Way, Sacramento, California.

30°

0°

150°

180°

210° 330°

F1

(a) Definition

92°
55°

122°
91°
East

North

West

South
(b) Example.

90°

50°

F St

Pico
way

46th
St

46th
St

40°

(c) Multiplicity

Fig. 3: Is-on-right-of relation for forks.

4 meters

Fig. 4: Arrival box.

(i.e. before the end of the incoming lane) and ends at the
border between the incoming lane and the intersection. This
distance is the length of the box. The width of the box is
the width of the arriving lane. The length of the box is a
hyperparameter. For example, in Figure 4, the dark-blue boxes
at the crosswalk lines, designate the boundaries of the arrival
box. In this example, the length of the box is 4 meters. When
a vehicle overlaps an arrival box, an arrival event is generated.

6) Entrance box: This box is used to generate the entrance
event. It marks the boundary between an incoming lane and
the intersection area. Each fork has an entrance box.

7) Lane-from-to: The predicate laneFromTo(L,F,E) in-
dicates that lane L starts at fork F and ends at exit E.
Therefore, this predicate specifies the possible routes through
the intersection.

V. MODELING T-INTERSECTIONS

Most of our modeling for an uncontrolled intersection can
be used for an uncontrolled T-intersection. The additions and
alterations needed are as follows.

A. Traffic Rules

1) Rule (5):

mustY ieldToForRule(V 1, V 2, throughRoadFirst)↔

(
atTheIntersection(V 1) ∧

vehicleOnThroughRoad(V 2) ∧
¬vehicleOnThroughRoad(V 1)

)
.

2) Yield action for traffic on minor road:

mustStopToY ield(V 1) ↔ (∃V 2)(∃L1)(∃L2)
(

mustY ieldToForRule(V 1, V 2, throughRoadFirst) ∧
requestedLane(V 1, L1) ∧ requestedLane(V 2, L2) ∧

overlaps(L1, L2) ∧ ¬leftTheLane(V 2, L1)
)
.

3) Rule (2): For T-intersections, we need a different model
of the yield action for this rule. This is because a vehicle that
arrives from the through road and is not turning, need not stop
for a vehicle in front of it that is going the same direction. We
choose to skip presenting this nuance and refer the reader to
the implementation file provided on the web.12

B. Auxiliary Predicates

1) Traffic on through road: Recall that we consider a
vehicle on through road only if it has reached within a certain
distance from the intersection. This is similar to the arrival
event for generic uncontrolled intersections which is generated
when a vehicle reaches to a distance from the intersection.
Therefore, we reuse the arrival event to determine whether a
vehicle is on the through road:

vehicleOnThroughRoad(V) ↔
(∃F)(∃T)

(
arrivedAtForkAtT ime(V, F, T) ∧

forkOnThroughRoad(F) ∧ ¬exited(V)
)
.

where

forkOnThroughRoad(F) ↔ (∃L)(∃E)
(

laneFromTo(L,F,E) ∧ laneCorrectSignal(L, off)
)
.

VI. IMPLEMENTATION

In this section we briefly explain how to implement our
model of the rules as an ASP program in Clingo. The logic
programs are made available on the web12. It is interesting to
note that the relevant rules for unprotected intersections can
be specified in approximately 150 lines of code.

An ASP program is a collection of rules of the form:
h :- p_1, ..., p_n, not p_{n+1}, ..., not p_{n+m}.

The intended meaning of the above sentence is

p1 ∧ · · · ∧ pn ∧ ¬pn+1 ∧ · · · ∧ ¬pn+m → h

A. Conjunctive condition

1) Positive conjuncts: Rule (2) is straightforwardly imple-
mented as:
mustYieldToForRule(V1, V2, yieldToInside):-

atTheIntersection(V1),
inTheIntersection(V2).

12https://tinyurl.com/y4lkrn6g

2) Positive and negative conjuncts:
atTheIntersection(V):-
arrived(V),
not entered(V).

B. Existential Quantifier

If we have an existential quantifier over variables (T1 and
T2 here) that only appear in positive conjuncts:
arrivedEarlierThan(V1, V2):-
arrivedAtTime(V1, T1),
arrivedAtTime(V2, T2),
T1 < T2.

If the existentially quantified variable is referenced only
once, we do not need to name it. An underscore represents
a nameless variable. For example,
arrived(V):-
arrivedAtForkAtTime(V, _, _).

C. Disjunctive condition

If the definition of a predicate is a disjunction of two
subformulas, then the definition can be broken down into two
definitions where each subformula is the definition.

For example, consider the definition of mustStopToY ield
for uncontrolled intersections. The condition can be written
in a disjunctive form, by distributing the existential quantifier
over disjunctions:

mustStopToY ield(V 1) ↔

(
(∃V 2)(∃L)

(
mustY ieldToForRule(V 1, V 2, yieldToInside)

∧ requestedLane(V 1, L) ∧ reservedLane(V 2, L)
)

∨
∃V 2

(
mustY ieldToForRule(V 1, V 2, firstInF irstOut)

)
∨

∃V 2
(
mustY ieldToForRule(V 1, V 2, yieldToRight)

))
.

Then we can implement mustStopToY ield by the follow-
ing three rules:
mustStopToYield(V1):-
mustYieldToForRule(V1, V2, yieldToInside),
requestedLane(V1, L),
reservedLane(V2, L).

mustStopToYield(V):-
mustYieldToForRule(V, _, firstInFirstOut).

mustStopToYield(V):-
mustYieldToForRule(V, _, yieldToRight).

The traffic objects, i.e. vehicles, lanes, arrival boxes, en-
trance boxes and exit boxes, are implemented as polygon
meshes in Unreal Engine. We use Unreal Engine’s built-in
collision checking to determine whether two objects overlap.
This enables an efficient and scalable computation of atomic
predicates. If both objects are static, we query the collision
checking only once at the beginning of a scenario. Otherwise,
we ask Unreal Engine to generate collision events when a
dynamic object begins or ends overlapping with other traffic

objects. Unreal Engine’s game time is used as the global time.
We discretize this time to timestamp the events.

VII. APPLICATIONS

A. Detecting violations of traffic rules

In the previous section, we used the formalized rules to
determine the correct action obligated by the right-of-way
rules. A violation happens when a vehicle takes an action
inconsistent with the rules. Similar to traffic rules, there can
be several ways to formalize the notion of violation. One
approach is to use the same predicates (used in traffic rules)
to define a violation.

For example, in our case study of uncontrolled intersections,
mustStopToY ield at the intersection is the obligated action.
Therefore, we formulate violations as entering the intersection
while a mustStopToY ield is required: Vehicle V violates a
rule at time T + 1 if and only if

PT |= mustStopToY ield(V) ∧ PT+1 |= entered(V)

where PT is the logic program at time T .

B. Controlling CARLA’s Autopilot vehicles

Using the predicate mustSlowToY ield and
mustStopToY ield we can determine the correct action
for an AV at a given point in time. We only need to evaluate
the ASP when a new event happens. Each intersection has
a monitor that tracks the events. When a vehicle arrives at
the intersection, the monitor starts tracking the events of
that vehicle until the vehicle exits the intersection. When a
vehicle exits the intersection, all of its events are removed
from the monitor.13 Since each intersection has finite space,
each monitor has a bound on the number of vehicles in its
event list. Assuming that each vehicle only moves forward
along its path, each vehicle generates a bounded number of
events from arrival to exit. Therefore, for each intersection,
there is a bound on the size of the event list, hence a bound
on the size of the logic program.

To test our model, we used CARLA (version 0.9.6) on
an Ubuntu 18.04 on a laptop with Intel Core i7-8750H
processor, 32GB RAM, and NVIDIA GeForce GTX 1070
Max-Q graphics card.

We deployed our traffic controller on an uncontrolled multi-
lane four-way intersection in a virtual town called Town05 in
CARLA. With 120 vehicles (sedans, trucks and motorcycles)
on the map, the simulator runs around 40 frames per second.
We also deployed our traffic control on various uncontrolled
intersections of other types in different maps: single-lane
and multi-lane three-way intersection, single-lane four-way
intersection, and single-lane and multi-lane T-intersection. A
few videos of the simulations are made available on the web.12

Here we point out a few of the scenarios that are simulated
and are in the videos:

13If a vehicle is not present in the context of a rule, then it is irrelevant
to the rule. For example, if the ego vehicle is at an intersection, vehicles that
have not arrived at that intersection nor are in the intersection are irrelevant.

1) At a four-way intersection, V 1 arrive at the same time as
V 2 from two different lanes of the same street. According
to our definition of isOnRightOf , none of the vehicles
is on-the-right-of the other, hence neither need to yield
to the other (based on the implemented rules.) See the
beginning of (the video of) Scenario 1. Here, V 1 and V 2
are the vehicles from the south side of the intersection.

2) At a four-way intersection, V 1 arrives at the intersection
when V 2 is in the intersection but their intended paths
do not intersect. According to Rule 2, V 1 must yield
to V 2. However V 1 need not stop for V 2, based on
our definition of the yield action. See the beginning of
Scenario 1. Here V 1 is the vehicle from north, and V 2
is either of the vehicles from south.

3) At a four-way intersection, V 1 arrives at the intersection
when V 2 is in the intersection and the path of V 2
intersects V 1’s requested lane. Hence V 1 must wait until
V 2 leaves V 1’s requested lane. See the beginning of
Scenario 1. Here, V 1 is the vehicle on the east side of
the intersection, and V 2 is the vehicle from left lane of
the south side.

4) In Scenario 4, we have a single-lane three-way intersec-
tion so each incoming lane is either on the right or on
the left of another.

5) In a T-intersection, V 1 arrives from the minor road while
V 2 is on the through road. Hence V 1 must stop for V 2,
according to Rule 5. Furthermore, before V 2 exits, V 3
arrives from the through road. Then V 1 must wait for V 3
as well. Therefore, V 1 waits until there is no vehicle on
the through road. See Scenario 5.

6) In Scenario 6, we have a T-intersection where the minor
road is not perpendicular to the major road.

The behavior of all of the vehicles in the videos is com-
pletely decided by the traffic controller that respects all the
traffic rules and is generated by ASP. For each of these videos,
the events generated by the vehicles entering and exiting the
intersection, and the reasoning being performed for arriving
at the correct action for each vehicle is being displayed on
the right side and the corresponding actions of each of the
autonomous vehicle can be seen on the left side of the video.
To the best of authors knowledge, this is the first instance
where the actions of autonomous vehicles in a simulated
environment are synthesized based on the rules that they need
to obey.

VIII. LIMITATIONS

A. Traffic flow assumptions

In our model, we presupposed some regularity assumptions
which make the definition of rules simpler. Therefore, our
model is applicable to a traffic scenario only if the assump-
tions are satisfied. A behaviour that violates such regularity
assumptions is more complicated or unpredictable.

For example, we assumed that vehicles’ paths through the
intersection will be consistent with their turn signal. This

assumption is true for CARLA’s autopilot vehicles.14 However,
AI or manually driven vehicles may violate this assumption,
say by not using their signal when turning. Another example
is the assumption that vehicles move only forward along a
requested lane and do not backup in the intersection.

To tame the complexity of irregular behaviours, the driver
handbook has the following provision:

“Never assume other drivers will give you the right-
of-way. Yield your right-of-way when it helps to
prevent collisions.” [6, p. 34]

CARLA’s autopilot has a basic collision-avoidance system
based on forward free distance.

Another remedy would be to encode the assumptions as
a logic program and use the standard definitions only if the
program has a solution. That is, the logic program defines a
guard on validity of the standard definitions.

B. Nontrivial lane intersections
In §IV, we assumed that a vehicle enters and leaves an

overlapping lane at most once. If this assumption does not hold
for a particular intersection, one has to replace that predicate
with a predicate that is true only when the vehicle has left
the last intersecting part of the intersecting lane. The latter
predicate would be slightly more complicated to implement in
Unreal Engine, since one has to keep track of all the pieces
of the overlap between two lanes.

IX. FUTURE WORK

In this work, we evaluated our model by developing a
traffic controller and manually observing the intuitive quality
of several traffic flows that follow the rules. However, we need
a more rigorous and automated method to evaluate a formal
model of traffic rules.

One framework to quantify accuracy is with respect to false
positives and false negatives. For our model, a false positive is
a scenario in which our model deduces a mustStopToY ield
while the driver handbook did not intend so. A false neg-
ative is a scenario in which our model does not deduce a
mustStopToY ield while the driver handbook did intend so.
The challenge here is to determine the true intention of the
driver handbook in each traffic scenario. The legal authorities
(legislature, attorneys, police, transportation engineers, etc.)
are the reference for the true meaning of the rules.

ACKNOWLEDGMENT

We thank anonymous reviews who provided valuable feed-
back on earlier drafts of this paper. This material is based
upon work supported by the Air Force Office of Scientific
Research under award number FA9550-19-1-0288 and Na-
tional Science Foundation (NSF) under grant numbers CNS
1739936, 1935724. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
United States Air Force or National Science Foundation.

14For autopilot vehicles, upon approaching an intersection, a predefined
route is randomly assigned and the corresponding turn signal and waypoints
(for the vehicle controller) are determined.

REFERENCES

[1] J. Hedlund, “Autonomous vehicles meet human drivers: Traffic safety
issues for states,” 2017, https://www.ghsa.org/sites/default/files/2017-01/
AV%202017%20-%20FINAL.pdf.

[2] NHTSA, “Traffic Safety Facts 2015,” Report No. DOT HS 812
384, 2017, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/
812384.

[3] “Report of traffic accident involving an autonomous vehicle (OL
316),” 2017, https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/
autonomousveh ol316 Accessed: July 2017.

[4] “National highway traffic safety administration: Investigation
pe 16-007 report,” 2017, https://static.nhtsa.gov/odi/inv/2016/
INCLA-PE16007-7876.PDF Accessed: July 2017.

[5] Federal Highway Administration, “Unsignalized Intersections,” 2019,
https://safety.fhwa.dot.gov/intersection/conventional/unsignalized/.

[6] California Department of Motor Vehicles, “Driver handbook,” 2019,
https://www.dmv.ca.gov/web/eng pdf/dl600.pdf.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[8] CARLA, “CARLA Autonomous Driving Challenge,” 2019, https://
carlachallenge.org/.

[9] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider, “Potassco: The Potsdam Answer Set Solving Collection,”
AI Communications, vol. 24, no. 2, pp. 107–124, 2011.

[10] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff,
E. Hilgendorf, and T. Nipkow, “Formalising and Monitoring Traffic
Rules for Autonomous Vehicles in Isabelle/HOL,” in International
Conference on Integrated Formal Methods. Springer, 2017, pp. 50–
66.

[11] M. Hilscher and M. Schwammberger, “An abstract model for proving
safety of autonomous urban traffic,” in International Colloquium on
Theoretical Aspects of Computing. Springer, 2016, pp. 274–292.

[12] S. R. Azimi, G. Bhatia, R. R. Rajkumar, and P. Mudalige, “Vehicular
networks for collision avoidance at intersections,” SAE International
Journal of Passenger Cars-Mechanical Systems, vol. 4, no. 2011-01-
0573, pp. 406–416, 2011.

[13] M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio,
“Cooperative collision avoidance at intersections: Algorithms and ex-
periments,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 3, pp. 1162–1175, 2013.

[14] S. M. Loos and A. Platzer, “Safe intersections: At the crossing of hybrid
systems and verification,” in 2011 14th International IEEE Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2011, pp. 1181–
1186.

[15] ASAM OpenDRIVE, 2019, https://www.asam.net/standards/detail/
opendrive/.

[16] ASAM OpenScenario, 2019, https://www.asam.net/standards/detail/
openscenario/.

[17] W. Damm, S. Kemper, E. Möhlmann, T. Peikenkamp, and A. Rakow,
“Using traffic sequence charts for the development of HAVs,” Embedded
Real Time Software and Systems, 2018.

[18] Voyage, 2018, https://oas.voyage.auto/.
[19] S. Ghosh, N. Shankar, P. Lincoln, D. Elenius, W. Li, and W. Steiener,

“Automatic requirements specification extraction from natural language
(ARSENAL),” SRI INTERNATIONAL MENLO PARK CA, Tech. Rep.,
2014.

[20] J. Badger, D. Throop, and C. Claunch, “VARED: Verification and Anal-
ysis of Requirements and Early Designs,” in Requirements Engineering
Conference (RE), 2014 IEEE 22nd International. IEEE, 2014, pp.
325–326.

[21] A. Pnueli, “The temporal logic of programs,” in Foundations of Com-
puter Science, 1977., 18th Annual Symposium on. IEEE, 1977, pp.
46–57.

[22] Michael Genesereth and Eric Kao, “Herbrand Semantics,” 2019, http:
//logic.stanford.edu/herbrand/herbrand.html.

[23] Federal Highway Administration Research and Technology, “Highway
Design Handbook for Older Drivers and Pedestrians,” 2001,
https://www.fhwa.dot.gov/publications/research/safety/humanfac/
01103/chp1rec.cfm#a.

